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Abstract

Bayesian optimization has proven to be a highly
effective methodology for the global optimiza-
tion of unknown, expensive and multimodal
functions. The ability to accurately model distri-
butions over functions is critical to the effective-
ness of Bayesian optimization. Although Gaus-
sian processes provide a flexible prior over func-
tions, there are various classes of functions that
remain difficult to model. One of the most fre-
quently occurring of these is the class of non-
stationary functions. The optimization of the hy-
perparameters of machine learning algorithms is
a problem domain in which parameters are often
manually transformed a priori, for example by
optimizing in “log-space,” to mitigate the effects
of spatially-varying length scale. We develop a
methodology for automatically learning a wide
family of bijective transformations or warpings
of the input space using the Beta cumulative dis-
tribution function. We further extend the warp-
ing framework to multi-task Bayesian optimiza-
tion so that multiple tasks can be warped into a
jointly stationary space. On a set of challeng-
ing benchmark optimization tasks, we observe
that the inclusion of warping greatly improves
on the state-of-the-art, producing better results
faster and more reliably.
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1 Introduction
Bayesian optimization is a strategy for the global optimiza-
tion of noisy, black-box functions. The goal is to find the
minimum of an expensive function of interest as quickly
as possible. Bayesian optimization fits a surrogate model
that estimates the expensive function, and a proxy opti-
mization is performed on this in order to select promising
locations to query. Naturally, the ability of the surrogate
to accurately model the underlying function is crucial to
the success of the optimization routine. Recent work in
machine learning has revisited the idea of Bayesian opti-
mization (e.g., Osborne et al., 2009; Brochu et al., 2010;
Srinivas et al., 2010; Hutter et al., 2011; Bergstra et al.,
2011; Bull, 2011; Snoek et al., 2012; Hennig and Schuler,
2012) in large part due to advances in the ability to effi-
ciently and accurately model statistical distributions over
large classes of real-world functions. Gaussian processes
(GPs) (see, e.g., Rasmussen and Williams, 2006) provide a
powerful framework to express flexible prior distributions
over smooth functions, yielding accurate estimates of the
expected value of the function at any given input, but cru-
cially also uncertainty estimates over that value. These are
the two main components that enable the exploration and
exploitation tradeoff that makes Bayesian optimization so
effective.

A major limitation of the most commonly used form of
Gaussian process regression is the assumption of station-
arity — that the covariance between two outputs is invari-
ant to translations in input space. This assumption simpli-
fies the regression task, but hurts the ability of the Gaus-
sian process to model more realistic non-stationary func-
tions. This presents a challenge for Bayesian optimization,
as many problems of interest are inherently non-stationary.
For example, when optimizing the hyperparameters of a
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machine learning algorithm, we might expect the objective
function to have a short length scale near the optimum, but
have a long length scale far away from the optimum. That
is, we would expect bad hyperparameters to yield similar
bad performance everywhere (e.g., classifying at random)
but expect the generalization performance to be sensitive to
small tweaks in good hyperparameter regimes.

We introduce a simple solution that allows Gaussian pro-
cesses to model a large variety of non-stationary functions
that is particularly well suited to Bayesian optimization.
We automatically learn a bijective warping of the inputs
that removes major non-stationary effects. This is achieved
by projecting each dimension of the input through the
cumulative distribution function of the Beta distribution,
while marginalizing over the shape of the warping. Our
approach is computationally efficient, captures a variety of
desirable transformations, such as logarithmic, exponen-
tial, sigmoidal, etc., and is easily interpretable. In the con-
text of Bayesian optimization, understanding the parameter
space is often just as important as achieving the best pos-
sible result and our approach lends itself to a straightfor-
ward analysis of the non-stationarities in a given problem
domain.

We extend this idea to multi-task Bayesian optimization
(Swersky et al., 2013) so that multiple tasks can be warped
into a jointly stationary space. Thus, tasks can be warped
onto one another in order to better take advantage of their
shared structure.

