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Abstract. In this paper we consider the problem of computing the 3D shape of an unknown, arbitrarily-shaped
scene from multiple photographs taken at known but arbitrarily-distributed viewpoints. By studying the equivalence
class of all 3D shapes that reproduce the input photographs, we prove the existence of a special member of this class,
thephoto hull, that (1) can be computed directly from photographs of the scene, and (2) subsumes all other members
of this class. We then give a provably-correct algorithm, calledSpace Carving, for computing this shape and present
experimental results on complex real-world scenes. The approach is designed to (1) capture photorealistic shapes
that accurately model scene appearance from a wide range of viewpoints, and (2) account for the complex interactions
between occlusion, parallax, shading, and their view-dependent effects on scene-appearance.
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1. Introduction

A fundamental problem in computer vision is recon-
structing the shape of a complex 3D scene from mul-
tiple photographs. While current techniques work well
under controlled conditions (e.g., small stereo base-
lines (Okutomi and Kanade, 1993), active viewpoint
control (Kutulakos and Dyer, 1994), spatial and tempo-
ral smoothness (Poggio et al., 1985; Bolles et al., 1987;
Katayama et al., 1995), or scenes containing curved
lines (Bascle and Deriche, 1993), planes (Pritchett and
Zisserman, 1998), or texture-less surfaces (Cipolla and
Blake, 1992; Vaillant and Faugeras, 1992; Laurentini,
1994; Szeliski and Weiss, 1994; Kutulakos and
Dyer, 1995)), very little is known about scene recon-
struction under general conditions. In particular, in the
absence of a priori geometric information, what can we
infer about the structure of an unknown scene fromN
arbitrarily positioned cameras at known viewpoints?
Answering this question has many implications for

reconstructing real objects and environments, which
tend to be non-smooth, exhibit significant occlusions,
and may contain both textured and texture-less surface
regions (Fig. 1).

In this paper, we develop a theory for reconstructing
3D scenes from photographs by formulating shape re-
covery as a constraint satisfaction problem. We show
that any set of photographs of a rigid scene defines a
collection of picture constraintsthat are satisfied by
every scene projecting to those photographs. Further-
more, we characterize the set of all 3D shapes that
satisfy these constraints and use the underlying theory
to design a practical reconstruction algorithm, called
Space Carving, that applies to fully-general shapes and
camera configurations. In particular, we address three
questions:

– GivenN input photographs, can we characterize the
set of allphoto-consistent shapes, i.e., shapes that
reproduce the input photographs?
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Figure 1. Viewing geometry. The scene volume and camera distribution covered by our analysis are both completely unconstrained. Examples
include (a) a 3D environment viewed from a collection of cameras that are arbitrarily dispersed in free space, and (b) a 3D object viewed by a
single camera moving around it.

– Is it possible to compute a shape from this set and
if so, what is the algorithm?

– What is the relationship of the computed shape to
all other photo-consistent shapes?

Our goal is to study theN-view shape recovery prob-
lem in the general case where no constraints are placed
upon the scene’s shape or the viewpoints of the input
photographs. In particular, we address the above ques-
tions for the case when (1) no constraints are imposed
on scene geometry or topology, (2) no constraints are
imposed on the positions of the input cameras, (3) no
information is available about the existence of specific
image features in the input photographs (e.g., edges,
points, lines, contours, texture, or color), and (4) no
a priori correspondence information is available. Un-
fortunately, even though several algorithms have been
proposed for recovering shape from multiple views that
work under some of these conditions (e.g., work on
stereo (Belhumeur, 1996; Cox et al., 1996; Stewart,
1995)), very little is currently known about how to an-
swer the above questions, and even less so about how
to answer them in this general case.

At the heart of our work is the observation that these
questions become tractable when scene radiance be-
longs to a general class of radiance functions we call
locally computable. This class characterizes scenes
for which global illumination effects such as shad-
ows, transparency and inter-reflections can be ignored,
and is sufficiently general to include scenes with pa-
rameterized radiance models (e.g., Lambertian, Phong
(Foley et al., 1990), Torrance-Sparrow (Torrance and
Sparrow, 1967)). Using this observation as a starting
point, we show how to compute, fromN photographs of

an unknown scene, a maximal shape called thephoto
hull that encloses the set of all photo-consistent re-
constructions. The only requirements are that (1) the
viewpoint of each photograph is known in a com-
mon 3D world reference frame (Euclidean, affine
(Koenderink and van Doorn, 1991), or projective
(Mundy and Zisserman, 1992)), and (2) scene radiance
follows a known, locally-computable radiance func-
tion. Experimental results demonstrating our method’s
performance are given for both real and simulated
geometrically-complex scenes.

Central to our analysis is the realization that paral-
lax, occlusion, and scene radiance all contribute to a
photograph’s dependence on viewpoint. Since our no-
tion of photo-consistency implicitly ensures that all of
these 3D shape cues are taken into account in the recov-
ery process, our approach is related to work on stereo
(Okutomi and Kanade, 1993; Cox et al., 1996; Hoff and
Ahuja, 1989), shape-from-contour (Cipolla and Blake,
1992; Vaillant and Faugeras, 1992; Szeliski, 1993),
as well as shape-from-shading (Epstein et al., 1996;
Belhumeur and Kriegman, 1996; Woodham et al.,
1991). These approaches rely on studying a single 3D
shape cue under the assumptions that other sources of
variability can be safely ignored, and that the input pho-
tographs contain features relevant to that cue (Bolles
and Cain, 1982).1 Unfortunately, these approaches
cannot be easily generalized to attack theN-view re-
construction problem for arbitrary 3D scenes because
neither assumption holds true in general. Implicit in
this previous work is the view that untangling paral-
lax, self-occlusion and shading effects inN arbitrary
photographs of a scene leads to a problem that is either
under-constrained or intractable. Here we challenge
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this view by showing that shape recovery fromN ar-
bitrary photographs of an unknown scene is not only a
tractable problem but has a simple solution as well.

To our knowledge, no previous theoretical work
has studied the equivalence class of solutions to the
generalN-view reconstruction problem or provably-
correct algorithms for computing them. The Space
Carving Algorithm that results from our analysis,
however, is related to other 3D scene-space stereo
algorithms that have been recently proposed (Fua
and Leclerc, 1995; Collins, 1996; Seitz and Dyer,
1999; Seitz and Kutulakos, 1998; Zitnick and Webb,
1996; Narayanan et al., 1998; Szeliski and Golland,
1998; Roy and Cox, 1998). Of these, most closely
related are mesh-based (Fua and Leclerc, 1995) and
level-set (Faugeras and Keriven, 1998) algorithms, as
well as methods that sweep a plane or other manifold
through a discretized scene space (Collins, 1996; Seitz
and Dyer, 1999; Seitz and Kutulakos, 1998; Szeliski
and Golland, 1998; Langer and Zucker, 1994). While
the algorithms in (Faugeras and Keriven, 1998; Fua and
Leclerc, 1995) generate high-quality reconstructions
and perform well in the presence of occlusions, their
use of regularization techniques penalizes complex sur-
faces and shapes. Even more importantly, no formal
study has been undertaken to establish their validity
for recovering arbitrarily-shaped scenes from uncon-
strained camera configurations (e.g., the one shown in
Fig. 1(a)). In contrast, our Space Carving Algorithm is
provably correct and has no regularization biases. Even
though space-sweep approaches have many attractive
properties, existing algorithms (Collins, 1996; Seitz
and Dyer, 1999; Seitz and Kutulakos, 1998; Szeliski
and Golland, 1998) are not fully general i.e., they
rely on the presence of specific image features such
as edges and hence generate only sparse reconstruc-
tions (Collins, 1996), or they place strong constraints
on the input viewpoints relative to the scene (Seitz and
Dyer,1999; Seitz and Kutulakos, 1998). Unlike all pre-
vious methods, Space Carving guarantees complete re-
construction in the general case.

