
CSC 446/2310 S Assignment #1 Due: 15 Feb. 2019.

This assignment is due at the start of the lecture on Friday, 15 Feb. 2019.
For each question that requires you to write a MatLab program, hand in the program

and its output as well as any written answers requested in the question. Your program
should conform to the usual CS standards for comments, good programming style, etc. Try
to format the output from your program so that it is easy to read and to understand. (Your
TA may take off marks if your output is really bad.)

Before writing your MatLab programs, you might find it useful to read the MatLab docu-
mentation on the course webpage http://www.cs.toronto.edu/~krj/courses/446-2310/.
You should use sparse matrices as much as possible. Read help in MatLab on sparfun, sparse
and spdiags. After you have initialized a matrix using the MatLab sparse matrix routines,
you can solve a system Ax = b in MatLab by x = A \ b. MatLab will use an efficient sparse
matrix factorization to solve the system.

Everyone who has registered for this course should have an account on the CS Teaching
Labs Computer System (i.e., formerly called the CDF System). If you are not familiar with
the CS Teaching Labs Computer System, take a look at the webpage https://www.teach.
cs.toronto.edu/.

If you haven’t logged in to the CS Teaching Labs Computer System before, see “What
do I need to know to start using my Teaching Labs account” on the webpage https://www.
teach.cs.toronto.edu/faq.html.

You should be able to access the system remotely over the internet. If you haven’t done
this before, see “If I’m at home, how do I log in to the Teaching Lab machines” on the
webpage https://www.teach.cs.toronto.edu/faq.html. If you would prefer to access
the CS Teaching Labs Computer System by going to one of the Computer Labs, the room
numbers of the Labs are BA2200, BA2210, BA2220, BA2230, BA2240, BA2270, BA3175,
BA3185, BA3195, BA3200, BA3219.

You don’t have to use the CS Teaching Labs Computer System for your CSC 446/2310
assignments, you can use MatLab on your own computer if you prefer. However, the CS
Teaching Labs Computer System is available to you if you want to use it.

The main part of this assignment consists of questions 1 to 6, which are out of a total of
70 marks. There are also three bonus questions, which are optional. If you do any or all of
the bonus questions, you can earn back marks that you lost on questions 1 to 6. However,
the maximum mark that you can earn on this assignment is 70.

Throughout this assignment, I refer to MatLab, but you can use Octave or one of the
other MatLab clones instead. (See “MatLab Clones” on the course webpage.) However,
MatLab clones are not 100% compatible with MatLab. So, run each of your final programs
through MatLab to make sure that your program really runs under MatLab, since, when
your TA marks your program, he will want to see a working MatLab program.
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1. [15 marks: 5 marks for each part]

Your textbook uses the relation ∆s
+ = O(hs) in section 8.1 to simplify expressions.

What Iserles really means by this is that, if s is a positive integer (i.e., s ∈ {1, 2, 3, . . . })
and z(x) has at least s continuous derivatives, then

∆s
+z(x) = O(hs) (1)

where, for a function z(x),

∆+z(x) = z(x+ h)− z(x)

and, for s ≥ 2, we can define ∆s
+ recursively by

∆s
+z(x) = ∆+

(

∆s−1
+ z(x)

)

In parts (a) and (b) below, you will prove (1) in two straightforward, but tedious,
steps. In part (c), I ask you to find another proof of (1) that is rigorous, but shorter
and more elegant, than the proof given in parts (a) and (b).

(a) As a first step in proving (1), show that

∆s
+z(x) =

s
∑

i=0

(−1)s−i

(

s

i

)

z(x+ ih) (2)

for any positive integer s.

[Note that (2) is quite a useful relationship in its own right.]

(b) Taylor’s Theorem with an error term gives

z(x+ ih) =
s−1
∑

j=0

(ih)j

j!
z(j)(x) +

(ih)s

s!
z(s)(ηi) (3)

where ηi is some point in [x, x + ih], assuming z(s) exists and is continuous on
[x, x+ ih]. Substituting the Taylor series (3) into (2), we get

∆s
+z(x) =

s
∑

i=0

(−1)s−i

(

s

i

)

[

s−1
∑

j=0

(ih)j

j!
z(j)(x) +

(ih)s

s!
z(s)(ηi)

]

=
s

∑

i=0

s−1
∑

j=0

(−1)s−i

(

s

i

)

ij
hjz(j)(x)

j!
+ hs

s
∑

i=0

(−1)s−i

(

s

i

)

is

s!
z(s)(ηi)

=
s−1
∑

j=0

[

s
∑

i=0

(−1)s−i

(

s

i

)

ij

]

hjz(j)(x)

j!
+ hs

s
∑

i=0

(−1)s−i

(

s

i

)

is

s!
z(s)(ηi)
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Hence, if you can show that

s
∑

i=0

(−1)s−i

(

s

i

)

ij = 0 (4)

for j = 0, 1, . . . , s− 1, you’ll have

∆s
+z(x) = hs

s
∑

i=0

(−1)s−i

(

s

i

)

is

s!
z(s)(ηi) = O(hs)

as required. To prove (4), note that

(x− 1)s =
s

∑

i=0

(

s

i

)

xi(−1)s−i (5)

Hence, setting x = 1 in (5), we get

0 = (1− 1)s =
s

∑

i=0

(−1)s−i

(

s

i

)

which proves (4) for j = 0. Extend this approach to prove (4) for j = 1, . . . , s−1.

