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Dept. de Cîencia da Computac¸ão Dept. of Computer Science

Universidade Federal de Minas Gerais University of Toronto
Belo Horizonte, MG, CEP 31270-010, Brazil Toronto M5S 3G4, Canada
{carceron,cardeal,massahud}@dcc.ufmg.br kyros@cs.toronto.edu

Abstract

We present a novel approach for temporally aligning N
unsynchronized sequences of a dynamic 3D scene, captured
from distinct viewpoints. Unlike existing methods, which
work for N = 2 and rely on a computationally-intensive
search in the space of temporal alignments, we reduce the
problem for general N to the robust estimation of a single
line in �N . This line captures all temporal relations be-
tween the sequences and can be computed without any prior
knowledge of these relations. Experimental results show
that our method can accurately align sequences even when
they have large mis-alignments (e.g., hundreds of frames),
when the problem is seemingly ambiguous (e.g., scenes with
roughly periodic motion), and when accurate manual align-
ment is difficult (e.g., due to slow-moving objects).

1. Introduction

Many applications today benefit from the availability of
simultaneous video recordings of the same physical event.
Examples include tele-immersion [1], video-based surveil-
lance [2], video mosaicing [3], and video metrology from
television broadcasts of athletic events [4]. A critical task
in all of these applications istemporal alignment—placing
every frame of every video recording onto a single, global
timeline. Unfortunately, even though video synchroniza-
tion hardware can be attached to cameras for subsequent
recording, it cannot be used to align pre-recorded videos or
to align multiple clips in one video stream (e.g., regular and
slow-motion clips of the same penalty kick).

We believe that any general solution to the temporal
alignment problem should handle the following cases:

• Unknown frame rate: The relative frame rate of the
video sequences is unknown and unconstrained.

• Arbitrary time shift: The time shift between the se-
quences is unknown and can be arbitrarily large.

• Unknown motion: The 3D motion of objects in the
scene is unknown and unconstrained.

• Tracking failures: Individual scene points cannot be
tracked reliably over many frames.

• Unknown epipolar geometry: The relative camera
geometry of the video sequences is unknown.

• Scalability: Computational efficiency should degrade
gracefully with increasing number of sequences.

• No static points: No visible point in the scene remains
stationary for two or more frames.

As a step toward this goal, we present a novel solution that
operates under all of the above conditions except the last
one. In particular, we assume that for every pair of video
sequences we can identify enough static scene points to get
an initial estimate of the cameras’ epipolar geometry.

At the heart of our approach lies the concept of atime-
line. Given N sequences, the timeline is a line in�N

that completely describes all temporal relations between the
sequences. A key property of the timeline is that even
though knowledge of the timeline implies knowledge of
the sequences’ temporal alignment, we can compute points
on the timeline without knowing this alignment. Using
this property as a starting point, we reduce the temporal
alignment problem forN sequences to the problem of ro-
bustly estimating a singleN -dimensional line from a set of
appropriately-generated points in�N .

Most existing solutions to the temporal alignment prob-
lem conduct an explicit search in the space of all possible
alignments [5–10]. Unfortunately, the combinatorial na-
ture of this search requires several additional assumptions to
make it manageable. These include assuming known frame
rates; restrictingN to be two; assuming that the temporal
misalignment is an integer; and assuming that this misalign-
ment falls within a small user-specified range (typically less
than fifty frames). Hence, even though most of these solu-
tions can operate when no stationary scene points exist, ef-
ficiency considerations greatly limit their applicability. Un-
like these techniques, our approach alignsN sequences in a
single step, can handle arbitrarily-large misalignments be-
tween them, and does not require anya priori information
about their temporal relations.

Our work is most closely related to the approach of
Caspi, Simakov and Irani [5]. In their approach, the epipo-
lar geometry and temporal misalignment between two se-
quences are recovered from the image trajectory of a sin-
gle scene point that is visible in both sequences, and are



subsequently refined using more features. To achieve this,
they assume that frame rates are known and formulate a
non-linear optimization problem to jointly estimate epipolar
geometry and temporal misalignment. Unfortunately, the
highly non-linear nature of this optimization necessitates
good initial estimates for both the temporal misalignment
and the epipolar geometry. Importantly, the approach as-
sumes that a single scene point can be tracked reliably over
the entire sequence. This may be difficult to achieve when
aligning videos of complex scenes, where feature tracking
can fail often because of occlusions or large inter-frame mo-
tions. Our solution, on the other hand, requires the ability to
track scene points only across two consecutive frames of the
same sequence. Moreover, it does not require the ability to
establish feature correspondences between the sequences.