Our approach offers six main contributions over the
existing state of the art:

1. It introduces an algorithm-independent analysis of
the shape recovery problem fromN arbitrary pho-
tographs, making explicit the assumptions required
for solving it as well as the ambiguities intrinsic to
the problem. This analysis not only extends previous
work on reconstruction but also puts forth a concise

geometrical framework for analyzing the general
properties of recently-proposed scene-space stereo
techniques (Fua and Leclerc, 1995; Collins, 1996;
Seitz and Dyer, 1999; Seitz and Kutulakos, 1998;
Zitnick and Webb, 1996; Narayanan et al., 1998;
Szeliski and Golland, 1998; Roy and Cox, 1998).
In this respect, our analysis has goals similar to
those of theoretical approaches to structure-from-
motion (Faugeras and Maybank, 1990), although
the different assumptions employed (i.e., unknown
vs. known correspondences, known vs. unknown
camera motion), make the geometry, solution space,
and underlying techniques completely different.

2. Our analysis provides a volume which is the tightest
possible bound on the shape of the true scene that
can be inferred fromN photographs. This bound
is important because it tells us precisely what shape
information we can hope to extract fromN pho-
tographs, in the absence of a priori geometric and
point correspondence information,regardless of the
specific algorithm being employed.

3. The Space Carving Algorithm presented in this pa-
per is the only provably-correct method, to our
knowledge, that enables scene reconstruction from
input cameras at arbitrary positions. As such, the al-
gorithm enables reconstruction of complex scenes
from viewpoints distributed throughout an unknown
3D environment—an extreme example is shown in
Fig. 11(a) where the interior and exterior of a house
are reconstructed simultaneously from cameras dis-
tributed throughout the inside and outside of the
house.

4. Because no constraints on the camera viewpoints are
imposed, our approach leads naturally to global re-
construction algorithms (Kutulakos and Dyer, 1995;
Seitz and Dyer, 1995) that recover 3D shape in-
formation from all photographs in a single step.
This eliminates the need for complex partial re-
construction and merging operations (Curless and
Levoy, 1996; Turk and Levoy, 1994) in which par-
tial 3D shape information is extracted from sub-
sets of the photographs (Narayanan et al., 1998;
Kanade et al., 1995; Zhao and Mohr, 1996; Seales
and Faugeras, 1995), and where global consistency
with the entire set of photographs is not guaranteed
for the final shape.

5. We describe an efficient multi-sweep implementa-
tion of the Space Carving Algorithm that enables re-
covery of photo-realistic 3D models from multiple
photographs of real scenes, and exploits graphics
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hardware acceleration commonly available on
desktop PC’s.

6. Because the shape recovered via Space Carving
is guaranteed to be photo-consistent, its reprojec-
tions will closely resemble photographs of the true
scene. This property is especially significant in com-
puter graphics, virtual reality, and tele-presence
applications (Tomasi and Kanade, 1992; Kanade
et al., 1995; Moezzi et al., 1996; Zhang, 1998;
Kang and Szeliski, 1996; Sato et al., 1997) where
the photo-realism of constructed 3D models is of
primary importance.

1.1. Least-Commitment Shape Recovery

A key consequence of our photo-consistency analysis
is that there are 3D scenes for which no finite set of
input photographs can uniquely determine their shape:
in general, there exists an uncountably-infinite equiv-
alence class of shapes each of which reproduces all of
the input photographs exactly. This result is yet an-
other manifestation of the well-known fact that 3D
shape recovery from a set of images is generally ill-
posed (Poggio et al., 1985), i.e., there may be multiple
shapes that are consistent with the same set of images.2

Reconstruction methods must therefore choose a par-
ticular scene to reconstruct from the space of all con-
sistent shapes. Traditionally, the most common way of
dealing with this ambiguity has been to apply smooth-
ness heuristics and regularization techniques (Poggio
et al., 1985; Aloimonos, 1988) to obtain reconstruc-
tions that are as smooth as possible. A drawback of this
type of approach is that it typically penalizes disconti-
nuities and sharp edges, features that are very common
in real scenes.

The notion of the photo hull introduced in this paper
and the Space Carving Algorithm that computes it lead
to an alternative,least commitment principle(Marr,
1982) for choosing among all of the photo-consistent
shapes: rather than making an arbitrary choice, we
choose the only photo-consistent reconstruction that is
guaranteed to subsume (i.e., contain within its volume)
all other photo-consistent reconstructions of the scene.
By doing so we not only avoid the need to impose ad
hoc smoothness constraints, which lead to reconstruc-
tions whose relationship to the true shape are difficult
to quantify, we also ensure that the recovered 3D shape
can serve as a description for the entire equivalence
class of photo-consistent shapes.

While our work shows how to obtain a consis-
tent scene reconstruction without imposing smoothness

constraints or other geometric heuristics, there are
many cases where it may be advantageous to impose a
priori constraints, especially when the scene is known
to have a certain structure (Debevec et al., 1996;
Kakadiaris and Metaxas, 1995). Least-commitment re-
construction suggests a new way of incorporating such
constraints: rather than imposing them as early as pos-
sible in the reconstruction process, we can impose them
after first recovering the photo hull. This allows us to
delay the application of a priori constraints until a later
stage in the reconstruction process, when tight bounds
on scene structure are available and where these con-
straints are used only to choose among shapes within
the class of photo-consistent reconstructions. This ap-
proach is similar in spirit to “stratification” approaches
of shape recovery (Faugeras, 1995; Koenderink and
van Doorn, 1991), where 3D shape is first recovered
moduloan equivalence class of reconstructions and is
then refined within that class at subsequent stages of
processing.

The remainder of this paper is structured as fol-
lows. Section 2 analyzes the constraints that a set of
photographs place on scene structure given a known,
locally-computable model of scene radiance. Using
these constraints, a theory of photo-consistency is de-
veloped that provides a basis for characterizing the
space of all reconstructions of a scene. Sections 3 and 4
then use this theory to present the two central results
of the paper, namely the existence of the photo hull
and the development of a provably-correct algorithm
called Space Carving that computes it. Section 5 then
presents a discrete implementation of the Space Carv-
ing Algorithm that iteratively “carves” out the scene
from an initial set of voxels. This algorithm can be
seen as a generalization of silhouette-based techniques
like volume intersection (Martin and Aggarwal, 1983;
Szeliski, 1993; Kutulakos, 1997; Moezzi et al., 1996)
to the case of gray-scale and full-color images, and
generalizes voxel coloring (Seitz and Dyer, 1999) and
plenoptic decomposition (Seitz and Kutulakos, 1998)
to the case of arbitrary camera geometries.3 Section 6
concludes with experimental results on real and syn-
thetic images.