In the empirical study that forms the experimental part
of this paper, we show that modeling non-stationarity
is extremely important and yields significant empirical
improvements in the performance of Bayesian optimiza-
tion. For example, we show that on a recently introduced
Bayesian optimization benchmark (Eggensperger et al.,
2013), our method outperforms all of the previous state-of-
the-art algorithms on the problems with continuous-valued
parameters. We further observe that on four different chal-
lenging machine learning optimization tasks our method
outperforms that of Snoek et al. (2012), consistently con-
verging to a better result in fewer function evaluations. As
our methodology involves a transformation of the inputs,
this strategy generalizes to a wide variety of models and al-
gorithms. Empirically, modeling non-stationarity is a fun-
damentally important component of effective Bayesian op-
timization.

2 Background and Related Work

2.1 Gaussian Processes

The Gaussian process is a powerful and flexible prior distri-
bution over functions f : X → R which is widely used for
non-linear Bayesian regression. An attractive property of

the Gaussian process in the context of Bayesian optimiza-
tion is that, conditioned on a set of observations, the ex-
pected output value and corresponding uncertainty of any
unobserved input is easily computed.

The properties of the Gaussian process are specified by
a mean function m : X → R and a positive definite co-
variance, or kernel, function K : X × X → R. Given a
finite set of training points IN = {xn, yn}Nn=1, where
xn ∈ X , yn ∈ R, the predictive mean and covariance un-
der a GP can be respectively expressed as:

µ(x; IN ) = m(X) +K(X,x)>K(X,X)−1(y −m(X)),
(1)

Σ(x,x′; IN ) = K(x,x′) −K(X,x)>K(X,X)−1K(X,x′).
(2)

Here K(X,x) is the N -dimensional column vector of
cross-covariances between x and the set X. The N ×N
matrix K(X,X) is the Gram matrix for the set X re-
sulting from applying the covariance function K(x,x′)
pairwise over the set {xn}Nn=1. The most common
choices of covariance functions K(x,x′) are functions
of r(x,x′) = x− x′, such as the automatic relevance de-
termination (ARD) exponentiated quadratic covariance

KSE(x,x′) = θ0 exp(−r2) r =

D∑
d=1

(xd − x′d)2/θ2d ,

(3)

or the ARD Matérn 5/2 kernel advocated for hyperpa-
rameter tuning with Bayesian optimization by Snoek et al.
(2012):

KM52(x,x
′) = θ0

(
1 +
√

5r2 +
5

3
r2
)

exp
{
−
√

5r2
}
.

(4)

Such covariance functions are invariant to translations
along the input space and thus are stationary.

2.2 Non-stationary Gaussian Process Regression

Numerous approaches have been proposed to extend GPs to
model non-stationary functions. Gramacy (2005) proposed
a Bayesian treed GP model which accommodates various
complex non-stationarities through modeling the data us-
ing multiple GPs with different covariances. Various non-
stationary covariance functions have been proposed (e.g.,
Higdon et al., 1998; Rasmussen and Williams, 2006). Pre-
viously, Sampson and Guttorp (1992) proposed projecting
the inputs into a stationary latent space using a combination
of metric multidimensional scaling and thin plate splines.
Schmidt and O’Hagan (2003) extended this warping ap-
proach for general GP regression problems using a flexible
GP mapping. Spatial deformations of two dimensional in-
puts have been studied extensively in the spatial statistics
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literature (Anderes and Stein, 2008). Bornn et al. (2012)
project the inputs into a higher dimensional stationary la-
tent representation. Snelson et al. (2003) apply a warping
to the output space, y, while Adams and Stegle (2008) per-
form input-dependent output scaling with a second Gaus-
sian process.

Compared to these approaches, our approach is relatively
simple, yet as we will demonstrate, flexible enough to cap-
ture a wide variety of nonstationary behaviours. Our prin-
cipal aim is to show that addressing nonstationarity is a
critical component of effective Bayesian optimization, and
that any advantages gained from using our approach would
likely generalize to more elaborate techniques.

2.3 Multi-Task Gaussian Processes

Many problems involve making predictions over multiple
datasets (we will henceforth refer to these prediction prob-
lems as tasks). When the datasets share an input domain,
and the mappings from inputs to outputs are correlated,
then these correlations can be used to share information be-
tween different tasks and improve predictive performance.
There have been many extensions of Gaussian processes to
the multi-task setting, e.g., Goovaerts (1997); Alvarez and
Lawrence (2011). However, a basic and surprisingly effec-
tive approach is to assume that each task is derived from a
single latent function which is transformed to produce each
output (Teh et al., 2005; Bonilla et al., 2008).

