Solution to the Midterm Test

1. [5 marks]

If x and y are positive real numbers and $x \approx y$, but $x \neq y, \log _{\mathrm{e}}(x) \approx \log _{\mathrm{e}}(y)$, but $\log _{\mathrm{e}}(x) \neq \log _{\mathrm{e}}(y)$, Hence, the expression

$$
\begin{equation*}
\log _{\mathrm{e}}(x)-\log _{\mathrm{e}}(y) \tag{1}
\end{equation*}
$$

suffers from catastrophic cancellation. Therefore, you will not be able to evaluate the expression (1) accurately if $x \approx y$, but $x \neq y$.

The question notes that

$$
\log _{\mathrm{e}}(x)-\log _{\mathrm{e}}(y)=\log _{\mathrm{e}}(x / y)
$$

You might hope that you can evaluate $\log _{\mathrm{e}}(x / y)$ more accurately than you can evaluate $\log _{\mathrm{e}}(x)-\log _{\mathrm{e}}(y)$, since $\log _{\mathrm{e}}(x / y)$ does not involve any cancellation. However, it turns out that both expressions are about equally bad, as I explain below.
The hint suggests that you consider the conditioning of $\log _{\mathrm{e}}(x / y)$ for $x \approx y$, whence $x / y \approx 1$. So, let $u=x / y$ and note that $u \neq 1$, since we assumed above that $x \neq y$. The assumption that $u \neq 1$ is important to avoid a division by zero when we compute the relative error associated with $w=\log _{\mathrm{e}}(u)$. See (3) below.
Now note that, when we compute $u=x / y$, we get

$$
\hat{u}=\mathrm{f}(x / y)=\frac{x}{y}(1+\delta)
$$

Assume the relative error

$$
\frac{\hat{u}-u}{u}=\delta
$$

is small. Now let $w=\log _{\mathrm{e}}(x / y)=\log _{\mathrm{e}}(u)$ and $\hat{w}=\log _{\mathrm{e}}(\hat{u})$. So, using our results from class for the conditioning of evaluating $w=f(u)=\log _{\mathrm{e}}(u)$, we get that the associated condition number is

$$
\begin{equation*}
\frac{u f^{\prime}(u)}{f(u)}=\frac{u \frac{d \log _{\mathrm{e}}(u)}{d u}}{\log _{\mathrm{e}}(u)}=\frac{u \frac{1}{u}}{\log _{\mathrm{e}}(u)}=\frac{1}{\log _{\mathrm{e}}(u)} \tag{2}
\end{equation*}
$$

Since $\log _{\mathrm{e}}(u)=\log _{\mathrm{e}}(x / y) \approx 0$ for $u=x / y \approx 1$, the condition number (2) associated with evaluating $\log _{\mathrm{e}}(u)=\log _{\mathrm{e}}(x / y)$ is very large for $u=x / y \approx 1$, whence $x \approx y$. Hence, since

$$
\begin{equation*}
\frac{\hat{w}-w}{w} \approx \frac{u f^{\prime}(u)}{f(u)} \frac{\hat{u}-u}{u}=\frac{1}{\log _{\mathrm{e}}(u)} \frac{\hat{u}-u}{u} \tag{3}
\end{equation*}
$$

a small relative error in computing $u=x / y$ can be transformed into a very large relative error in computing $w=\log _{\mathrm{e}}(u)=\log _{\mathrm{e}}(x / y)$.

To apply a similar analysis to $\log _{\mathrm{e}}(x)-\log _{\mathrm{e}}(y)$, assume that we change x to $\hat{x}=x(1+\delta)$ for the same δ as above. Then let $g(x)=\log _{\mathrm{e}}(x)-\log _{\mathrm{e}}(y)$, and consider the relative error in $g(x)$ that results from changing x to \hat{x} :

$$
\frac{g(\hat{x})-g(x)}{g(x)}
$$

where you let x vary, but hold y fixed. In this case, the condition number is

$$
\begin{equation*}
\frac{x g^{\prime}(x)}{g(x)}=\frac{x \frac{1}{x}}{\log _{\mathrm{e}}(x)-\log _{\mathrm{e}}(y)}=\frac{1}{\log _{\mathrm{e}}(x / y)} \tag{4}
\end{equation*}
$$