2. Picture Constraints

Let V be a shape defined by a closed and opaque set
of points that occupy a volume in space.4 We assume
thatV is viewed under perspective projection fromN
known positionsc1, . . . , cN inR3−V (Fig. 1(b)). The
radianceof a point p on the shape’s surface,Surf(V)
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is a functionradp(ξ) that maps every oriented rayξ
through the point to the color of light reflected from
p alongξ . We use the termshape-radiance scene de-
scription to denote the shapeV together with an as-
signment of a radiance function to every point on its
surface. This description contains all the information
needed to reproduce a photograph of the scene for any
camera position.5

Every photograph of a 3D scene taken from a known
location partitions the set of all possible shape-radiance
scene descriptions into two families, those that repro-
duce the photograph and those that do not. We charac-
terize this constraint for a given shape and a given radi-
ance assignment by the notion ofphoto-consistency:6

Definition 1(Point Photo-Consistency). Let S be an
arbitrary subset ofR3. A point p ∈ S that is visible
from c is photo-consistent with the photograph atc if
(1) p does not project to a background pixel, and (2) the
color atp’s projection is equal toradp( Epc). If p is not
visible fromc, it is trivially photo-consistent with the
photograph atc.

Definition 2 (Shape-Radiance Photo-Consistency).
A shape-radiance scene description is photo-consistent
with the photograph atc if all points visible fromc are
photo-consistent and every non-background pixel is the
projection of a point inV.

Definition 3(Shape Photo-Consistency). A shapeV
is photo-consistent with a set of photographs if there
is an assignment of radiance functions to the visible
points of V that makes the resulting shape-radiance
description photo-consistent with all photographs.

Our goal is to provide a concrete characterization of
the family of all scenes that are photo-consistent with
N input photographs. We achieve this by making ex-
plicit the two ways in which photo-consistency withN
photographs can constrain a scene’s shape.

2.1. Background Constraints

Photo-consistency requires that no point ofV projects
to a background pixel. If a photograph taken at po-
sition c contains identifiable background pixels, this
constraint restrictsV to a cone defined byc and the
photograph’s non-background pixels. GivenN such
photographs, the scene is restricted to thevisual hull,
which is the volume of intersection of their correspond-
ing cones (Laurentini, 1994).

When no a priori information is available about the
scene’s radiance, the visual hull defines all the shape
constraints in the input photographs. This is because
there is always an assignment of radiance functions to
the points on the surface of the visual hull that makes the
resulting shape-radiance description photo-consistent
with the N input photographs.7 The visual hull can
therefore be thought of as a “least commitment recon-
struction” of the scene—any further refinement of this
volume must rely on assumptions about the scene’s
shape or radiance.

While visual hull reconstruction has often been
used as a method for recovering 3D shape from pho-
tographs (Szeliski, 1993; Kutulakos, 1997), the pic-
ture constraints captured by the visual hull only ex-
ploit information from the background pixels in these
photographs. Unfortunately, these constraints become
useless when photographs contain no background pix-
els (i.e., the visual hull degenerates toR3) or when
background identification (Smith and Blinn, 1996) can-
not be performed accurately. Below we study pic-
ture constraints from non-background pixels when the
scene’s radiance is restricted to a special class of radi-
ance models. The resulting constraints lead to photo-
consistent scene reconstructions that are subsets of the
visual hull, and unlike the visual hull, can contain con-
cavities.

2.2. Radiance Constraints

Surfaces that are not transparent or mirror-like reflect
light in a coherent manner, i.e., the color of light re-
flected from a single point along different directions is
not arbitrary. This coherence provides additional pic-
ture constraints beyond what can be obtained from
background information. In order to take advantage of
these constraints, we focus on scenes whose radiance
satisfies the following criteria:

Consistency Check Criteria:

1. An algorithmconsistK () is available that takes
as input at leastK ≤ N colorscol1, . . . , colK , K
vectorsξ1, . . . , ξK , and the light source positions
(non-Lambertian case), and decides whether it is
possible for a single surface point to reflect light
of color coli in directionξi simultaneously for all
i = 1, . . . , K .

2. consistK () is assumed to be monotonic, i.e.,
consistK (col1, . . . , colj , ξ1, . . . , ξ j ) implies that
consistK (col1, . . . , colm, ξ1, . . . , ξm) for every
m< j and permutation of 1, . . . , j .
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Given a shapeV, the Consistency Check Criteria
give us a way to establish the photo-consistency of
every point onV ’s surface. These criteria define a
general class of radiance models, that we calllocally
computable, that are characterized by a locality prop-
erty: the radiance at any point is independent of the
radiance of all other points in the scene. The class of
locally-computable radiance models therefore restricts
our analysis to scenes where global illumination effects
such as transparency (Szeliski and Golland, 1998),
inter-reflection (Forsyth and Zisserman, 1991), and
shadows can be ignored. For example, inter-reflection
and shadows in Lambertian scenes viewed under fixed
illumination are correctly accounted for because scene
radiance is isotropic even when such effects are present.
As a result, the class of locally-computable radiance
models subsumes the Lambertian (K = 2) and other
parameterized models of scene radiance.8

Given an a priori locally computable radiance model
for the scene, we can determine whether or not a given
shapeV is photo-consistent with a collection of pho-
tographs. Even more importantly, when the scene’s ra-
diance is described by such a model, thenon-photo-
consistency of a shapeV tells us a great deal about the
shape of the underlying scene. We use the following
two lemmas to make explicit the structure of the family
of photo-consistent shapes. These lemmas provide the
analytical tools needed to describe how the non-photo-
consistency of a shapeV affects the photo-consistency
of its subsets (Fig. 2):

Lemma 1 (Visibility Lemma). Let p be a point on
V ’s surface, Surf(V), and letVisV(p) be the collection
of input photographs in whichV does not occlude p.
If V ′ ⊂ V is a shape that also has p on its surface,
VisV(p) ⊆ VisV ′(p).

Figure 2. Illustration of the Visibility and Non-Photo-Consistency
Lemmas. If p is non-photo-consistent with the photographs at
c1, c2, c3, it is non-photo-consistent with the entire setVisV ′ (p),
which also includesc4.

Proof: SinceV ′ is a subset ofV, no point ofV ′ can lie
betweenp and the cameras corresponding toVisV(p).

2

Lemma 2 (Non-Photo-Consistency Lemma). If p ∈
Surf(V) is not photo-consistent with a subset of
VisV(p), it is not photo-consistent withVisV(p).

Intuitively, Lemmas 1 and 2 suggest that both vis-
ibility and non-photo-consistency exhibit a form of
“monotonicity:” the Visibility Lemma tells us that
the collection of photographs from which a surface
point p∈Surf(V) is visible strictly expands asV
gets smaller (Fig. 2). Analogously, the Non-Photo-
Consistency Lemma, which follows as a direct con-
sequence of the definition of photo-consistency, tells
us that each new photograph can be thought of as an
additional constraint on the photo-consistency of sur-
face points—the more photographs are available, the
more difficult it is for those points to achieve photo-
consistency. Furthermore, once a surface point fails to
be photo-consistent no new photograph of that point
can re-establish photo-consistency.

