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Abstract

Bayesian optimization has proven to be a highly effective methodology for the
global optimization of unknown, expensive and multimodal functions. The ability
to accurately model distributions over functions is critical to the effectiveness of
Bayesian optimization. Although Gaussian processes provide a flexible prior over
functions which can be queried efficiently, there are various classes of functions
that remain difficult to model. One of the most frequently occurring of these is
the class of non-stationary functions. The optimization of the hyperparameters
of machine learning algorithms is a problem domain in which parameters are of-
ten manually transformed a-priori, for example by optimizing in “log-space”, to
mitigate the effects of extreme non-stationarity. We develop a methodology for
automatically learning monotonic, bijective transformations or warpings of the
input space using the beta cumulative distribution function. Marginalizing over
the parameters of the of the beta distribution allows the Bayesian optimization
to integrate over a wide class of flexible warping functions. We demonstrate on
four challenging machine learning problems that the optimization converges to
significantly better solutions much faster when this input warping is used.

1 Introduction
Bayesian optimization has proven to be a highly effective strategy for the global optimization of
noisy, black-box functions. The methodology relies on fitting a relatively cheap surrogate function
approximating an expensive function of interest, on which a proxy optimization is performed to
select the next expensive evaluation. Naturally, the ability of the surrogate to accurately model the
underlying function is crucial to the success of the optimization routine. Recent work in machine
learning has revisited the idea of Bayesian optimization [Brochu et al., 2010, Srinivas et al., 2010,
Hutter et al., 2011, Osborne et al., 2009, Bergstra et al., 2011, Bull, 2011, Snoek et al., 2012] in
large part due to advances in the ability to efficiently and accurately model statistical distributions
over large classes of real-world functions. Recent advances in Gaussian processes [Rasmussen and
Williams, 2006] have provided a powerful framework to express flexible prior distributions over
smooth functions yielding accurate estimates of the expected value of the function at any given in-
put, but crucially also uncertainty estimates over that value. These are the two main components that
enable the exploration and exploitation tradeoff which makes Bayesian optimization so powerful. A
major limitation of the most commonly used form of Gaussian process regression is the assump-
tion of stationarity — that the covariance between two outputs is invariant to translations in input
space. This simplifies the regression task, but hurts the ability of the Gaussian process to model
non-stationary functions. This presents a problem for Bayesian optimization, as many problems of
interest are inherently non-stationary.
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Figure 1: Each figure shows 50 warping functions resulting from the beta CDF where the shape parameters α
and β are sampled from a lognormal prior with a different mean and variance. The flexible beta CDF captures
many desirable warping functions and adjusting the prior over input warpings allows one to easily encode prior
beliefs over the form of non-stationarity.

We introduce a simple solution that allows Gaussian processes to model a large variety of non-
stationary functions that is particularly well suited to Bayesian optimization. We automatically
learn a monotonic, bijective warping of the inputs that removes major non-stationary effects. This
is achieved by projecting each dimension of the input through the cumulative distribution function
of the beta distribution, while marginalizing over the distribution’s shape parameters. This approach
has several advantages over existing approaches. It is computationally efficient, captures a variety
of desirable transformations, such as logarithmic, exponential, sigmoidal, etc., and it is easily inter-
pretable. In the context of Bayesian optimization, understanding the parameter space is often just as
important as achieving the best possible result. Our approach lends itself to an easy analysis of the
inherent non-stationarities in a given problem domain. In our empirical analysis, we observe that on
four different challenging machine learning optimization tasks our method significantly outperforms
that of Snoek et al. [2012], consistently converging to a better result in significantly fewer function
evaluations.

2 Background
2.1 Gaussian Processes

The Gaussian process (GP) is a tractable and flexible prior distribution over functions f : X → R
and is a widely used model for non-linear Bayesian regression. The properties of the Gaussian
process are specified by a mean function m : X → R and a positive definite covariance, or kernel,
function K : X × X → R. Given a finite set of training points {xn, yn}Nn=1, where xn ∈ X , yn ∈
R, the predictive mean and covariance under a GP can be respectively expressed as:

µ(x ; {xn, yn}, θ) = K(X,x)>K(X,X)−1(y −m(X)), (1)

Σ(x,x′ ; {xn, yn}, θ) = K(x,x′)−K(X,x)>K(X,X)−1K(X,x′). (2)

Here K(X,x) is the N -dimensional column vector of cross-covariances between x and the set X.
The N ×N matrix K(X,X) is the Gram matrix for the set X.

