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Answer ALL Questions

Do NOT turn this page over until you are TOLD to start.

Write your answers in the exam booklets provided.

Please fill-in ALL the information requested on the front cover of EACH exam booklet that
you use.

The exam consists of 7 pages, including this one. Make sure you have all 7 pages.

The exam consists of 4 questions. Answer all 4 questions. The mark for each question is
listed at the start of the question. Do the questions that you feel are easiest first.

The exam was written with the intention that you would have ample time to complete it.
You will be rewarded for concise well-thought-out answers, rather than long rambling ones.
We seek quality rather than quantity.

Moreover, an answer that contains relevant and correct information as well as irrelevant or
incorrect information will be awarded fewer marks than one that contains the same relevant
and correct information only.

Write legibly. Unreadable answers are worthless.
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You may find the following definitions useful.

The shift operator: Ez(x) = z(x+ h)

The forward difference operator: ∆+ z(x) = z(x+ h)− z(x)

The backward difference operator: ∆− z(x) = z(x)− z(x− h)

The central difference operator: ∆0 z(x) = z(x+ h/2)− z(x− h/2)

The averaging operator: Υ0 z(x) = 1
2

(
z(x+ h/2) + z(x− h/2)

)
The differentiation operator: D z(x) = z′(x)

1. [12 marks: 5 marks for part (a), 5 marks for part (b) and 2 marks for part (c)]

The operators above can be extended to functions u(x, y) in two spatial dimensions.
For example, let

∆+,x u(x, y) = u(x+ hx, y)− u(x, y)

∆+,y u(x, y) = u(x, y + hy)− u(x, y)

∆−,x u(x, y) = u(x, y)− u(x− hx, y)

∆−,y u(x, y) = u(x, y)− u(x, y − hy)

Dx u(x, y) =
∂u(x, y)

∂x

Dy u(x, y) =
∂u(x, y)

∂y

where hx ∈ R, hx > 0, hy ∈ R and hy > 0. In this question, do NOT assume hx = hy.

Consider the finite-difference approximation

α
∆+,x∆+,yu(x, y)

hxhy
+ (1− α)

∆−,x∆−,yu(x, y)

hxhy
(1)

to the partial derivative
∂2u(x, y)

∂x ∂y
(2)

where α ∈ R and α ∈ [0, 1].

(a) Show the computational stencil associated with the finite-difference approxima-
tion (1).

(b) Show that, for any α ∈ [0, 1], the finite-difference approximation (1) is at least a
first-order approximation to the partial derivative (2).

Include enough terms in your error expansion so that you can answer part (c)
below.

(c) For what values of α is the finite-difference approximation (1) a second-order
approximation to the partial derivative (2)?
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2. [10 marks: 5 marks for each part]

Consider the Poisson equation

∂2u(x, y)

∂x2
+
∂2u(x, y)

∂y2
= f(x, y) for (x, y) ∈ ΩL (3)

in two-dimensions with Dirichlet boundary conditions

u(x, y) = g(x, y) for (x, y) ∈ ∂ΩL (4)

where the domain ΩL is the L-shaped region

ΩL = R1 ∪R2

and R1 and R2 are the rectangles

R1 = {(x, y) : −1 < x < 1 and − 1 < y < 0}
R2 = {(x, y) : −1 < x < 0 and 0 ≤ y < 1}

Another way of describing ΩL is that it is the square

S1 = {(x, y) : −1 < x < 1 and − 1 < y < 1}

with the smaller square

S2 = {(x, y) : 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1}

removed. That is,

ΩL = {(x, y) : (x, y) ∈ S1 and (x, y) /∈ S2}

For any integer N ≥ 1, let h = 1/(N + 1) and consider the discretization

xi = −1 + i h for i = 0, 1, . . . , 2(N + 1)

yj = −1 + j h for j = 0, 1, . . . , 2(N + 1)

Note (xi, yj) ∈ ΩL if either

(a) i ∈ {1, 2, . . . , 2N + 1} and j ∈ {1, 2, . . . , N} or

(b) i ∈ {1, 2, . . . , N} and j ∈ {N + 1, N + 2, . . . , 2N + 1}.

Using this discretization and the 5-point approximation to the Laplacian

ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j
h2

where ui,j ≈ u(xi, yj), you can construct a system of linear equations

Aû = f̂ + ĝ (5)

where û is a vectorized version of {ui,j : (xi, yj) ∈ ΩL}, f̂ is a vectorized version of
the function f(x, y) on the right side of the Poisson equation (3), and ĝ is a vector
containing the boundary conditions corresponding to (4).