The key consequence of Lemmas 1 and 2 is given
by the following theorem which shows thatnon-photo-
consistency at a point rules out the photo-consistency
of an entire family of shapes:

Theorem 1(Subset Theorem). If p ∈ Surf(V) is not
photo-consistent, no photo-consistent subset ofV con-
tains p.

Proof: LetV ′ ⊂ V be a shape that containsp. Since
p lies on the surface ofV, it must also lie on the sur-
face ofV ′. From the Visibility Lemma it follows that
VisV(p) ⊆ VisV ′(p). The theorem now follows by ap-
plying the Non-Photo-Consistency Lemma toV ′ and
using the locality property of locally computable radi-
ance models. 2

We explore the ramifications of the Subset Theorem
in the next section.

3. The Photo Hull

The family of all shapes that are photo-consistent
with N photographs defines the ambiguity inherent in
the problem of recovering 3D shape from those pho-
tographs. When there is more than one photo-consistent
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shape it is impossible to decide, based on those pho-
tographs alone, which photo-consistent shape corre-
sponds to the true scene. This ambiguity raises two
important questions regarding the feasibility of scene
reconstruction from photographs:

– Is it possible to compute a shape that is photo-
consistent withN photographs and, if so, what is the
algorithm?

– If a photo-consistent shape can be computed, how
can we relate that shape to all other photo-consistent
3D interpretations of the scene?

Before providing a general answer to these questions
we observe that when the number of input photographs
is finite, the first question can be answered with a triv-
ial shape (Fig. 3(a)). In general, trivial shape solutions
such as this one can be eliminated with the incorpo-
ration of free spaceconstraints, i.e., regions of space
that are known not to contain scene points. Our analy-
sis enables the (optional) inclusion of such constraints
by specifying an arbitrary setV within which a photo-
consistent shape is known to lie.9

In particular, our answers to both questions rest on
the following theorem. Theorem 2 shows that for any
shapeV there is a unique photo-consistent shape that
subsumes, i.e., contains within its volume, all other
photo-consistent shapes inV (Fig. 3(b)):

Theorem 2 (Photo Hull Theorem). Let V be an ar-
bitrary subset ofR3. If V∗ is the union of all photo-
consistent shapes inV, every point on the surface of
V∗ is photo-consistent. We callV∗ thephoto hull.10

Proof: (By contradiction) Suppose thatp is a surface
point onV∗ that is not photo-consistent. Sincep ∈ V∗,
there exists a photo-consistent shape,V ′ ⊂ V∗, that
also hasp on its surface. It follows from the Subset
Theorem thatV ′ is not photo-consistent. 2

Corollary 1. If V∗ is closed, it is a photo-consistent
shape.

Theorem 2 provides an explicit relation between the
photo hull and all other possible 3D interpretations
of the scene: the theorem guarantees that every such
interpretation is a subset of the photo hull. The photo
hull therefore represents a least-commitment recon-
struction of the scene.

While every point on the photo hull is photo-
consistent, the hull itself is not guaranteed to be closed,

i.e., it may not satisfy our definition of ashape. Spe-
cific cases of interest whereV∗ is closed include (1) dis-
cretized scene volumes, i.e., scenes that are composed
of a finite number of volume elements, and (2) instances
where the number of photo-consistent shapes in a vol-
ume is finite. We describe a volumetric algorithm for
computing discretized photo hulls in the next section.
The general case, where the photo hull is an infinite
union of shapes, is considered in the Appendix.

4. Reconstruction by Space Carving

An important feature of the photo hull is that it can
be computed using a simple, discrete algorithm that
“carves” space in a well-defined manner. Given an ini-
tial volumeV that contains the scene, the algorithm
proceeds by iteratively removing (i.e. “carving”) por-
tions of that volume until it converges to the photo hull,
V∗. The algorithm can therefore be fully specified by
answering four questions: (1) how do we select the
initial volumeV, (2) how should we represent that vol-
ume to facilitate carving, (3) how do we carve at each
iteration to guarantee convergence to the photo hull,
and (4) when do we terminate carving?

The choice of the initial volume has a considerable
impact on the outcome of the reconstruction process
(Fig. 3). Nevertheless, selection of this volume is be-
yond the scope of this paper; it will depend on the spe-
cific 3D shape recovery application and on information
about the manner in which the input photographs were
acquired.11Below we consider a general algorithm that,
given N photographs andany initial volume that con-
tains the scene, is guaranteed to find the (unique) photo
hull contained in that volume.

In particular, letV be an arbitrary finite volume that
contains the scene as an unknown sub-volume. Also,
assume that the surface of the true scene conforms to
a radiance model defined by a consistency check algo-
rithm consistK (). We representV as a finite collec-
tion of voxelsv1, . . . , vM . Using this representation,
each carving iteration removes a single voxel fromV.

The Subset Theorem leads directly to a method for
selecting a voxel to carve away fromV at each itera-
tion. Specifically, the theorem tells us that if a voxel
v on the surface ofV is not photo-consistent, the
volume V = V − {v} must still contain the photo
hull. Hence, if only non-photo-consistent voxels are
removed at each iteration, the carved volume is guar-
anteed to converge to the photo hull. The order in
which non-photo-consistent voxels are examined and
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removed is not important for guaranteeing correctness.
Convergence to this shape occurs when no non-photo-
consistent voxel can be found on the surface of the
carved volume. These considerations lead to the fol-
lowing algorithm for computing the photo hull:12

Space Carving Algorithm

Step 1: Initialize V to a volume containing the true
scene.

Step 2: Repeat the following steps for voxelsv ∈
Surf(V) until a non-photo-consistent voxel is found:

a. Project v to all photographs inVisV(v). Let
col1, . . . , colj be the pixel colors to whichv
projects and letξ1, . . . , ξ j be the optical rays con-
nectingv to the corresponding optical centers.

b. Determine the photo-consistency ofv using
consistK (col1, . . . , colj , ξ1, . . . , ξ j ).

Step 3: If no non-photo-consistent voxel is found, set
V∗ = V and terminate. Otherwise, setV = V − {v}
and repeat Step 2.

The key step in the algorithm is the search and voxel
consistency checking of Step 2. The following propo-
sition gives an upper bound on the number of voxel
photo-consistency checks:

Proposition 1. The total number of required photo-
consistency checks is bounded by N∗ M where N is
the number of input photographs and M is the number
of voxels in the initial(i.e., uncarved) volume.

Proof: Since (1) the photo-consistency of a voxelv

that remains onV ’s surface for several carving itera-
tions can change only whenVisV(v) changes due toV ’s
carving, and (2)VisV(v) expands monotonically asV
is carved (Visibility Lemma), the photo-consistency of
v must be checked at mostN times. 2

5. A Multi-Sweep Implementation
of Space Carving

Despite being relatively simple to describe, the Space
Carving Algorithm as described in Section 4 requires

a difficult update procedure because of the need to
keep track of scene visibility from all of the input cam-
eras. In particular, every time a voxel is carved a new
set of voxels becomes newly visible and must be re-
evaluated for photo-consistency. Keeping track of such
changes necessitates computationally-expensive ray-
tracing techniques or memory-intensive spatial data
structures (Culbertson et al., 1999). To overcome these
problems, we instead describe a multi-sweep imple-
mentation of the Space Carving Algorithm that enables
efficient visibility computations with minimal memory
requirements.