(c) Give another rigorous, but shorter and more elegant, proof of (1).

2. [5 marks]

Do question 8.1 on page 166 of your textbook.

3. [10 marks]

Do question 8.5 on page 167 of your textbook.
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4. [10 marks]

Write a MatLab program that uses the 5-point centered difference approximation to
the Laplacian ∇2 = ∂2

∂x2 + ∂2

∂y2
that we discussed in class to compute a numerical

approximation to Poisson’s equation ∇2 u = f on the unit square Ω = (0, 1) × (0, 1)
with Dirichlet boundary conditions. Your program should use an evenly spaced mesh
with ∆x = ∆y = 1/(n+ 1), where n is an integer. (See below for the choices of n.)

As a particular example, let

f(x, y) =
2

(1 + x)3
+

2

(1 + y)3

and let the Dirichlet boundary conditions be

u(x, 0) = 1 + 1
1+x

for x ∈ [0, 1]

u(x, 1) = 1
2
+ 1

1+x
for x ∈ [0, 1]

u(0, y) = 1 + 1
1+y

for y ∈ [0, 1]

u(1, y) = 1
2
+ 1

1+y
for y ∈ [0, 1]

It is easy to verify that the solution to this problem is

u(x, y) =
1

1 + x
+

1

1 + y

Let ũi,j = u(i∆x, j∆y) for i = 1, . . . , n and j = 1, . . . , n.

For each of n = 9, 19, 39, 79, use your program to compute the numerical solution ui,j

for i = 1, . . . , n and j = 1, . . . , n to this problem and compute and print the maximum
error in the numerical solution

max{|ui,j − ũi,j| : i = 1, . . . , n, j = 1, . . . , n}

How does this error decrease with ∆x = ∆y = 1/(n+ 1)?

Discuss whether or not this rate of convergence agrees with the theory that we discussed
in class.
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5. [15 marks]

Write another MatLab program that uses the 5-point centered difference approximation
to the Laplacian ∇2 = ∂2

∂x2 + ∂2

∂y2
that we discussed in class to compute a numerical

approximation to Poisson’s equation ∇2 u = f on the unit square Ω = (0, 1) × (0, 1)
with Dirichlet boundary conditions on three sides and a Neumann boundary condition
on the fourth side. (See below for the actual boundary conditions.)

Your program should use an evenly spaced mesh with ∆x = ∆y = 1/(n+ 1), where n
is an integer. (See below for the choices of n.)

As a particular example, let

f(x, y) =
2

(1 + x)3
+

2

(1 + y)3

and let the Dirichlet boundary conditions be

u(x, 0) = 1 + 1
1+x

for x ∈ [0, 1]

u(x, 1) = 1
2
+ 1

1+x
for x ∈ [0, 1]

u(0, y) = 1 + 1
1+y

for y ∈ [0, 1]

and let the Neumann boundary condition be

ux(1, y) = −
1

4
for y ∈ [0, 1]

It is easy to verify that the solution to this problem is

u(x, y) =
1

1 + x
+

1

1 + y

Let ũi,j = u(i∆x, j∆y) for i = 1, . . . , n and j = 1, . . . , n.

Try two different ways to approximate the Neumann boundary condition.

(a) Approximate ux(1, y) by the first-order backward difference 1
∆x

∆−,x. That is, use
the boundary condition

un+1,j − un,j

∆x
= −

1

4

for j = 1, . . . , n.

(b) Approximate ux(1, y) by the second-order backward difference 1
∆x

(∆−,x+
1
2
∆2

−,x).
That is, use the boundary condition

3
2
un+1,j − 2un,j +

1
2
un−1,j

∆x
= −

1

4

for j = 1, . . . , n.
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For each of the two approaches described above to approximate the Neumann boundary
condition and for each of n = 9, 19, 39, 79, use your program to compute the numerical
solution ui,j for i = 1, . . . , n and j = 1, . . . , n to this problem and compute and print
the maximum error in the numerical solution

max{|ui,j − ũi,j| : i = 1, . . . , n+ 1, j = 1, . . . , n}

Note the n+ 1 in the line above.