2. The Timeline Constraint

Suppose that a dynamic scene is viewed simultaneously
by N perspective cameras located at distinct viewpoints.
We assume that each camera captures frames with a con-
stant, unknown frame rate. We also assume that the cam-
eras are unsynchronized, i.e., they began capturing frames
at a different time with possibly-distinct frame rates. In or-
der to temporally align the resulting sequences, we must de-
termine the correspondence between frame numbers in one
sequence and frame numbers in all other sequences. This
correspondence can be expressed as a set of linear equa-
tions,

ti = αi t1 + βi (1)

where ti is the frame number of thei-th sequence and
αi, βi are unknown constants describing temporal dilation
and temporal shift, respectively, between thei-th sequence
and the first. In general, these constants will not be integers.

The pairwise temporal relations captured by Eq. (1) in-
duce a global relationship between the frame numbers of
the input sequences. We represent this relationship by an
N -dimensional lineL that we call thetimeline:

L =
{

[α1 . . . αN ]T t + [β1 . . . βN ]T | t ∈ �
}

. (2)

A key property of the timeline is that even though knowl-
edge ofL implies knowledge of the temporal alignment of
the sequences, we can compute points on the timeline with-
out knowing the sequences’ alignment. This observation
leads to a simple algorithm for reconstructing the timeline
from dynamic features in the scene that are visible in two or
more of the sequences.

Specifically, letq be the instantaneous projection of a
moving scene point in camera1 at framet1, expressed in
homogeneous 2D coordinates (Figure 1). Furthermore, let
qi(ti) be the trajectory traced by the point’s projection in
camerai and suppose that the fundamental matrix,F1i, be-
tween cameras1 andi is known for alli. If the scene point
is visible to all cameras when framet1 is captured by cam-
era 1, we have the following constraint:

Figure 1. Geometry of the Timeline Constraint. In this
two-camera example, the point’s trajectory intersects the
epipolar line,qT F12, twice. If the intersection points were
q2(t2) andq2(t

′
2), we haveTq = { [t1 t2]

T , [t1 t′2]
T }.

Timeline Constraint: The set

Tq =
{

[t1 . . . tN ]T | qT F1i qi(ti) = 0, i = 2 . . . N
}

contains at least one point on the timelineL.

Intuitively, the Timeline Constraint can be thought of as
a procedure for generating a setTq of “candidate” temporal
alignments that is guaranteed to contain at least one point on
the timeline. The constraint tells us that we can create such
a set by (1) intersecting the epipolar line ofq in camera
i with the trajectoryqi(ti), (2) recording the frame num-
ber(s) corresponding to each intersection point for camera
i, and (3) generating temporal alignment vectors from the
recorded frame numbers.

To see why the Timeline Constraint holds, observe that if
[t1 . . . tN ]T is on the timeline it must represent the “true”
temporal alignment between the frame of pixelq and the
remaining cameras. Hence, pixelsq andqi(ti) must satisfy
the epipolar constraint equation,qT F1iqi(ti) = 0. Since,
by definition, the setTq containsall temporal alignments
that satisfy the epipolar constraint equation across theN
cameras, it must also contain the true alignment, which is a
point on the timelineL. In this respect, the Timeline Con-
straint can be thought of as the converse of the epipolar con-
straint for the case ofN unaligned sequences.

In order to apply the Timeline Constraint, we must know
the fundamental matrices,Fij , describing the cameras’
epipolar geometry. In practice, we obtain an initial estimate
of Fij by finding “background features,” i.e., points in the
scene that remain stationary and are jointly visible by two
or more cameras. Once the timelineL is reconstructed from
the estimated fundamental matrices, we jointly optimizeL
and the matricesFij using a linear, iterative refinement pro-
cedure. We describe the timeline reconstruction algorithm
in the next section and consider the joint optimization ofL
andFij in Section 4.

