
CSC 446/2310 Assignment #3 Due: 5 April 2019.

This assignment is due at the start of our lecture on Friday, 5 April 2019. You can hand
the assignment in late, with a penalty of 25%, on Monday, 8 April 2019. Since classes end
on Friday, 5 April 2019, if you do submit your assignment late, either give it to me in my
office, BA 4228, or email it to me before 11:59 PM on Monday, 8 April 2019. For more
details about late assignments, see the course outline http://www.cs.toronto.edu/~krj/

courses/446-2310/course.outline.2019.pdf.

For the questions that require you to write a MatLab program, hand in the program and
its output as well as any written answers requested in the question. Your program should
conform to the usual CS standards for comments, good programming style, etc. Try to format
the output from your program so that it is easy for your TA to read and to understand your
results.

Before writing your MatLab programs, you might find it useful to read the MatLab documen-
tation on our course webpage http://www.cs.toronto.edu/~krj/courses/446-2310/. You
should use sparse matrices as much as possible. Read help in MatLab on sparfun, sparse and
spdiags. After you have initialized a matrix using the MatLab sparse matrix routines, you
can solve a system Ax = b in MatLab by x = A \ b. MatLab will use an efficient sparse
matrix factorization to solve the system.

Everyone who has registered for this course should have an account on the CS Teaching Labs
Computer System (i.e., formerly called the CDF System). You should be able to access the
system remotely over the internet. There is more information about accessing your account
at the start of Assignment 1. If you have any trouble with this, let me know and I will try
to help.

Throughout this assignment, I refer to MatLab, but you can use Octave or one of the other
MatLab clones instead. (See “MatLab Clones” on the course webpage http://www.cs.

toronto.edu/~krj/courses/446-2310/.) However, MatLab clones are not 100% compat-
ible with MatLab. So, run each of your final programs through MatLab to make sure that
your program really runs under MatLab, since, when your TA marks your program, he will
want to see a working MatLab program.

Page 1 of 8 pages.

1. [10 marks]

Consider the two-point boundary value problem (BVP)

−y′′ + y = (π2 + 1) sin(πx), x ∈ (0, 1)

y(0) = 1, y′(1) =
1

2

(

e−
1

e

)

− π
(1)

It is easy to verify that the solution to this problem is

y(x) =
1

2

(

ex + e−x
)

+ sin(πx)

(Note that MatLab has a built-in value for π. Read “help pi” in MatLab. Moreover,
you can compute e in MatLab from exp(1).)

Write a MatLab program that uses the Ritz-Galerkin method with piecewise linear hat
(i.e., chapeau) basis functions (defined on page 176 of your textbook) on an equally
spaced grid to solve the BVP (1). That is, let the gridpoints be xi = ih for i =
0, 1, . . . ,m and h = 1/m, where m is an integer. Note that x0 = 0 and xm = 1. (See
below for the choices of m.)

The approximate solution generated by the Ritz-Galerkin method has the form

ym(x) = ϕ0(x) +
m
∑

k=1

γkϕk(x)

where ϕ0(x) satisfies the boundary conditions in (1), ϕk(x), k ∈ {1, 2, . . . ,m}, is the
hat basis function defined on page 176 of your textbook and the γk are determined by
solving the Galerkin equations (see equation (9.7) on page 174 of your textbook).

Also, read the section on natural boundary conditions on page 182 of your textbook.

For each of m = 10, 20, 40, 80, 160, 320, 640, use your program to compute the Ritz-
Galerkin solution ym(x) to the BVP (1).

The maximum error in the numerical solution at the gridpoints {xi : i = 1, . . . ,m},

max {|y(xi)− ym(xi)| : i = 1, . . . ,m} (2)

is a good approximation to the infinity norm of the error in the numerical solution

‖y − ym‖∞ = max {|y(x)− ym(x)| : x ∈ [0, 1]}

Compute and print the maximum error in the numerical solution at the gridpoints (2)
for m = 10, 20, 40, 80, 160, 320, 640.

How does this error decrease with h = 1/m?

Page 2 of 8 pages.

2. [10 marks]

Repeat Question 1, but use the cubic B-spline basis functions defined below in place
of the piecewise linear hat (i.e., chapeau) basis functions that you used in Question 1.