Formally, this approach involves combining a kernel over
inputsK(x,x′) and a kernel over task indicesK(t, t′), t =
{1, ..., T} via a product to form the joint kernel:

K((x, t), (x′, t′)) = KT (t, t′)K(x,x′). (5)

We infer the elements ofKT (t, t′) directly using the spheri-
cal parametrization of a covariance matrix (Osborne, 2010;
Pinheiro and Bates, 1996).

2.4 Bayesian Optimization

Bayesian optimization is a general framework for the
global optimization of noisy, expensive, black-box func-
tions (Mockus et al., 1978), see Brochu et al. (2010) or Li-
zotte (2008) for an in-depth explanation and review. The
strategy relies on the use of a relatively cheap probabilistic
model that can be queried liberally as a surrogate in order
to more effectively evaluate an expensive function of in-
terest. Bayes’ rule is used to derive the posterior estimate
of the true function, given observations, and the surrogate
is then used to determine, via a proxy optimization over
an acquisition function, the next most promising point to
query. Using the posterior mean and variance of the proba-
bilistic model, the acquisition function generally expresses
a tradeoff between exploitation and exploration. Numerous
acquisition functions and combinations thereof have been

proposed (e.g., Kushner, 1964; Srinivas et al., 2010; Hoff-
man et al., 2011).

In this work, we follow the common approach, which is
to use a GP to define a distribution over objective func-
tions from the input space to a loss that one wishes to min-
imize. Our approach is based on that of Jones (2001).
Specifically, we use a GP surrogate, and the expected
improvement acquisition function (Mockus et al., 1978).
Let σ2(x) = Σ(x,x) be the marginal predictive variance
of a GP, and define

γ(x) =
f(xbest)− µ(x; {xn, yn} , θ)

σ(x; {xn, yn} , θ)
, (6)

where f(xbest) is the lowest observed value. The expected
improvement criterion is defined as

aEI(x; {xn, yn} , θ) = σ(x; {xn, yn} , θ) (γ(x)Φ(γ(x))

+N (γ(x); 0, 1)) . (7)

Here Φ(·) is the cumulative distribution function of a stan-
dard normal, andN (·; 0, 1) is the density of a standard nor-
mal. Note that the method proposed in this paper is inde-
pendent of the choice of acquisition function and do not
affect its analytic properties.

2.5 Multi-Task Bayesian Optimization

When utilizing machine learning in practice, a single model
will often need to be trained on multiple datasets. This
can happen when e.g., new data is collected and a model
must be retrained. In these scenarios we can think of each
dataset as a different task and use multi-task Gaussian pro-
cesses to predict where to query next. In Krause and Ong
(2011), this idea was applied to find peptide sequences that
bind to molecules for vaccine design, while in Swersky
et al. (2013) it was applied to hyperparameter optimization.
In these cases it was shown that sharing information be-
tween tasks can be extremely beneficial for Bayesian opti-
mization. Other approaches include Bardenet et al. (2013),
which finds a joint latent function over tasks explicitly us-
ing a ranking model, and Hutter et al. (2011) which uses a
set of auxiliary task features to improve prediction.

3 Input Warping
We assume that we have a positive definite covariance func-
tion K(x, x̃), where x, x̃ ∈ [0, 1]D due to projecting a
bounded input range to the unit hypercube. In practice,
when tuning the hyperparameters of an algorithm, e.g.,
the regularization parameter of a support vector machine,
researchers often first transform the input space using a
monotonic function such as the natural logarithm and then
perform a grid search in this transformed space. Such an
optimization in “log-space” takes advantage of a priori
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Two examples of how input warping using the Beta CDF can transform a non-stationary function into 
a stationary one.   Figure 1. Two examples of how input warping using the Beta CDF can transform a non-stationary function into a stationary one. The

warping function maps the original inputs on the horizontal axis to new inputs shown on the vertical axis. The effect is to stretch and
contract regions of the input space in such a manner as to remove non-stationarity.