3. Timeline Reconstruction

The Timeline Constraint leads directly to a voting-based
algorithm for reconstructing the timeline ofN sequences.
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Figure 2. (a) Trajectory of a feature in Sequence 1 of theCar dataset (Figure 4). The feature was the centroid of all pixels labeled
as “foreground” by a color-based foreground-background detector. (b) Trajectory of the foreground pixel centroid in Sequence 2
of the dataset. Also shown is the epipolar line corresponding to pixelq in (a). (c) Magnified view of the trajectory/epipolar line
intersection in (b). The individual line segments connecting feature locations in adjacent frames are now visible. Note that the
epipolar line ofq intersects multiple line segments along the trajectory. (d) Exploiting the Timeline Constraint for two-sequence
alignment. Each point represents a candidate temporal alignment, i.e., an element ofTq for some feature location,q, in (a). The
reconstructed timeline, drawn as a solid line, describes the temporal alignment of the two sequences in theCar dataset.

The algorithm operates in two phases. In the first phase,
we choose one of the image sequences to be the “reference”
sequence and use pixelsq from that sequence to estimateTq

for eachq. In the second phase, we fit anN -dimensional
lineL to the union of the estimated setsTq. To fully specify
this algorithm we must therefore ask three questions: how
do we select the pixelsq, how do we estimate the setTq and
how do we compute the lineL?

To select the pixelsq, we apply a feature detector to ev-
ery frame of the reference sequence and compute a distinct
setTq for each location returned by the detector. Hence, the
selection ofq does not involve any temporal processing of
the reference sequence.

To estimate the setTq for a givenq, we use a two-frame
feature tracker and rely on an initial estimate of the funda-
mental matrices,Fij . Specifically, by applying the tracker
to every pair of adjacent frames in thei-th sequence, we ob-
tain a collection of line segments. Each line segment con-
nects the location of a feature that was detected in some
frame of thei-th sequence and was successfully tracked
to the next frame (Figure 2a-c). When such a line seg-
ment intersects the epipolar line ofq, it defines a possibly-
fractional frame number,ti, corresponding to the instant
that q’s epipolar line intersects the image trajectory of a
point in the scene. Hence,ti is thei-th coordinate of a po-
tential element ofTq. To generateTq, we collect all the
ti coordinates computed for all sequences and concatenate
them so that they form validN -dimensional vectors.1

The set of candidate temporal alignments is the union
of the setsTq for all q. In general, this union will contain

1Note that if the epipolar line ofq intersects two line segments in each
of N − 1 cameras, we have a total of2N−1 possible ways of “concatenat-
ing” the computedti coordinates into anN -dimensional vector. To avoid
including an exponential number of vectors inTq, we only include vectors
that are consistent with the cameras’ epipolar geometry. In particular, we
concatenate coordinatesti andtj for camerasi andj, respectively, only
if the intersection points that defined them are near each others’ epipolar
lines. Note that our concatenation procedure is conservative, i.e., it guar-
antees that the set of vectors generated this way will be a superset ofTq.

a large number of outliers (Figure 2d). To reconstruct the
timeline in the presence of outliers, we use the RANSAC
algorithm [11]. The algorithm randomly chooses a pair
of candidate temporal alignments to define the timelineL,
and then computes the total number of candidates that fall
within an ε-distance of this line. These two steps are re-
peated for a number of iterations. Therefore, the two critical
parameters of the algorithm are the numberk of RANSAC
iterations and the distanceε. To determinek, we use the
formula

k =

⌈
log(1− p)

log(1− r2)

⌉
, (3)

wherep is a user-specified parameter between 0 and 1 and
r is the probability that a randomly-selected candidate is
an inlier. Equation (3) expresses the fact thatk should be
large enough to ensure that, with probabilityp, at least one
randomly-selected pair of candidates is an inlier. We used
p = 0.99 andr = 0.05 for all experiments. To compute the
distanceε, we observe thatε can be thought of as a bound
on the distance between detected feature locations in the in-
put cameras and their associated epipolar lines. This allows
us to approximateε by the average distance between static
features in the scene and their associated epipolar lines.

4. Timeline Refinement

While images of a dynamic scene may contain stationary
points in the background, these points cannot be expected to
represent the majority of detected features. Any procedure
that attempts to estimate epipolar geometry from those fea-
tures alone is likely to ignore a significant portion of the
available image information. In practice, this will cause er-
rors in the computed fundamental matrices and, ultimately,
in the reconstructed timeline. Here we show how to refine
the matricesFij and the timelineL by incorporating all fea-
tures detected in the sequences. Without loss of generality,
we assume that camera 1 is the reference camera.