For each m, let the associated grid be {xi = i/m : i = 0, 1, . . . ,m} and the associated
stepsize h = 1/m, as in Question 1. For each i = 0, 1, . . . ,m− 1, define the “regular”
cubic B-spline basis function on this grid by

Bi(x) =















































































1

6

(

x− xi

h

)3

if x ∈ [xi, xi+1]

2

3
− 2

(

x− xi

h

)

+ 2

(

x− xi

h

)2

−
1

2

(

x− xi

h

)3

if x ∈ [xi+1, xi+2]

−
22

3
+ 10

(

x− xi

h

)

− 4

(

x− xi

h

)2

+
1

2

(

x− xi

h

)3

if x ∈ [xi+2, xi+3]

1

6

(

xi+4 − x

h

)3

if x ∈ [xi+3, xi+4]

0 otherwise

We also need two “special” cubic B-spline basis function at the left end of the grid:

B−1(x) =



















































3

2

(x

h

)2

−
11

12

(x

h

)3

if x ∈ [0, h]

−
3

2
+

9

2

(x

h

)

− 3
(x

h

)2

+
7

12

(x

h

)3

if x ∈ [h, 2h]

1

6

(

3h− x

h

)3

if x ∈ [2h, 3h]

0 otherwise

B−2(x) =































3
(x

h

)

−
9

2

(x

h

)2

+
7

4

(x

h

)3

if x ∈ [0, h]

1

4

(

2h− x

h

)3

if x ∈ [h, 2h]

0 otherwise

Write a MatLab program that uses the Ritz-Galerkin method with the cubic B-spline
basis functions defined above on an equally spaced grid to solve the BVP (1).

Page 3 of 8 pages.

The approximate solution generated by the Ritz-Galerkin method has the form

ym(x) = ϕ0(x) +
m−1
∑

k=−2

γkBk(x)

where ϕ0(x) satisfies the boundary conditions in (1).

For each of m = 10, 20, 40, 80, 160, 320, 640, use your program to compute the Ritz-
Galerkin solution ym(x) to the BVP (1).

The maximum error in the numerical solution at the gridpoints {xi : i = 1, . . . ,m},

max {|y(xi)− ym(xi)| : i = 1, . . . ,m} (3)

is a good approximation to the infinity norm of the error in the numerical solution

‖y − ym‖∞ = max {|y(x)− ym(x)| : x ∈ [0, 1]}

Compute and print the maximum error in the numerical solution at the gridpoints (3)
for m = 10, 20, 40, 80, 160, 320, 640.

How does this error decrease with h = 1/m?

How does the error for this question compare with the error for Question 1?

Page 4 of 8 pages.

3. [10 marks]

Consider the two-point boundary value problem (BVP)

−y′′ + 104 y = 0, x ∈ (0, 1)

y(0) = y(1) = 1.
(4)

It is easy to verify that the solution to this problem is

y(x) = c1e
100x + c2e

−100x

where

c1 =
1− e−100

e100 − e−100
c2 =

e100 − 1

e100 − e−100

Write a MatLab program that uses the Ritz-Galerkin method with piecewise linear hat
(i.e., chapeau) basis functions (defined on page 176 of your textbook) on an equally
spaced grid to solve the BVP (4). That is, let the gridpoints be xi = ih for i =
0, 1, . . . ,m + 1 and h = 1/(m + 1), where m is an integer. (See below for the choices
of m.)

Write another MatLab program that uses the Ritz-Galerkin method with piecewise
linear hat (i.e., chapeau) basis functions on an unequally spaced grid to solve the BVP
(4). In particular, make the stepsize hi = xi+1 − xi smaller where the solution to (4)
varies more rapidly and make the stepsize hi = xi+1 − xi larger where the the solution
to (4) is smoother. However, keep the same number of gridpoints, m, in the unequally
spaced grid as in the equally spaced one described above.

The piecewise linear hat (i.e., chapeau) basis functions defined on page 176 of your
textbook assume that the gridpoints are equally spaced. However, it is easy to extend
the definition of the piecewise linear hat basis functions to unequally spaced gridpoints.
Let

ϕk(x) =































x− xk−1

xk − xk−1

if x ∈ [xk−1, xk]

xk+1 − x

xk+1 − xk

if x ∈ [xk, xk+1]

0 otherwise

The approximate solution generated by the Ritz-Galerkin method has the form

ym(x) = ϕ0(x) +
m
∑

k=1

γkϕk(x)

where ϕ0(x) satisfies the boundary conditions in (4), ϕk(x), k ∈ {1, 2, . . . ,m}, is the
hat basis function defined above and the γk are determined by solving the Galerkin
equations (see (9.7) on page 174 of your textbook).