5.1. Multi-View Visibility Ordering

A convenient method of keeping track of voxel vis-
ibility is to evaluate voxelsin order of visibility, i.e.,
visit occluders before the voxels that they occlude. The
key advantage of this approach is that backtracking is
avoided—carving a voxel affects only voxels encoun-
tered later in the sequence. For a single camera, visi-
bility ordering amounts to visiting voxels in a front-to-
back order and may be accomplished by depth-sorting
(Newell et al., 1972; Fuchs et al., 1980). The problem
of defining visibility orders that apply simultaneously
to multiplecameras is more difficult, however, because
it requires that voxels occlude each other in the same
order from different viewpoints. More precisely, voxel
p is evaluated beforeq only if q does not occludep
from any oneof the input viewpoints.

It is known that multi-view visibility orders exist
for cameras that lie on one side of a plane (Langer
and Zucker, 1994). Recently, Seitz and Dyer (Seitz and
Dyer, 1999) generalized this case to a range of inter-
esting camera configurations by showing that multi-
view visibility orders always exist when the scene lies
outside the convex hull of the camera centers. When
this constraint is satisfied, evaluating voxels in order of
increasing distance to this camera hull yields a multi-
view visibility order that may be used to reconstruct the
scene. The convex hull constraint is a significant lim-
itation, however, because it strongly restricts the types
of scenes and range of views that are reconstructible.
In fact, it can be readily shown that no multi-view
visibility constraint exists in general (Fig. 4). There-
fore, different techniques are needed in order to recon-
struct scenes like Fig. 4 that violate the convex hull
constraint.
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5.2. Plane-Sweep Visibility

While multi-view visibility orders do not exist in the
general case, itis possible to define visibility orders
that apply to a subset of the input cameras. In parti-
cular, consider visiting voxels in order of increasing
X coordinate and, for each voxelp = (Xp,Yp, Zp),
consider only cameras whoseX coordinates are less
thanXp. If p occludesq from a camera atc, it follows
thatp is on the line segmentcq and thereforeXp< Xq.
Consequently,p is evaluated beforeq, i.e., occluders
are visited before the voxels that they occlude.

Given this ordering strategy, the Space Carving
Algorithm can be implemented as a multi-sweep volu-
metric algorithm in which a solid block of voxels is
iteratively carved away by sweeping a single plane
through the scene along a set of pre-defined sweep
directions (Fig. 5). For each position of the plane,
voxels on the plane are evaluated by considering their
projections into input images from viewpoints on one
side of the plane. In the example shown in Fig. 5, a
plane parallel to theY-Z axis is swept in the increasing
X direction.

Plane Sweep Algorithm

Step 1: Given an initial volumeV, initialize the sweep
plane5 such thatV lies below5 (i.e.,5 is swept
towardsV).

Step 2: Intersect5 with the current shapeV.
Step 3: For each surface voxelv on5:

a. let c1, . . . , cj be the cameras above5 for which
v projects to anunmarkedpixel;

b. determine the photo-consistency ofv using
consistK (col1, . . . , colj , ξ1, . . . , ξ j );

c. if v is inconsistent then setV = V − {v}, other-
wise mark the pixels to whichv projects.

Step 4: Move5 downward one voxel width and repeat
Step 2 untilV lies above5.

The dominant costs of this algorithm are (1) project-
ing a plane of voxels intoN images, and (2) correlating
pixels using consistK (col1, . . . , colj , ξ1, . . . , ξ j ).
Our implementation exploits texture-mapping graph-
ics hardware (the kind found on standard PC graphics
cards) to project an entire plane of voxels at a time onto
each image. We have found that when this optimization

is used, the pixel correlation step dominates the com-
putation.

5.3. Multi-Sweep Space Carving

The Plane Sweep Algorithm considers only a subset of
the input cameras for each voxel, i.e., the cameras on
one side of the sweep plane. Consequently, it may fail
to carve voxels that are inconsistent with the entire set
of input images but are consistent with a proper subset
of these images. To ensure that all cameras are con-
sidered, we repeatedly perform six sweeps through the
volume, corresponding to the six principle directions
(increasing and decreasingX, Y, and Z directions).
Furthermore, to guarantee that all cameras visible to a
voxel are taken into account, we perform an additional
round of voxel consistency checks that incorporate the
voxel visibility information collected from individual
sweeps. The complete algorithm is as follows:

Multi-Sweep Space Carving Algorithm

Step 1: Initialize V to be a superset of the true scene.
Step 2: Apply the Plane Sweep Algorithm in each of

the six principle directions and updateV accordingly.
Step 3: For every voxel inV whose consistency was

evaluated in more than one plane sweep:

a. let c1, . . . , cj be the cameras that participated in
the consistency check ofv in someplane sweep
during Step 2;

b. determine the photo-consistency ofv using
consistK (col1, . . . , colj , ξ1, . . . , ξ j );

c. if v is inconsistent then setV = V − {v}.
Step 4: If no voxels were removed fromV in Steps 2

and 3, setV∗ =V and terminate; otherwise, repeat
Step 2.

5.4. Lambertian Scenes

We give special attention to case of Lambertian scenes,
in which the Consistency Check Criteria can be defined
using the standard deviation of colors,col1, . . . , colK ,
at a voxel’s projection. To account for errors in the im-
age formation process due to quantization, calibration,
or other effects, we call a voxelphoto-consistentif σ
is below a given threshold. This threshold is chosen
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Figure 3. Photo-consistent shapes for a two-dimensional scene viewed by four cameras. The scene consists of a black square whose sides
are painted diffuse red, blue, orange, and green. (a) Trivial shape solutions in the absence of free-space constraints. Carving out a small circle
around each camera and projecting the image onto the interior of that circle yields a trivial photo-consistent shape, shown in gray. (b) Illustration
of the Photo Hull Theorem. The gray-shaded region corresponds to an arbitrary shapeV containing the square in (a).V∗ is a polygonal region
that extends beyond the true scene and whose boundary is defined by the polygonal segmentsα, β, γ , andδ. When these segments are colored
as shown,V∗’s projections are indistinguishable from that of the true object andnophoto-consistent shape in the gray-shaded region can contain
points outsideV∗.

Figure 4. A Visibility Cycle. Voxel p occludesq from c1, whereas
q occludesp from c2. Hence, no visibility order exists that is the
same for both cameras.