knowledge of the non-stationarity that is inherent in the in-
put space. Often however, the non-stationary properties of
the input space are not known a priori and such a trans-
formation is generally a crude approximation to the ideal
(unknown) transformation. Our approach is to instead con-
sider a class of bijective warping functions, and estimate
them from previous objective function evaluations. We can
then use commonly-engineered transformations—such as
the log transform—to specify a prior on bijections. Specif-
ically, we change the kernel function to beK(w(x), w(x̃)),

wd(xd) = BetaCDF(xd;αd, βd) ,

=

∫ xd

0

uαd−1(1− u)βd−1

B(αd, βd)
du , (8)

where BetaCDF refers to the Beta cumulative distribution
function andB(α, β) is the normalization constant. That is,
w : [0, 1]D → [0, 1]D is a vector-valued function in which
the dth output dimension is a function of the dth input di-
mension, and is specified by the cumulative distribution
function of the Beta distribution. Each of these D bijec-
tive transformations from [0, 1] to [0, 1] has a unique shape,
determined by parameters αd > 0 and βd > 0. The Beta
CDF has no closed form solution for non-integer values
of α and β, however accurate approximations are imple-
mented in many statistical software packages.

Alternatively, one can think of input warping as applying a
particular kind of non-stationary kernel to the original data.
Examples of non-stationary functions and their correspond-
ing ideal warping that transforms them into stationary func-
tions are shown in Figure 1.

Our choice of the Beta distribution is motivated by the fact
that it is capable of expressing a variety of monotonic warp-
ings, while still being concisely parameterized. In general,

there are many other suitable choices.

3.1 Integrating over warpings

Rather than assume a single, explicit transformation func-
tion, we define a hierarchical Bayesian model by plac-
ing a prior over the shape parameters, αd and βd, of the
bijections and integrating them out. We treat the col-
lection {αd, βd}Dd=1 as hyperparameters of the covariance
function and use Markov chain Monte Carlo via slice sam-
pling, following the treatment of covariance hyperparame-
ters from Snoek et al. (2012). We use a log-normal distri-
bution, i.e.

log(αd) ∼ N (µα, σα) log(βd) ∼ N (µβ , σβ), (9)

to express a prior for a wide family of desirable functions.
Figure 2 demonstrates example warping functions arising
from sampling transformation parameters from various in-
stantiations of this prior. Note that the geometric mean or
median of the zero-mean log-normal distribution for the αd
and βd corresponds to the identity transform. With this
prior the model centers itself on the identity transforma-
tion of the input space. In the following empirical analysis
we use this formulation with a variance of 0.75. A nice
property of this approach is that a user can easily specify
a prior when they expect a specific form of warping, as we
show in Figure 2.

3.2 Multi-Task Input Warping

When training the same model on different datasets, certain
properties, such as the size of the dataset, can have a dra-
matic effect on the optimal hyperparameter settings. For
example, a model trained on a small dataset will likely re-
quire more regularization than the same model trained on a
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Figure 2. Each figure shows 50 warping functions resulting from the Beta CDF where the shape parameters α and β are sampled
from a log-normal prior with a different mean and variance. The flexible Beta CDF captures many desirable warping functions and
adjusting the prior over input warpings allows one to easily encode prior beliefs over the form of non-stationarity. For example, choosing
µα = µβ = 0 and σα = σβ = 0.5 expresses a prior for slight or no warping (2a). Setting µα = 0, σα = 0.25 and µβ = σβ = 1
or µα = σα = 1, µβ = 0 and σβ = 0.25 expresses a prior for approximately exponential (2b) or logarithmic (2c) warping functions
respectively. Approximately sigmoidal (2d) warpings that contract the outer regions of the space while expanding the center can be
expressed as a prior with µα = µβ = 2 and σα = σβ = 0.5. One can also express logit shaped warpings (not shown here).

larger dataset. In other words, it is possible that one part of
the input space on one task can be correlated with a differ-
ent part of the input space on another task. To account for
this, we allow each task to have its own set of warping pa-
rameters. Inferring these parameters will effectively try to
warp both tasks into a jointly stationary space that is more
suitably modeled by a standard multi-task kernel. In this
way, large values on one task can map to small values on
another, and vice versa.