Page 3 of 7 pages.



(a) Describe how to initialize the matrix A and the vectors f̂ and ĝ in (5).

Your description should be detailed enough so that a programmer, who doesn’t
know anything about numerical methods for PDEs, can write a program to ini-
tialize the matrix A and the vectors f̂ and ĝ.

Suggestion: you may find it useful to use MatLab pseudo-code. (Your MatLab
code does not have to be syntactically correct; it just has to give a clear idea how
to initialize the matrix A and the vectors f̂ and ĝ.)

(b) Show that the matrix A in (5) is nonsingular.
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3. [15 marks: 5 marks for each part]

Consider the two-point boundary value problem (BVP)

−(a(x) y′(x))′ + b(x) y(x) = f(x) for x ∈ (0, 1)

y′(0) = α

y′(1) = β

(6)

where a(x) > 0 for all x ∈ [0, 1] and b(x) > 0 for all x ∈ [0, 1].

Note: we normally assume b(x) ≥ 0 for all x ∈ [0, 1], but in this question assume
b(x) > 0 for all x ∈ [0, 1].

(a) How can you transform the BVP (6) to a BVP with homogeneous (i.e., zero)
boundary conditions of the form

−(a(x) z′(x))′ + b(x) z(x) = g(x) for x ∈ (0, 1)

z′(0) = 0

z′(1) = 0

(7)

In particular, describe how the solution z(x) of (7) relates to the solution y(x) of
(6) and how g(x) in (7) relates to f(x) in (6).

(b) Consider the grid

x−1 < 0 = x0 < x1 < x2 < · · · < xn = 1 < xn+1 (8)

Do NOT assume that the grid spacing is uniform. (That is, do NOT assume
xi+1 − xi = xj+1 − xj for i 6= j.) Given the grid (8), we can approximate the
solution z to the BVP (7) by

zn(x) =
n∑

j=0

γj ϕj(x) (9)

where the coefficients γj, j = 0, 1, . . . , n, are real constants and the piecewise
linear hat (i.e., chapeau) basis functions ϕj(x), j = 0, 1, . . . , n, are defined by

ϕj(x) =


x−xj−1

xj−xj−1
for x ∈ [xj−1, xj]

xj+1−x
xj+1−xj

for x ∈ [xj, xj+1]

0 otherwise

We can find the coefficients γj, j = 0, 1, . . . , n, in (9) by converting (7) to its weak
form and solving the associated Galerkin equations. Show that this leads to a
linear system of algebraic equations of the form

A~γ = ~b (10)
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where ~γ = (γ0, γ1, . . . , γn)T and the (i, j) element of the (n+ 1)× (n+ 1) matrix
A is

Ai,j =

∫ 1

0

a(x)ϕ′i(x)ϕ′j(x) dx+

∫ 1

0

b(x)ϕi(x)ϕj(x) dx (11)

for i = 0, 1, . . . , n and j = 0, 1, . . . , n. Also, for i = 0, 1, . . . , n, give an equation
for bi, which is element i of the vector ~b in (10).

(c) Show that the matrix A in (10) with elements Ai,j given by (11) is symmetric
positive-definite.
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4. [10 marks: 5 marks for each part]

I mentioned a few times in class that there are two equivalent definitions of an n× n
matrix A being reducible (or equivalently irreducible).

Definition 1: An n × n matrix A is reducible if there are two nonempty sets I1 and
I2 such that I1 ∪ I2 = {1, 2, . . . , n}, I1 ∩ I2 = ∅ and Ai,j = 0 for all i ∈ I1 and
j ∈ I2. Otherwise, the matrix A is irreducible.

Definition 2: An n×n matrix A is irreducible if for every i ∈ {1, 2, . . . , n} and every
j ∈ {1, 2, . . . , n} there is a sequence i = k1, k2, . . . , ks = j with s ≥ 2 such that
Akr,kr+1 6= 0 for r = 1, 2, . . . , s− 1. Otherwise, the matrix A is reducible.

Show that these two definitions are equivalent. That is, show that

(a) If an n × n matrix A is reducible according to Definition 1, then it is reducible
according to Definition 2.

(b) If an n × n matrix A is reducible according to Definition 2, then it is reducible
according to Definition 1.

Total Marks = 47

Total Pages = 7
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