Figure 5. Plane-Sweep Visibility. (a) The plane-sweep algorithm ensures that voxels are visited in order of visibility with respect to all active
cameras. The current plane and active set of cameras is shown in orange. (b) The shape evolves and new cameras become active as the plane
moves through the scene volume.

by consideringσ to be a statistical measure of voxel
photo-consistency. In particular, suppose the sensor
error (accuracy of irradiance measurement) is normally
distributed13 with standard deviationσ0. The photo-
consistency of a voxelv can be estimated using the like-
lihood ratio test, distributed asχ2 with K − 1 degrees
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of freedom (Freund, 1992):

λv = (K − 1)σ 2

σ 2
0

. (1)

This formulation of the Consistency Check Criterion
allows us to incorporate two additional optimizations to
the Multi-Sweep Carving Algorithm. First, we main-
tain sufficient per-voxel color statistics between sweeps
to integrate information from all input images, there-
fore eliminating the need for Step 3 of the multi-sweep
algorithm. This is because the standard deviation of
K monochrome pixel values of intensitycoli , can be
computed using the following recursive formula:

σ 2 = 1

K − 1

(
K∑

i=1

col2i −
1

K

(
K∑

i=1

coli

)2)
. (2)

It is therefore sufficient to maintain three numbers
per voxel, namely

∑K
i=1 coli ,

∑K
i=1 col2i , andK (i.e.,

seven numbers for three-component color pixels). Sec-
ond, to ensure that no camera is considered more than
once per voxel in the six sweeps, we further restrict
the cameras considered in each sweep to a pyramidal
beam defined by the voxel center and one of its faces,
as shown in Fig. 6. This strategy partitions the cam-
eras into six non-overlapping sets to be processed in
the six respective sweeps, thereby ensuring that each
camera is considered exactly once per voxel during the
six sweeps.

Figure 6. To ensure that a camera is processed at most once per
voxel during the six plane sweeps, the set of cameras considered in
each sweep is clipped to a pyramidal beam defined by the center of
the voxel and one of its faces.

6. 3D Photography by Space Carving

6.1. Image Acquisition

In the Space Carving Algorithm, every input photo-
graph can be thought of as ashape constraintthat
forces the reconstructed scene volume to contain only
voxels consistent with the photograph. To ensure that
the algorithm’s output closely resembles the shape and
appearance of a complicated 3D scene it is therefore im-
portant to acquire enough photographs of the scene it-
self. In a typical image acquisition session, we take be-
tween 10 and 100 calibrated images around the scene of
interest using a Pulnix TMC-9700 color CCD camera
(Fig. 7).

A unique property of the Space Carving Algorithm
is that it can be forced to automatically segment a 3D
object of interest from a larger scene using two com-
plementary methods. The first method, illustrated in
the sequence of Fig. 7, involves slightly modifying the
image acquisition process—before we take a photo-
graph of the object of interest from a new viewpoint,
we manually alter the object’s background. This pro-
cess enabled segmentation and complete reconstruc-
tion of the gargoyle sculpture; the Space Carving Al-
gorithm effectively removed all background pixels in
all input photographs because the varying backgrounds
ensured that photo-consistency could not be enforced
for points projecting to non-object pixels. Note that
image subtraction or traditional matting techniques
(Smith and Blinn, 1996) cannot be applied to this
image sequence to segment the sculpture since ev-
ery photograph was taken from adifferentposition in
space and therefore the background is different in each
image. The second method, illustrated in Fig. 9, in-
volves defining an initial volumeV (e.g., a bounding
box) that is “tight enough” to ensure reconstruction
of only the object of interest. This process enabled
segmentation of the hand because the initial vol-
ume did not intersect distant objects such as the TV
monitor.

6.2. Reconstruction Results

In this section we present results from applying our
Multi-Sweep implementation of the Space Carving
Algorithm to a variety of image sequences. In all ex-
amples, a Lambertian model was used for the Consis-
tency Check Criterion, i.e., it was assumed that a voxel
projects to pixels of the same color in every image. The
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Figure 7. Nine of sixteen 486× 720 RGB images of a gargoyle stone sculpture. The sequence corresponds to a complete circumnavigation
of the object, performed in approximately 22.5 degree increments.

standard deviation of these pixels was therefore used
to determine whether or not a voxel should be carved,
as described in Section 5.

We first ran the Space Carving Algorithm on 16 im-
ages of a gargoyle sculpture (Fig. 7). The sub-pixel
calibration error in this sequence enabled using a small
threshold of 6% for the RGB component error. This
threshold, along with the voxel size and the 3D coor-
dinates of a bounding box containing the object were
the only parameters given as input to our implemen-
tation. Figure 8 shows selected input images and new
views of the reconstruction. This reconstruction con-
sisted of 215 thousand surface voxels that were carved
out of an initial volume of approximately 51 million
voxels. It took 250 minutes to compute on an SGI O2
R10000/175 MHz workstation. Some errors are still
present in the reconstruction, notably holes that occur
as a result of shadows and other illumination changes
due to the object’s rotation inside a static, mostly dif-
fuse illumination environment. These effects were not
modeled by the Lambertian model and therefore caused
voxels on shadowed surfaces to be carved. The finite

voxel size, calibration error, and image discretization
effects resulted in a loss of some fine surface detail.
Voxel size could be further reduced with better calibra-
tion, but only up to the point where image discretiza-
tion effects (i.e., finite pixel size) become a significant
source of error.

Results from a sequence of one hundred images of
a hand are shown in Figs. 9 and 10. Note that the
near-perfect segmentation of the hand from the rest
of the scene was performed not in image-space, but
in 3D object space—the background lay outside the
initial block of voxels and was therefore not recon-
structed. This method of 3D background segmentation
has significant advantages over image subtraction and
chroma-keying methods because it (1) does not require
the background to be known and (2) will never falsely
eliminate foreground pixels, as these former techniques
are prone to do (Smith and Blinn, 1996).

Two kinds of artifacts exist in the resulting re-
constructions. First, voxels that are not visible from
any input viewpoint do not have a well-defined color
assignment and are given a default color. These artifacts
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Figure 8. Reconstruction of a gargoyle sculpture. One of 16 input images is shown (a), along with views of the reconstruction from the same
(b) and new (c)–(d) viewpoints.

can be eliminated by acquiring additional photographs
to provide adequate coverage of the scene’s surfaces.
Second, stray voxels may be reconstructed in unoc-
cupied regions of space due to accidental agreements
between the input images. Such artifacts can be easily

avoided by re-applying the Space Carving Algorithm
on an initial volume that does not contain those regions
or by post-filtering the reconstructed voxel model.

In a final experiment, we applied our algorithm to
images of a synthetic building scene rendered from
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Figure 9. Six out of one hundred photographs of a hand sequence.

Figure 10. Reconstruction of a hand. An input image is shown in (a) along with views of the reconstruction from the same (b) and other (c)–(f)
viewpoints. The reconstructed model was computed using an RGB component error threshold of 6%. The model has 112 thousand voxels and
took 53 minutes to compute. The blue line in (b) indicates thez-axis of the world coordinate system.
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Figure 11. Reconstruction of a synthetic building scene. (a) 24 Cameras were placed in both the interior and exterior of a building to enable
simultaneous, complete reconstruction of its exterior and interior surfaces. The reconstruction contains 370,000 voxels, carved out of a
200× 170× 200 voxel block. (b) A rendered image of the building for a viewpoint near the input cameras (shown as “virtual view” in (a)) is
compared to the view of the reconstruction (c). (d)–(f) Views of the reconstruction from far away camera viewpoints. (d) shows a rendered top
view of the original building, (e) the same view of the reconstruction, and (f) a new reconstruction resulting from adding image (d) to the set of
input views. Note that adding just a single top view dramatically improves the quality of the reconstruction.

both its interior and exterior (Fig. 11). This place-
ment of cameras yields an extremely difficult stereo
problem, due to the drastic changes in visibility be-
tween interior and exterior cameras.14 Figure 11 com-
pares the original model and the reconstruction from
different viewpoints. The model’s appearance is very
good near the input viewpoints, as demonstrated in
Fig. 11(b)–(c). Note that the reconstruction tends to

“bulge” out and that the walls are not perfectly planar
(Fig. 11(e)). This behavior is exactly as predicted by
Theorem 2—the algorithm converges to thelargest
possibleshape that is consistent with the input images.
In low-contrast regions where shape is visually am-
biguous, this causes significant deviations between the
computed photo hull and the true scene. While these
deviations do not adversely affect scene appearance
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near the input viewpoints, they can result in notice-
able artifacts for far-away views. These deviations and
the visual artifacts they cause are easily remedied by
including images from a wider range of camera view-
points to further constrain the scene’s shape, as shown
in Fig. 11(f).