4 Empirical Analyses
Our empirical analysis is comprised of three distinct exper-
iments. In the first experiment, we compare to the method
of Snoek et al. (2012) in order to demonstrate the effective-
ness of input warping. In the second experiment, we com-
pare to other hyperparameter optimization methods using a
subset of the benchmark suite found in Eggensperger et al.
(2013). Finally, we show how our multi-task extension can
further benefit this important setting.

4.1 Comparison to Stationary GPs

Experimental setup We evaluate the standard Gaussian
process expected improvement algorithm (GP EI MCMC)
as implemented by Snoek et al. (2012), with and without
warping. Following their treatment, we use the Matérn 5/2
kernel and we marginalize over kernel parameters θ using
slice sampling (Murray and Adams, 2010). We repeat three
of the experiments1 from Snoek et al. (2012), and perform
an experiment involving the tuning of a deep convolutional
neural network2 on a subset of the popular CIFAR-10 data
set (Krizhevsky, 2009). The deep network consists of three
convolutional layers and two fully connected layers and

1See Snoek et al. (2012) for details of these experiments.
2We use the Deepnet package from https://github.

com/nitishsrivastava/deepnet

we optimize over two learning rates, one for each layer
type, six dropout regularization rates, six weight norm con-
straints, the number of hidden units per layer, a convolu-
tional kernel size and a pooling size for a total of 21 hy-
perparameters. On the logistic regression problem we also
compare to warping the input space a priori using the log-
transform (optimizing in log-space).

Results Figure 3 shows that in all cases, dealing with
non-stationary effects via input warpings greatly improves
the convergence of the optimization. Of particular note,
on the higher-dimensional convolutional network problem
(Figure 3d) input warped Bayesian optimization consis-
tently converges to a better solution than Bayesian opti-
mization with a stationary GP.

In Figure 4 we plot examples of some of the inferred
warpings. For logistic regression, Figure 4a shows that
our method learns different logarithmic-like warpings for
three dimensions and no warping for the fourth. Figure 4b
shows how the posterior distribution over the learning rate
warping evolves, becoming more extreme and more cer-
tain, as observations are gathered. Figure 4c shows that on
both convolutional and dense layers, the intuition that one
should log-transform the learning rates holds. For transfor-
mations on weight norm constraints, shown in Figure 4d,
the weights connected to the inputs and outputs use a sig-
moidal transformation, the convolutional-layer weights use
an exponential transformation, and the dense-layer weights
use a logarithmic transformation. Effectively, this means
that the most variation in the error occurs in the medium,
high and low scales respectively for these types of weights.
Especially interesting are the wide variety of transforma-
tions that are learned for dropout on different layers, shown
in Figure 4e. These show that different layers benefit from
different dropout rates, which was also confirmed on test
set error, and challenges the notion that they should just be
set to 0.5 (Hinton et al., 2012).
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Experiment # Evals SMAC Spearmint TPE # Evals Spearmint + Warp

Branin (0.398) 200 0.655± 0.27 0.398± 0.00 0.526± 0.13 40 0.398± 0.00
Hartmann 6 (-3.322) 200 −2.977± 0.11 −3.133± 0.41 −2.823± 0.18 100 −3.3166± 0.02
Logistic Regression 100 8.6± 0.9 7.3± 0.2 8.2± 0.6 40 6.88± 0.0
LDA (On grid) 50 1269.6± 2.9 1272.6± 10.3 1271.5± 3.5 50 1266.2± 0.1
SVM (On grid) 100 24.1± 0.1 24.6± 0.9 24.2± 0.0 100 24.1± 0.1

Table 1. We evaluate our algorithm on the continuous-valued parameter benchmarks proposed in Eggensperger et al. (2013). We compare
to Sequential Model Based Algorithm Configuration (SMAC) (Hutter et al., 2011), the Tree Parzen Estimator (TPE) (Bergstra et al.,
2011) and Spearmint (Snoek et al., 2012). The results for SMAC, Spearmint and TPE are reproduced from Eggensperger et al. (2013).
Following the standard protocol for these benchmarks, each algorithm was run ten times for the given number of evaluations, and the
average validation loss and standard deviation are reported. The algorithm with the lowest validation loss is shown in bold. We note that
on some of the benchmarks our algorithm converges to a solution in far fewer evaluations than the protocol allows.
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Figure 3. An empirical comparison of Bayesian optimization following the standard Gaussian process expected improvement algorithm
(GP EI MCMC) and our strategy (Warped GP EI MCMC) for modeling input non-stationarity. The methods are compared on four
challenging problems involving the optimization of the hyperparameters of popular machine learning algorithms.