Letq be the projection along camera 1 of a scene point in



framet1. Furthermore, suppose that the point’s projection
in camerai traces a known linear trajectory,

qi(ti) = (1− ti)ri + tisi (4)

with ri, si known pixels on the image plane of camerai.
This trajectory jointly constrains the estimated timelineL
and the estimated fundamental matrix,F1i. Specifically,
we use our estimate ofL to compute the location on this
trajectory corresponding to pixelq in framet1:

q∗
i = [1− (αit1 + βi)] ri + (αit1 + βi)si . (5)

This location must also satisfy the epipolar constraint,

qT F1i q∗
i = 0 . (6)

By combining Eqs. (5) and (6) we obtain a homogeneous
equation that “couples” the estimated timeline parameters
αi, βi and the elements of the fundamental matrixF1i :

(1− αit1 − βi) qT F1iri + (αit1 + βi) qT F1isi = 0 . (7)

In practice, errors inL andF1i will cause Eq. (7) not to
be satisfied exactly, representing a non-zero algebraic dis-
tance between pixelq∗

i and its associated epipolar line. To
refine the current estimate of the timeline and of the cam-
eras’ epipolar geometry, we expand Eq. (7) by introducing
unknown refinement terms∆F1i,∆αi and∆βi

F1i ←− F1i + ∆F1i

αi ←− αi + ∆αi

βi ←− βi + ∆βi

and solving for these terms in order to minimize algebraic
distance across all scene points and all input frames.2

In general, the image trajectory of an arbitrarily-moving
scene point will not be linear. To handle this general case,
we apply the above refinement procedure to the line seg-
ments returned by the two-frame tracker we use to estimate
Tq (Section 3). This leads to an iterative refinement algo-
rithm that consists of two steps. In the first step, the current
estimates ofF1i andL are used to select, for every feature
detected in camera 1, one line segment for each sequencei.
In the second step, the estimates ofF1i andL are updated
using the linear method outlined above. These two steps are
repeated until convergence.

5. Experimental Results
To demonstrate the effectiveness of our timeline recon-

struction algorithm, we tested it on several challenging two-
and three-view datasets (Figure 4). Image dimensions in all

2For every scene point and every frame in which it is visible, we ob-
tain one equation in the 10 unknown parameters that completely determine
∆F1i, ∆αi, and∆βi. This equation is not linear because it contains
the second-order terms(∆αi∆F1i) and(∆βi∆F1i). In our implemen-
tation, we simplify computations by ignoring these terms and solving the
resulting over-determined system of linear equations.

datasets were about320 × 240 pixels. The sequences rep-
resented a wide variety of conditions, including sequences
that ranged from 55 to 605 frames; temporal misalignments
of 21 to 285 frames; relative frame rates between 1 and 2;
image quality that ranged from quite high (i.e., sequences
captured by laboratory-based color cameras) to rather low
(i.e., clips from a low-quality, MPEG-compressed video of
a broadcast TV signal); and object motions ranging from
several pixels per frame to less than a pixel. Since no sin-
gle tracker was able handle all of our datasets and since our
algorithm does not depend on a specific tracker, we exper-
imented with several—a simple color-based blob tracker, a
blob tracker based on background subtraction, and the WSL
tracker of El-Maraghi, Fleet and Jepson [12]. In each case,
we treated the tracker as a “black box” that returned a list of
corresponding features for every pair of consecutive frames.

Alignment accuracy can be evaluated by measuring the
average temporal misalignment. This is the average dif-
ference between the computed time of each frame and the
frame’s “ground-truth” time, i.e., when it was actually cap-
tured. Since our sequences were acquired with unsynchro-
nized cameras, the ground-truth time of each frame could
only be known to within±0.5 frames. This is because even
if we could perfectly align the sequences at frame resolu-
tion, corresponding frames could have been captured up to
0.5 frame intervals apart. This lower bound on ground-truth
accuracy is critical in evaluating the results below.

Two-view Car dataset As a first test, we applied our
technique to a two-view sequence used by Caspi and Irani
[13] for evaluating their method (Figure 4). The data was
acquired by two cameras with identical frame rate of 25fps,
implying a unit ground-truth temporal dilation (α = 1). The
ground-truth temporal shift wasβ = 55 ± 0.5 frames.