Our experiments highlight a number of advan-
tages of our approach over previous techniques. Ex-
isting multi-baseline stereo techniques (Okutomi and
Kanade, 1993) work best for densely textured scenes
and suffer in the presence of large occlusions. In
contrast, the hand sequence contains many low-
textured regions and dramatic changes in visibility.
The low-texture and occlusion properties of such
scenes cause problems for feature-based structure-
from-motion methods (Tomasi and Kanade, 1992;
Seitz and Dyer, 1995; Beardsley et al., 1996; Pollefeys
et al., 1998), due to the difficulty of locating and
tracking a sufficient number of features throughout
the sequence. While contour-based techniques like
volume intersection (Martin and Aggarwal, 1983;
Szeliski, 1993) often work well for similar scenes, they
require detecting silhouettes or occluding contours. For
the gargoyle sequence, the background was unknown
and heterogeneous, making the contour detection prob-
lem extremely difficult. Note also that Seitz and Dyer’s
voxel coloring technique (Seitz and Dyer, 1999) would
not work for any of the above sequences because of the
constraints it imposes on camera placement. Our ap-
proach succeeds because it integrates both texture and
contour information as appropriate, without the need
to explicitly detect features or contours, or constrain
viewpoints. Our results indicate the approach is highly
effective for both densely textured and untextured ob-
jects and scenes.

7. Concluding Remarks

This paper introducedphoto-consistency theoryas a
new, general mathematical framework for analyzing
the 3D shape recovery problem from multiple images.
We have shown that this theory leads to a “least com-
mitment” approach for shape recovery and a practical
algorithm called Space Carving that together overcome
several limitations in the current state of the art. First,
the approach allows us to analyze and characterize the
set of all possible reconstructions of a scene, without
placing constraints on geometry, topology, or camera
configuration. Second, this is the only provably-correct
method, to our knowledge, capable of reconstructing

non-smooth, free-form shapes from cameras posi-
tioned and oriented in a completely arbitrary way.
Third, the performance of the Space Carving Algo-
rithm was demonstrated on real and synthetic image
sequences of geometrically-complex objects, includ-
ing a large building scene photographed from both
interior and exterior viewpoints. Fourth, the use of
photo-consistency as a criterion for 3D shape recovery
enables the development of reconstruction algorithms
that allow faithful image reprojections and resolve the
complex interactions between occlusion, parallax, and
shading effects in shape analysis.

While the Space Carving Algorithm’s effectiveness
was demonstrated in the presence of low image noise,
the photo-consistency theory itself is based on an ideal-
ized model of image formation. Extending the theory to
explicitly model image noise, quantization and calibra-
tion errors, and their effects on the photo hull is an open
research problem (Kutulakos, 2000). Extending the for-
mulation to handle non-locally computable radiance
models (e.g., shadows and inter-reflections) is another
important topic of future work. Other research direc-
tions include (1) developing space carving algorithms
for images with significant pixel noise, (2) investigating
the use of surface-based rather than voxel-based tech-
niques for finding the photo hull, (3) incorporating a
priori shape constraints (e.g., smoothness), and (4)
analyzing the topological structure of the set of photo-
consistent shapes. Finally, an on-line implementation
of the Space Carving Algorithm, that performs im-
age capture and scene reconstruction simultaneously,
would be extremely useful both to facilitate the image
acquisition process and to eliminate the need to store
long video sequences.

Appendix

In general, the photo hull,V∗, of a setV is the union
of a potentially infinite collection of shapes inV. Such
a union does not always correspond to a closed subset
of R3 (Armstrong, 1983). As a result, even though all
points of the photo hull are photo-consistent, the photo
hull itself may not satisfy the definition of a 3D shape
given in Section 2. In this Appendix we investigate the
properties of the closure,V∗, of V∗ which is always
a valid shape.15 In particular, we show thatV∗ satis-
fies a slightly weaker form of photo-consistency called
directional ε-photo-consistency, defined below. This
property leads to a generalization of Theorem 2:
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Figure 12. (a) Non-photo-consistent points on the closed photo hull. The 2D scene is composed of a closed thick line segment ab that is
painted gray, white, and black. The pointsd1, d2, corresponding to color transitions, are painted white. WhenV is defined by the triangle abc,
the closed photo hull,V∗, is defined by the region shown in light gray. Note that even thoughp ∈ V∗ is directionallyε-photo-consistent, it is
not photo-consistent:p projects to a white pixel in the left camera and a gray pixel in the right one. (b)–(c) Proof of Theorem 3. (b) A pointp is
strongly visible to three cameras by means of neighborhoodN. (c) The closest pointq ∈ N ∩P to5c is visible to all cameras on or above5c.

Theorem 3(Closed Photo Hull Theorem). LetV be
an arbitrary shape inR3 and letV∗ be the closure of
the union of all photo-consistent shapes inV. The
shapeV∗ is directionally ε-photo-consistent and is
called theclosed photo hull.

A.1. The Strong Visibility Condition

Because we impose no constraints on the structure of
the photo-consistent shapes inV that are considered in
our analysis (e.g., smoothness), it is possible to define
degenerate shapes that defy one’s “intuitive” notions
of visibility and occlusion. More specifically, the stan-
dard definition of visibility of a surface pointp from a
camerac requires that the open line segmentpc does
not intersect the shape itself; otherwise,p is defined to
be occluded. WhenV is arbitrary, however, it is possi-
ble to define shapes whose surface gets infinitesimally
close to this line segment at one or more points other
than p. Intuitively, surface points that have this prop-
erty are not occluded under the above definition but are
not “fully visible” either. We therefore refine the notion
of visibility in a way that excludes such degeneracies.
In particular, letB(p, ε) ⊂ R3 be the open 3-ball of
radiusε that is centered atp:

Definition 4(Strong Visibility Condition). A point p
on the surface of a shapeV is strongly visible to a set
of cameras if it is visible from those cameras and if, for
everyε > 0, there exists a closed setN and anε′ < ε

such that the following two properties are satisfied:

1. N contains all its occluders, i.e., for every camera
c and point p ∈ N, if q occludesp from c then
q ∈ N, and

2. B(p, ε′) ⊂ N ⊂ B(p, ε).

Intuitively, the strong visibility condition is equiv-
alent to the standard definition of point visibility for
shapes that are “well-behaved”—it differs from this
definition only in cases where the ray from pointp to
a camera comes arbitrarily close to the shape outside
p’s neighborhood. An illustration of a strong visibility
neighborhoodN is given in Fig. 12(b).