It is clear that the learned warpings are non-trivial. In
some cases, like with learning rates, they agree with in-
tuition, while for others like dropout they yield surprising
results. Given the number of hyperparameters and the va-
riety of transformations, it is highly unlikely that even ex-
perts would be able to determine the whole set of appropri-
ate warpings. This highlights the utility of learning them
automatically.

4.2 HPOLib Continuous Benchmarks

Experimental setup In our next set of experiments,
we tested our approach on the subset of benchmarks
over continuous inputs from the HPOLib benchmark
suite (Eggensperger et al., 2013). These benchmarks are
designed to assess the strengths and weaknesses of several
popular hyperparameter optimization schemes. All of the
tested methods perform Bayesian optimization, however
the underlying surrogate models differ significantly. The
SMAC package (Hutter et al., 2011) uses a random forest,
the Hyperopt package (Bergstra et al., 2011) uses the tree
Parzen estimator, and the Spearmint package (Snoek et al.,
2012) uses a Gaussian process. For our experiments, we
augmented the Spearmint package with input warping.

Results Table 1 shows the results, where all but the
warped results are taken from Eggensperger et al. (2013).

Overall, input warpings improve the performance of the
Gaussian process approach such that it does at least as well
as every other method, and in many cases better. Further-
more, the standard deviation also decreases significantly in
many instances, meaning that the results are far more reli-
able. Finally, it is worth noting that the number of function
evaluations required to solve the problems is also drasti-
cally reduced in many cases.

Interestingly, the random forest approach in SMAC also
naturally deals with nonstationarity, albeit in a fundamen-
tally different way, by partitioning the space in a non-
uniform manner. There are several possibilities to ex-
plain the performance discrepancy. Unlike random forests,
Gaussian processes produce a smooth function of the in-
puts, meaning that EI can be locally optimized via gradient
methods, so it is possible that better query points are se-
lected in this way. Alternatively, the random forest is not
a well-defined prior on functions and there may be overfit-
ting in the absence of parameter marginalization. Further
investigation is merited to tease apart this discrepancy.

4.3 Multi-Task Warping

Experimental setup In this experiment, we apply multi-
task warping to logistic regression and online LDA (Hoff-
man et al., 2010) in a similar manner to Swersky et al.
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(e) DNN Dropout

Figure 4. Example input warpings learned for the logistic regression problem (Figures 4a,4b) and the parameters of the deep convolu-
tional neural network (Figures 4c, 4e, 4d). Each plot shows the mean warping, averaged over 100 samples, of each of the parameters.
Figure 4b shows the warping learned on the learning rate parameter for logistic regression with different numbers of observations, along
with the standard deviation. Each curve in Figures 4d and 4e is annotated with the depth of the layer that each parameter is applied to.

(2013). In the logistic regression problem, a search over
hyperparameters has already been completed on the USPS
dataset, which consists of 6, 000 training examples of hand-
written digits of size 16 × 16. It was demonstrated that it
was possible to use this previous search to speed up the hy-
perparameter search for logistic regression on the MNIST
dataset, which consists of 60, 000 training examples of size
28× 28.

In the online LDA problem, we assume that a model has
been trained on 50, 000 documents and that we would now
like to train one on 200, 000 documents. Again, it was
shown that it is possible to transfer information over to this
task, resulting in more efficient optimization.

Results In Figure 5 we see that warped multi-task
Bayesian optimization (warped MTBO) outperforms
multi-task Bayesian optimization (MTBO) without warp-
ing, and performs far better than single-task Bayesian op-
timization (STBO) that does not have the benefit of a
prior search. On logistic regression it appears that ordi-
nary MTBO gets stuck in a local minimum, while warped
MTBO is able to consistently escape this by the 20th func-
tion evaluation.