Page 5 of 8 pages.

For each of m = 9, 19, 39, 79, 159, 319, 639, use each of your two programs (one for
the equally spaced grid and the other for the unequally spaced grip) to compute the
Ritz-Galerkin solution ym(x) to the BVP (4).

The maximum error in the numerical solution at the gridpoints {xi : i = 1, . . . ,m},

max {|y(xi)− ym(xi)| : i = 1, . . . ,m} (5)

is a good approximation to the infinity norm of the error in the numerical solution

‖y − ym‖∞ = max {|y(x)− ym(x)| : x ∈ [0, 1]}

Compute and print the maximum error in the numerical solution at the gridpoints (5)
for m = 9, 19, 39, 79, 159, 319, 639.

Try to choose an unequally spaced grid so that the error for the Ritz-Galerkin method
on the unequally spaced grid is much smaller than the error for the Ritz-Galerkin
method on the equally spaced grid.

Page 6 of 8 pages.

4. [10 marks]

As I explained briefly in class, you can extend the Ritz-Galerkin method from 1–D
problems to 2–D or 3–D problems by using a tensor product approach, provided that
the domain of the problem is a rectangle (or some other suitable domain).

To see how this works, consider the 2–D boundary-value problem (BVP)

−
∂2u

∂x2
−

∂2u

∂y2
= 32x(1− x) + 32y(1− y) for x ∈ (0, 1) and y ∈ (0, 1)

with Dirichlet boundary conditions u(x, y) = 0 if x = 0, x = 1, y = 0 or y = 1. It is
easy to check that the solution to this problem is

u(x, y) = 16x(1− x)y(1− y)

In this example, we’ll use the piecewise linear hat (i.e., chapeau) basis functions, but
this approach works just as well for any other basis functions. In particular, we could
use the cubic B-spline basis functions defined in Question 2.

Let ϕk(x) be the 1–D piecewise linear hat basis function defined on page 176 of your
textbook. Similarly let ϕl(y) be a 1–D piecewise linear hat basis function, but in the
y variable, rather than the x variable. For the 2–D piecewise linear hat basis function,
let ϕk,l(x, y) = ϕk(x)ϕl(y).

Then the Ritz-Galerkin method can be formulated using the 2–D basis functions
ϕk,l(x, y) in almost exactly the same way as for the 1–D case, except that all inte-
grals in the 2–D case are 2–D integrals.

Solve the 2–D BVP above on the unit square with a uniform grid (xi, yj), where
xi = i/(m+ 1) for i = 1, . . . ,m and yj = j/(m+ 1) for j = 1, . . . ,m.

The approximate solution generated by the Ritz-Galerkin method has the form

um(x, y) =
m
∑

k=1

m
∑

l=1

γk,lϕk,l(x, y)

where ϕk,l(x, y) is the 2–D hat basis function described above and the γk,l are deter-
mined by solving the Galerkin equations (similar to (9.7) on page 174 of your textbook,
but extended from 1–D to 2–D).

Note that we don’t need at ϕ0(x, y) in this problem because we already have zero
boundary conditions.

For each of m = 9, 19, 39, 79, 159, 319, 639, use your program to compute the Ritz-
Galerkin solution um(x, y) to the 2–D BVP above.

The maximum error in the numerical solution at the gridpoints {(xi, yj) : i = 1, . . . ,m, j =
1, . . . ,m},

max {|u(xi, yj)− um(xi, yj)| : i = 1, . . . ,m, j = 1, . . . ,m} (6)

Page 7 of 8 pages.

is a good approximation to the infinity norm of the error in the numerical solution

‖u− um‖∞ = max {|u(x, y)− um(x, y)| : x ∈ [0, 1], y ∈ [0, 1]}

Compute and print the maximum error in the numerical solution at the gridpoints (6)
for m = 9, 19, 39, 79, 159, 319, 639.

Page 8 of 8 pages.