Most frames in the resulting sequences contain a single
rigid object (a car) moving over a static background (a park-
ing lot), along a fairly smooth trajectory. We therefore used
a simple blob tracker that relied on foreground-background
detection to label all foreground pixels in each frame. The
centroid of the foreground pixels was the only “feature” de-
tected and tracked (Figures 2a and 2b). To compute the
cameras’ fundamental matrix we used twenty six correspon-
dences between background pixels in the two views.

Figure 2d shows the timeline reconstructed using the
RANSAC-based algorithm of Section 3, with the RANSAC
parameterε set to2.0. The reconstructed timeline gives
an average temporal misalignment of0.66 frames, almost
within the 0.5-frame uncertainty of the ground-truth mea-
surements. Applying the refinement procedure of Section 4
produced updated values ofα = 1.0027 andβ = 54.16
for the timeline coefficients. These coefficients correspond
to an improved average temporal misalignment of0.35
frames, i.e., below the accuracy of the ground-truth align-
ment. Note that these results are at least as accurate as those
of Caspi and Irani, even though we are solving a less con-
strained problem (i.e.,α is unknown and scene planarity is



not required). Moreover, the results were obtained from raw
results of a tracker that was not particularly robust (e.g., the
centroid of the foreground pixels drifts off the moving car
for approximately 30 frames in each sequence).

Two-view Robots dataset In a second experiment, we
used two cameras operating at 30fps to acquire images of
four small robots, as they executed small random move-
ments on two planes (Figure 4). The ground-truth timeline
coefficients wereα = 1 andβ = −284.5 ± 2. We used
a uniform-color blob tracker to track these robots between
consecutive frames. The resulting data was challenging for
four reasons. First, the robots’ inter-frame motion was im-
perceptibly small (roughly 0.25 pixels per frame), making
precise manual alignment by a human observer virtually im-
possible. Second, the temporal shift of the sequences was
large, making it inefficient to find this shift via exhaustive
search. Third, the uniformly-colored regions on each robot
were small, causing our tracker to generate fragmented and
noisy trajectories. Fourth, the robot’s motion was designed
to produce trajectories that self-intersect and that are non-
smooth, complicating the shape of each blob’s trajectory.

The timeline reconstructed withε = 2.0 prior to refine-
ment is shown in Figure 5a. This line gives an average tem-
poral misalignment error of5.84 frames. Our refinement
stage reduced this error to4.43 frames, withα = 1.015
andβ = −286.89. Given the robots’ image velocity, this
translates to a misalignment of about one pixel. Figure 3
confirms that the computed alignment is quite good, despite
the robots’ slow motion and the tracker’s poor performance.

Two-view Juggling dataset In this dataset, two people
are observed by a wide-baseline camera pair while juggling
five uniformly-colored balls (Figure 4). Both sequences
were acquired at a rate of 30fps. This dataset represents
a difficult case for existing direct- or feature-based methods
because (1) the trajectories of different balls nearly overlap
in 3D, (2) individual trajectories are approximately cycli-
cal, (3) image velocities are quite large, up to 9 pixels per
frame, making long-range feature tracking difficult, and (4)
the ground-truth temporal shift between the sequences is
β = −41 ± 0.5 frames, or about 1.5 periods of a ball’s
motion. This shift is likely to cause difficulties for tech-
niques based on non-exhaustive search [6] or non-linear op-
timization [5] because of the possibility of getting trapped
in deep local minima. To make the alignment problem even
more challenging, we modified this dataset by deleting or
adding frames to one of the sequences. These modifications
were intended to simulate sequences with more than one
frame rate (e.g., containing a slow-motion segment) and se-
quences that contain spurious clips (e.g., a TV commercial).

We used a uniform-color blob tracker to track four of the
balls in each sequence, providing us with the location of
four features per frame. No information about feature cor-
respondences between cameras was given to the algorithm
(i.e., color information was not used). Figures 5d-f show the
reconstructed timelines before the refinement stage, with

ε = 0.5. The average temporal misalignment error was
0.75 frames for the original dataset. The refinement stage
brought this error down to0.26 frames, withα = 1.0004
andβ = −40.80.