A.2. Directionalε-Photo-Consistency

WhenV∗ andV∗ are not equal, the closed photo hull
will contain limit points that do not belong to any photo-
consistent subset ofV. These limit points are not al-
ways photo-consistent (Fig. 12(a)). Fortunately, even
though the photo-consistency of these points cannot be
guaranteed, these points (as well as the rest ofV∗) do
satisfy the directionalε-photo-consistency property:

Definition 5(Strongly Visible Camera Set). If p ∈ V,
5p is a plane throughp, andC is the set of cameras in
VisV(p) that are strictly above5p, define

SVisV(5p) =
{

C if p is strongly visible toC,

∅ otherwise.
(3)

Definition 6 (Directional Point Photo-Consistency).
A point p in V is directionally photo-consistent if for
every oriented plane5p throughp, the pointp is photo-
consistent with all cameras inSVisV(5p).

Definition 7 (Directional ε-photo-consistency). A
point p in V is directionallyε-photo-consistent if for
everyε > 0 and every oriented plane5p through p,
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there exists a pointq ∈ B(p, ε) that is photo-consistent
with all cameras inSVisV(5p).

Compared to the definition of point photo-
consistency (Definition 1), directional photo-consis-
tency relaxes the requirement thatp’s radiance assign-
ment must agree with all visible cameras. Instead, it
requires the ability to find radiance assignment(s) that
force agreement only with visible cameras within the
same half-space. Directionalε-photo-consistency goes
a step further, lifting the requirement that every surface
point p must have a directionally consistent radiance
assignment. The only requirement is thatp is infinitesi-
mally close to a point for which directional consistency
can be established with respect to the cameras from
which p is strongly visible.

Despite their differences, photo-consistency and di-
rectionalε-photo-consistency share a common charac-
teristic: we can determine whether or not these pro-
perties hold for a given shapeV without havingany
information about the photo-consistent shapes con-
tained inV. This is especially important when attempt-
ing to characterizeV∗ because it establishes a direct link
betweenV∗ and the image observations that does not
depend on explicit knowledge of the family of photo-
consistent shapes.

A.3. Proof of Theorem 3

Since points that are not strongly visible are always
ε-photo-consistent, it is sufficient to consider only
strongly visible pointsp ∈ V∗. More specifically, it
suffices to show that every open ball,B(p, ε), contains
a pointq on some photo-consistent shapeP such that
the setVisP(q) contains all cameras inSVisV∗(5p). For
if q is photo-consistent withVisP(q), it follows thatq
is photo-consistent with any of its subsets.

We proceed by first choosing a photo-consistent
shapeP and then constructing the pointq (Fig. 12(b)
and (c)). In particular, letc be a camera inSVisV∗(5p)

that is closest to5p, and let5c be the plane throughc
that is parallel to5p. Fix ε such that 0<ε < k, where
k is the distance fromc to5p.

Let N⊂ B(p, ε) be a set that establishesp’s strong
visibility according to Definition 4. According to the
definition, N contains an open ballB(p, ε′) for some
ε′ < ε. By the definition of the photo hull, there exists
a photo-consistent shapeP that intersectsB(p, ε′).

We now construct pointq and consider the set of
cameras from whichq is visible. Letq be a point in

the setP ∩ N that minimizes perpendicular distance
to5c.16 By construction, no point inN ∩ P occludes
q from the cameras inSVisV∗(5p). Moreover, since
q ∈ N, Definition 4 tells us that no point inP − N can
occludeq from the cameras inSVisV∗(5p). It follows
thatVisP(q) ⊇ SVisV∗(5p). 2
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Notes

1. Examples include the use of the small baseline assumption in
stereo to simplify correspondence-finding and maximize joint
visibility of scene points (Kanade et al., 1996), the availability
of easily-detectable image contours in shape-from-contour re-
construction (Vaillant and Faugeras, 1992), and the assumption
that all views are taken from the same viewpoint in photometric
stereo (Woodham et al., 1991).

2. Faugeras (Faugeras, 1998) has recently proposed the term
metamericto describe such shapes, in analogy with the term’s
use in the color perception (Alfvin and Fairchild, 1997) and
structure-from-motion literature (van Veen and Werkhoven,
1996).

3. Note that both of these generalizations represent significant im-
provements in the state of the art. For instance, silhouette-based
algorithms require identification of silhouettes, fail at surface
concavities, and treat only the case of binary images. While
(Seitz and Dyer, 1999; Seitz and Kutulakos, 1998) also used
a volumetric algorithm, their method worked only when the
scene was outside the convex hull of the cameras. This re-
striction strongly limits the kinds of environments that can be
reconstructed, as discussed in Section 6.

4. More formally, we use the termshapeto refer to any closed set
V ⊆ R3 for which every pointp ∈ V is infinitesimally close
to an open 3-ball insideV. That is, for everyε > 0 there is an
open 3-ball,B(p, ε), that contains an open 3-ball lying inside
V. Similarly, we define thesurfaceof V to be the set of points
in V that are infinitesimally close to a point outsideV.

5. Note that even points on a radiance discontinuity must have a
unique radiance function assigned to them. For example, in the
scene of Fig. 3, the point of transition between red and blue
surface points must be assigned either a red or a blue color.

6. In the following, we make the simplifying assumption that pixel
values in the image measure scene radiance directly.
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7. For example, setradp( Epc) equal to the color atp’s projection.
8. Strictly speaking, locally-computable radiance models can-

not completely account for surface normals and other
neighborhood-dependent quantities. However, it is possible to
estimate surface normals based purely on radiance information
and thereby approximately model cases where the light source
changes (Seitz and Kutulakos, 1998) or when reflectance is
normal-dependent (Sato et al., 1997). Specific examples in-
clude (1) using a mobile camera mounted with a light source
to capture photographs of a scene whose reflectance can be ex-
pressed in closed form (e.g., using the Torrance-Sparrow model
(Torrance and Sparrow, 1967; Sato et al., 1997)), and (2) using
multiple cameras to capture photographs of an approximately
Lambertian scene under arbitrary unknown illumination (Fig. 1).

9. Note that ifV=R3, the problem reduces to the case when no
constraints on free space are available.

10. Our use of the termphoto hullto denote the “maximal” photo-
consistent shape defined by a collection of photographs is due
to a suggestion by Leonard McMillan.

11. Examples include definingV to be equal to the visual hull or, in
the case of a camera moving through an environment,R3 minus
a tube along the camera’s path.

12. Convergence to this shape is provably guaranteed only for scenes
representable by a discrete set of voxels.

13. Here we make the simplifying assumption thatσ0 does not vary
as a function of wavelength.

14. For example, the algorithms in (Seitz and Dyer, 1999; Seitz and
Kutulakos, 1998) fail catastrophically for this scene because
the distribution of the input views and the resulting occlusion
relationships violate the assumptions used by those algorithms.

15. To see this, note thatV∗ is, by definition, a closed subset ofR3.
Now observe that every pointp ∈ V∗ is infinitesimally close
to a point onsomephoto-consistent shapeV ′. It follows that p
is infinitesimally close to an open 3-ball insideV ′ ⊆ V∗. The
closed photo hull therefore satisfies our definition of a shape.

16. Note that such a point does exist sinceP∩ N is a closed and
bounded subset ofR3 and hence it is compact (Armstrong,
1983).
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