This assignment is due at the start of your lecture on Friday, 14 Feb. 2020.

1. [10 marks]

Assume that $f: \mathbb{D} \rightarrow \mathbb{R}$ is twice continuously differentiable for all $x \in \mathbb{D}$, where the domain \mathbb{D} of f is an open, convex subset of \mathbb{R}^{n}. Show that, its Hessian matrix, $\nabla^{2} f(x)$, is symmetric positive-semi-definite for all $x \in \mathbb{D}$ if and only if f is a convex function on \mathbb{D}.
Moreover, show that, if its Hessian matrix, $\nabla^{2} f(x)$, is symmetric positive-definite for all $x \in \mathbb{D}$, then f is a strictly convex function on \mathbb{D}.
Show that the converse of this last statement is not true. That is, there is a strictly convex function on an open, convex domain \mathbb{D} such that its Hessian matrix, $\nabla^{2} f(x)$, is not symmetric positive-definite for all $x \in \mathbb{D}$.
2. [5 marks]

Do question 2.1 on page 27 of your textbook.
3. [5 marks]

Do question 2.8 on page 28 of your textbook.
4. [10 marks]

Do question 2.11 on page 29 of your textbook.
You can take the result of question 2.10 as given; you don't have to include a proof of it. However, for your own interest, you might try to verify this result.
5. [10 marks]

Do question 2.12 on page 29 of your textbook.
Take the phrase "at the solution x^{*} " in the question to mean that x^{*} is a local minimizer of $f(x)$.
If A is a nonsingular matrix, it's condition number is $\operatorname{cond}(A)=\|A\| \cdot\left\|A^{-1}\right\|$; take $\operatorname{cond}(A)=\infty$ if A is singular. It's best to use the 2-norm in this question. In this case, if A is symmetric positive-semi-definite, then

$$
\operatorname{cond}_{2}(A)=\|A\|_{2} \cdot\left\|A^{-1}\right\|_{2}=\frac{\lambda_{\max }}{\lambda_{\min }}
$$

where $\lambda_{\max }$ is the largest eigenvalue of $A, \lambda_{\min }$ is the smallest eigenvalue of A and both $\lambda_{\max } \geq 0$ and $\lambda_{\min } \geq 0$. However, you will see when you do the question that $\lambda_{\max }>0$. If $\lambda_{\min }=0$, then A is singular and, as noted above, in this case you can take $\operatorname{cond}(A)=\infty$.
6. [5 marks]

Do question 2.16 on page 29 of your textbook.