In Figure 5a we show the mean warping learned for each
task/hyperparameter combination (generated by averaging

over samples from the posterior). The warping of the L2

penalty on the USPS model favours configurations that are
toward the higher end of the range. Conversely, the warping
on the MNIST dataset favours relatively lower penalties.
This agrees with intuition that a high regularization with
less data is roughly equivalent to low regularization with
more data. Other observations also agree with intuition.
For example, since USPS is smaller each learning epoch
consists of fewer parameter updates. This can be offset by
training for more epochs, using smaller minibatch sizes, or
increasing the learning rate relative to the same model on
MNIST.

5 Conclusion
In this paper we develop a novel formulation to elegantly
model non-stationary functions using Gaussian processes
that is especially well suited to Bayesian optimization. Our
approach uses the cumulative distribution function of the
Beta distribution to warp the input space in order to remove
the effects of mild input-dependent length scale variations.
This approach allows us to automatically infer a variety of
warpings in a computationally efficient way. In our empiri-
cal analysis we see that an inability to model non-stationary
functions is a major weakness when using stationary ker-
nels in the GP Bayesian optimization framework. Our sim-



Input Warping for Bayesian Optimization

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Original Normalized Input Value

W
a
rp

e
d
 I
n
p
u
t 
V

a
lu

e

 

 

Learning Rate

L2 Penalty

Batchsize

Learning Epochs

(a) Logistic Regression Mean Warpings

0 10 20 30 40 50

0.08

0.1

0.12

0.14

0.16

0.18

M
in

 F
u
n
c
ti
o
n
 V

a
lu

e
 (

E
rr

o
r 

R
a
te

)

Function evaluations

 

 
MNIST from USPS

Warped MNIST from USPS

(b) Logistic Regression

10 20 30 40 50
1265

1270

1275

Function Evaluations

M
in

 F
u

n
c
ti
o

n
 V

a
lu

e
 (

P
e

rp
le

x
it
y
)

 

 
MTBO

STBO

Warped MTBO

(c) Online LDA

Figure 5. Multi-task warping applied to logistic regression and online LDA. For logistic regression, the model is trained on USPS first
and then the search is transferred to MNIST. For online LDA, the data is subsampled and the model is learned, then the search transferred
to the full dataset. In both cases, the warped version substantially outperforms multi-task Bayesian optimization with no warping. In
Figure 5a, we show the mean warping learned by each task for each parameter. The solid lines indicates the MNIST task, while the
dashed lines indicate the USPS task.

ple approach to learn the form of the non-stationarity sig-
nificantly outperforms the standard Bayesian optimization
routine of Snoek et al. (2012) both in the number of eval-
uations it takes to converge and the value reached. As an
additional bonus, the method finds good solutions more re-
liably. Our experiments on the continuous subset of the
HPOLib benchmark (Eggensperger et al., 2013) shows that
input warping performs substantially better than state-of-
the-art baselines on these problems.

A key advantage of our approach is that the learned trans-
formations can be analyzed post hoc, and our analysis of
a convolutional neural network architecture leads to sur-
prising insights that challenge established doctrine. Post-
training analysis is becoming a critical component of neu-
ral network development. For example, the winning Ima-
genet 2013 (Deng et al., 2009) submission (Zeiler and Fer-
gus, 2013) used post hoc analysis to correct for model de-
fects. The development of interpretable Bayesian optimiza-
tion strategies can provide a unique opportunity to facilitate
this kind of interaction. An interesting follow-up would be
to determine whether consistent patterns emerge across ar-
chitectures, datasets and domains.

In Bayesian optimization, properly characterizing uncer-
tainty is just as important as making predictions. GPs are
ideally suited to this problem because they offer a good bal-
ance between modeling power and computational tractabil-
ity. In many real world problems, however, the assumptions
made by the Gaussian processes are often violated, nullify-
ing many of their benefits. In light of this, many opt to use
frequentist models instead, which offer minimax-type guar-
antees. Our emphasis in this work is to demonstrate that it
is possible to stay within the Bayesian framework and thus
enjoy its characterization of uncertainty, while still over-
coming some of the limitations associated with the conven-
tional GP approach. In future work we intend to experi-
ment with more elaborate models of non-stationarity to see

if these yield further improvements.
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