Three-view Soccer dataset As a final experiment, we
applied our technique to three video clips extracted from a
single MPEG-compressed TV broadcast of a soccer match
[15]. The clips were replays of the same goal filmed from
three distinct viewpoints (Figure 4). Each sequence con-
tained a significant panning motion to maintain the moving
players within the field of view. To ensure that the pairwise
fundamental matrices remained constant for all frames, we
stabilized each sequence by computing the frame-to-frame
homography using Brown and Lowe’s system [14]. We
used the WSL tracker to track the same player in each se-
quence, thereby obtaining one feature trajectory per camera.
WSL was initialized manually in the first frame of each se-
quence. Even though it was able to track the chosen player
for most frames, the player’s small size and jitter artifacts
caused by the video’s poor quality resulted in noisy mea-
surements of his location. These measurements were given
as input to the basic timeline reconstruction algorithm with
ε = 1.5 and no timeline refinement.

Since this dataset containedN = 3 views, the timeline
is a 3D line with 3-vectors as its coefficients (see Eq. (2)
and Figures 5b and 5c). To evaluate the timeline’s ac-
curacy in the absence of ground-truth information, we at-
tempted to estimate the ground-truth alignment by visual
inspection: we identified three easily-distinguishable events
(e.g., a player stepping on a field line, as in Figure 4) and
recorded the frame where each event occurred in each se-
quence. These frames were used as “ground-truth” event
times for each camera. To evaluate the timeline’s accuracy,
we used it to predict the event times in cameras 1 and 2
from the ground-truth time in camera 3. The minimum dif-
ference between the predictions and the ground-truth times
across all three events was0.22 frames in camera 1 and0.86
frames in camera 2; the maximum difference was1.66 and
1.33 frames, respectively. This confirms that the sequences
were aligned quite well (see Figure 3), despite the low qual-
ity of the videos and their unequal frame rates.

6. Concluding Remarks

Our results suggest that timeline reconstruction provides
a simple and effective method for temporally aligning mul-
tiple video sequences. Unlike previous approaches, it is
able to handle temporal dilations and large time shifts, with
no degradation in accuracy, even when scene points move
along three-dimensional, overlapping and almost–cyclical
trajectories. Importantly, by reducing the alignment prob-
lem to a RANSAC-based procedure, our algorithms are able
to tolerate large proportions of outliers in the data, high
levels of noise, discontinuities in feature trajectories, com-
plete absence of stereo correspondences for moving fea-



tures, and sequences that contain multiple frame rates. We
are currently investigating the combination of timeline re-
construction and multi-view stereo for reconstructing im-
portant events in old video footage, where multiple replays
of the same event are shown from different viewpoints.
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Figure 3. Using synthetic images to assess alignment
quality for the datasets of Figure 4.Before alignment
images were created by superimposing the green band
of a frame t2 with the red and blue bands of frame
t∗1 = (t2 − β∗)/α∗ using ground truth timeline coefficients
α∗ andβ∗. After alignment images were created by re-
placing the green band of the images above them with that
of framet1 = (t2 − β)/α, with α, β computed by our al-
gorithm. For both types of images, deviations from the
ground-truth alignment cause “double exposure” artifacts
(i.e., whent∗1 �= t2 or t∗1 �= t1, respectively).
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Figure 4. Top left: Two out of 470 frames from the two-viewCar dataset.Top right: Two out of 605 frames from the two-view
Robots dataset.Middle: Four out of 260 frames from the two-viewJuggling dataset.Bottom: Two out of 55 frames from the three-
view Soccer dataset. Ellipses indicate the player being tracked by the WSL tracker. These datasets, along with more experimental
results and videos, are available athttp://www.cs.toronto.edu/˜kyros/research/timeline/ .
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Figure 5. Voting spaces, timelines, and timeline equations recovered prior to refinement. Each point is an element ofTq for some
featureq in the reference sequence. (a)Robots dataset. (b),(c) Two views of the 3D voting space and 3D timeline computed for
theSoccer dataset. (d)Juggling dataset. (e) ModifiedJuggling dataset: all odd-numbered frames from the last half of Sequence 1
were removed to simulate a 2× increase in frame rate. Timelines were computed by applying RANSAC to fit two lines to the voting
space. (f) ModifiedJuggling dataset: 100 spurious frames were inserted in Sequence 2 and timelines were reconstructed as in (e).
Note that the reconstructed timelines contain sufficient information to “join” the separated segments of the original sequence.
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Figure 6. Distribution of distances of inlier votes from the reconstructed timeline.Top row: Distribution before the timeline
refinement stage.Bottom row: Distribution after the refinement stage. Note that the updated epipolar geometry and updated
timeline parameters reduce the distance between inliers and the timeline and cause more votes to be labeled as inliers.