For each of the two methods described above to approximate the Neumann boundary
condition, how does this error decrease with ∆x = ∆y = 1/(n+ 1)? That is, does the
error appear to be first-order accurate, second-order accurate or something in between?

Discuss whether or not this rate of convergence agrees with the theory that we discussed
in class.

6. [15 marks]

Write another MatLab program that uses the 5-point centered difference approximation
to the Laplacian ∇2 = ∂2

∂x2 + ∂2

∂y2
that we discussed in class to compute a numerical

approximation to Poisson’s equation ∇2 u = f in Ω = {(x, y) : x2 + y2 < 1}, the open
disk of radius one centered at the origin, with Dirichlet boundary conditions on the
boundary of the disk, ∂Ω = {(x, y) : x2 + y2 = 1}.

Your program should use an evenly spaced mesh with ∆x = ∆y = 1/(n+ 1), where n
is an integer. (See below for the choices of n.)

As a particular example, let

f(x, y) = 16(x2 + y2)

and let the Dirichlet boundary conditions be

u(x, y) = 1 for (x, y) ∈ ∂Ω

It is easy to verify that the solution to this problem is

u(x, y) = (x2 + y2)2

Let ũi,j = u(i∆x, j∆y) for all i and j such that (i∆x, j∆y) ∈ Ω.

The difficulty with this problem is that you have to handle near-boundary points.
(See Figure 8.3 and the discussion on pages 155–156 of the textbook.) The textbook
describes two ways to handle the near-boundary points.

(a) A first-order method described at the bottom of page 155.

(b) A second-order method described on page 156.
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For each of the two approaches described in the textbook to handle the near-boundary
points and for each of n = 9, 19, 39, 79, use your program to compute the numerical
solution ui,j for all i and j such that (i∆x, j∆y) ∈ Ω and compute and print the
maximum error in the numerical solution

max{|ui,j − ũi,j| : (i∆x, j∆y) ∈ Ω}

For each of the two methods described in the textbook to handle the near-boundary
points, how does this error decrease with ∆x = ∆y = 1/(n+1)? That is, does the error
appear to be first-order accurate, second-order accurate or something in between?

Discuss whether or not this rate of convergence agrees with the theory that we discussed
in class.

7. Bonus Question [5 marks if you solve this problem yourself; 2.5 marks if you can find
a published solution1]

Consider the n× n matrix

A =
1

∆x2



























−2 1 0 0 0 · · · 0
1 −2 1 0 0 · · · 0
0 1 −2 1 0 · · · 0
0 0 1 −2 1 · · · 0
...

...
. . . . . . . . .

...
...

. . . . . . . . .

0 0 0 · · · 1 −2 1
0 0 0 · · · 0 1 −2



























where ∆x = 1/(n + 1). Show that there exists a constant C, independent of n, such
that ‖A−1‖∞ ≤ C for all n ≥ 3.

8. Bonus Question [5 marks if you solve this problem yourself; 2.5 marks if you can find
a published solution1]

Consider the block tridiagonal matrix

A =
1

∆x2



























T I 0 0 0 · · · 0
I T I 0 0 · · · 0
0 I T I 0 · · · 0
0 0 I T I · · · 0
...

...
. . . . . . . . .

...
...

. . . . . . . . .

0 0 0 · · · I T I
0 0 0 · · · 0 I T



























1Note that it is plagiarism if you find a published solution (whether in a book or in a paper or online)
and present the work as your own.
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where ∆x = 1/(n+ 1), each 0 in the matrix above is an n× n zero submatrix (i.e., all
elements in the submatrix are zero), I is the n× n identity matrix and T is the n× n
tridiagonal matrix

T =



























−4 1 0 0 0 · · · 0
1 −4 1 0 0 · · · 0
0 1 −4 1 0 · · · 0
0 0 1 −4 1 · · · 0
...

...
. . . . . . . . .

...
...

. . . . . . . . .

0 0 0 · · · 1 −4 1
0 0 0 · · · 0 1 −4



























Each row and each column of A consists of n submatrices and each submatrix is n×n.
Therefore, A is an n2 × n2 matrix.

Is there a constant C, independent of n, such that ‖A−1‖∞ ≤ C for all n ≥ 3?

9. Bonus Question [5 marks if you solve this problem yourself; 2.5 marks if you can find
a published solution1]

In Lemma 8.3 on page 157 of your textbook, the author claims that

“Moreover, λ ∈ σ(B) may lie on ∂Sio for some io ∈ {1, 2, . . . , d} only if
λ ∈ ∂Si for all i ∈ {1, 2, . . . , d}.”

Give an example to show that this claim is not true.

Explain why your example shows that this claim is not true.
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