2.2 Non-stationary Gaussian Process Regression

Various related approaches have been proposed to extend GPs to model non-stationary functions.
Gramacy [2005] proposed a Bayesian treed GP model which accommodates various complex non-
stationarities through modeling the data using multiple GPs with different covariances. Various non-
stationary covariance functions have been proposed [Higdon et al., 1998, Rasmussen and Williams,
2006]. Previously, Sampson and Guttorp [1992] proposed projecting the inputs into a stationary
latent space using a combination of metric multidimensional scaling and thin plate splines. Schmidt
and O’Hagan [2003] extended this warping approach for general GP regression problems using a
flexible GP mapping. Bornn et al. [2012] project the inputs into a higher dimensional stationary
latent representation. In a complementary approach, Snelson et al. [2003] apply a warping to the
output space, y.

Compared to these approaches, the advantages of the proposed approach are that it is conceptually
simple, computationally efficient, captures a wide variety of non-stationarities, can be used within
the context of many common covariance functions operating on bounded continuous sets without
changing the analytic properties of the GP and easily lends itself to post-hoc analysis.
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2.3 Bayesian Optimization

Bayesian optimization is a general framework for the global optimization of noisy, expensive, black-
box functions [Mockus et al., 1978] (see Brochu et al. [2010] for an in-depth explanation). The
strategy relies on the use of a relatively cheap probabilistic model which can be queried liberally
as a surrogate in order to more efficiently evaluate an expensive function of interest. Bayes’ rule is
used to derive the posterior estimate of the true function given observations, and the surrogate is then
used to determine, via a proxy optimization over an acquisition function, the next most promising
point to query. We follow the common approach, which is to use a GP to define a distribution over
objective functions from the input space to a loss that one wishes to minimize. Our approach is based
on that of Snoek et al. [2012]. Specifically, we use a GP surrogate, and the expected improvement
acquisition function [Mockus et al., 1978, Jones, 2001]. Note that our methods are independent of
the acquisition function used and do not affect its analytic properties.

3 Input Warping

We assume that we have a positive definite covariance function K(x, x̃) where x, x̃ ∈ [0, 1]D due
to projecting the bounded input range to the unit hypercube. In practice, when tuning the hyper-
parameters of an algorithm, e.g., the regularization parameter of a support vector machine using
grid search, researchers often first transform the input space using a monotonic function such as the
natural logarithm. Such an optimization in “log-space” takes advantage of a-priori knowledge of the
non-stationarity that is inherent in the input space. Often however, the non-stationary properties of
the input space are not known a-priori and such a transformation is generally a crude approximation
to the ideal (unknown) transformation. Our approach is to instead consider a variety of bijective,
monotonic warping functions that will be estimated, and from which functions such as the log trans-
form can be specified as a prior. Specifically, we change the kernel function to be k(w(x), w(x̃))
where w : X → [0, 1]D is the cumulative distribution function of the beta distribution with distinct
shape parameters αd > 0 and βd > 0 for each dimension d ∈ {1, 2, ..., D} of the input.

3.1 Integrating over warpings

Rather than assume an explicit transformation function, we instead integrate over warpings by
marginalizing over the shape parameters, α and β, of the beta distribution with an appropriate
prior. We treat α and β as hyperparameters of the covariance function and integrate them out using
Markov chain Monte Carlo via slice sampling following the treatment of covariance hyperparam-
eters from Snoek et al. [2012]. We use a log-normal distribution, i.e. log(α) ∼ N (µα, σα) and
log(β) ∼ N (µβ , σβ), to express a prior for a wide family of desirable functions. Figure 1 demon-
strates example warping functions arising from sampling beta parameters from various instantiations
of the prior. Note that the geometric mean or median of the zero-mean log-normal distribution for
α and β corresponds to the identity transform. With this prior the model assumes no transformation
of the input space without evidence to the contrary. In the following empirical analysis we use this
formulation with a variance of 0.75, assuming no prior knowledge of the form of the transforma-
tion for a particular problem. However, a nice property of this formulation is that a user can easily
specify a prior for a specific form of warping, as we show in Figure 1.

4 Empirical Analyses
As an empirical analysis we evaluate the standard Gaussian process expected improvement algo-
rithm (GP EI MCMC) as implemented by Snoek et al. [2012], with and without warping. As
in Snoek et al. [2012] we use the Matérn 5/2 kernel and we marginalize over kernel parameters θ
using slice sampling [Murray and Adams, 2010]. We repeat three of the experiments1 from Snoek
et al. [2012], and an experiment involving the tuning of a deep convolutional neural network2 on a
subset of the popular CIFAR-10 data set [Krizhevsky, 2009]. The deep network consists of 3 con-
volutional layers and 2 fully connected layers and we optimize over two learning rates, one for each
layer type, 6 dropout regularization rates, 6 weight norm constraints, the number of hidden units per
layer, a convolutional kernel size and a pooling size for a total of 21 hyperparameters. On the logistic
regression problem we also compare to warping the input space a-priori using the log-transform (op-
timizing in log-space). Figure 2 shows that in all cases, dealing with non-stationary effects via input

1See Snoek et al. [2012] for details of these experiments.
2We use the Deepnet package from https://github.com/nitishsrivastava/deepnet
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Figure 2: An empirical comparison of Bayesian optimization following the standard Gaussian process expected
improvement algorithm (GP EI MCMC) and our strategy (Warped GP EI MCMC) for modeling input non-
stationarity.
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(b) DNN Learning Rates
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(c) DNN Weight Norms
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(d) DNN Dropout

Figure 3: Example input warpings learned for the logistic regression problem (Figure 3a) and the parameters
of the deep convolutional neural network (Figures 3b, 3d, 3c). Each plot shows the mean warping, averaged
over 100 samples, of each of the parameters. Each curve in Figures 3c and 3d is annotated with the depth of
the layer that each parameter is applied to.

warpings significantly improves the convergence of the optimization. In particular, we notice on the
higher-dimensional convolutional network problem a profound improvement (Figure 2d) when the
non-stationarities are learned.

In Figure 3 we plot examples of some of the inferred warpings. For logistic regression, Figure 3a
shows that model learns different logarithmic-like warpings for three dimensions and no warping
for the fourth. Figure 3b shows that on both convolutional and dense layers, the intuition that one
should log-transform the learning rates holds. For transformations on weight norm constraints,
shown in Figure 3c, the weights connected to the inputs and outputs use a sigmoidal transformation,
the convolutional-layer weights use an exponential transformation, and the dense-layer weights use
a logarithmic transformation. Effectively, this means that the most variation in the error occurs in the
medium, high and low scales respectively for these types of weights. Especially interesting are the
wide variety of transformations that are learned for dropout on different layers, shown in Figure 3d.
These show that different layers benefit from different dropout rates, which was also confirmed on
test set error, and challenges the notion that they should just be set to 0.5 [Hinton et al., 2012].

It is clear that the learned warpings are non-trivial. In some cases, like with learning rates, they
agree with intuition, while for others like dropout they yield surprising results. Given the number of
hyperparameters and the variety of transformations, it is highly unlikely that even experts would be
able to determine the whole set of appropriate warpings. This highlights the utility of learning them
automatically.

5 Conclusion
In this paper we develop a novel formulation to elegantly model non-stationary functions using
Gaussian processes that is especially well suited to Bayesian optimization. Our approach uses the
cumulative distribution function of the beta distribution to warp the input space in order to remove
non-stationary effects. This approach allows us to automatically infer a wide variety of warpings
in a computationally efficient way. In our empirical analysis we see that an inability to model non-
stationary functions is a major weakness in the GP Bayesian optimization framework. Our simple
approach to learn the form of the non-stationarity, with no additional prior information, significantly
outperforms the standard Bayesian optimization routine of Snoek et al. [2012] both in the number
of evaluations it takes to converge and the value reached. A key advantage of our approach is that
the learned transformations can be analyzed post-hoc, and our analysis of a convolutional neural
network architecture leads to surprising insights that challenges established doctrine. An interesting
follow-up would be to determine whether consistent patterns emerge across architectures, datasets
and domains.
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