So, you see that the condition number (2) of $f(u)=\log _{\mathrm{e}}(u)=\log _{\mathrm{e}}(x / y)$ is the same as the condition number (4) of $g(x)=\log _{\mathrm{e}}(x)-\log _{\mathrm{e}}(y)$. Hence, if you make a small relative change to x in either $\log _{\mathrm{e}}(x / y)$ or $\log _{\mathrm{e}}(x)-\log _{\mathrm{e}}(y)$ and leave y unchanged, it will produce an equally large relative change in $\operatorname{both} \log _{\mathrm{e}}(x)-\log _{\mathrm{e}}(y)$ and $\log _{\mathrm{e}}(x / y)$. That is, both expressions $\log _{\mathrm{e}}(x)-\log _{\mathrm{e}}(y)$ and $\log _{\mathrm{e}}(x / y)$ are equally badly conditioned.
2. [5 marks]

The easiest (and, I think, best) way to generate a pseudo-random variable X with the Cauchy (σ) distribution is to use the inverse CDF method. That is, generate at a pseudo-random Uniform $[0,1]$ random variable, U, and then let

$$
\begin{equation*}
X=F^{-1}(U) \tag{5}
\end{equation*}
$$

Equation (5) is equivalent to solving

$$
F(X)=U
$$

for X. That is, solve

$$
\begin{equation*}
\frac{1}{2}+\frac{1}{\pi} \arctan \left(\frac{X}{\sigma}\right)=U \tag{6}
\end{equation*}
$$

for X. The solution of (6) is

$$
X=\sigma \tan \left(\pi\left(U-\frac{1}{2}\right)\right)
$$

They might be able to use an acceptance-rejection method to compute X, but I think that would be much harder than the solution I gave above. If anyone does this, let me know and I can help you mark their answer.
3. [5 marks]

Since both MC_{1} and MC_{2} use the same number of iterations, N, the computational work required to evaluate them will be about the same. Actually, the computational work required to evaluate MC_{2} will be a little more than the computational work required to evaluate MC_{1}, since MC_{2} requires two independent random variables, $X_{n, 1} \sim F$ and $X_{n, 2} \sim F$, per iteration, while MC_{1} requires only one, $X_{n} \sim F$. However, this will be a minor difference between the two simulations. The bigger difference is that the variance associated with MC_{1} should be much smaller than the variance associated with MC_{2}, as we explain below. Hence, the confidence interval for MC_{1} should be much smaller than the confidence interval for MC_{2}.
To be more specific,

$$
\begin{equation*}
\operatorname{Var}\left[\mathrm{MC}_{1}\right]=\frac{1}{N}(\operatorname{Var}[g(X)]-2 \operatorname{Cov}[g(X), h(X)]+\operatorname{Var}[h(X)]) \tag{7}
\end{equation*}
$$

while

$$
\begin{equation*}
\operatorname{Var}\left[\mathrm{MC}_{2}\right]=\frac{1}{N}(\operatorname{Var}[g(X)]+\operatorname{Var}[h(X)]) \tag{8}
\end{equation*}
$$

where, in both (7) and (8), $X \sim F$.
I'll show below a derivation of both (7) and (8), but first note that, from a comparison of (7) and (8), we see immediately that we should expect

$$
\operatorname{Var}\left[\mathrm{MC}_{1}\right]<\operatorname{Var}\left[\mathrm{MC}_{2}\right]
$$

since we should expect that

$$
\operatorname{Cov}[g(X), h(X)]>0
$$

because of our assumption that $g(x) \approx h(x)$ for all x. Indeed, we should expect that

$$
\operatorname{Var}\left[\mathrm{MC}_{1}\right] \ll \operatorname{Var}\left[\mathrm{MC}_{2}\right]
$$

since, in addition, we should expect that

$$
\operatorname{Cov}[g(X), h(X)] \approx \operatorname{Var}[g(x)] \approx \operatorname{Var}[h(x)]
$$

because of our assumption that $g(x) \approx h(x)$ for all x.

I give a justification of (7) and (8) below. My justification is much longer than I expect the students' justifications will be. They can leave out any details from my justification that you think are reasonably obvious.
To begin, for a random variable $X \sim F$, let

$$
\begin{align*}
\mu_{g} & =\mathbb{E}[g(X)] \\
\mu_{h} & =\mathbb{E}[h(X)] \tag{9}\\
\mu & =\mathbb{E}[g(X)-h(X)]=\mathbb{E}[g(X)]-\mathbb{E}[h(X)]=\mu_{g}-\mu_{h}
\end{align*}
$$

Page 4 of 14 pages.

First note that

$$
\begin{equation*}
\mathbb{E}\left[\mathrm{MC}_{1}\right]=\mathbb{E}\left[\mathrm{MC}_{2}\right]=\mu \tag{10}
\end{equation*}
$$

They could just state (10), without proving it, since we proved it in class. However, to make this solution self-contained, I show below that (10) holds.
To this end, note that, since $X_{n} \sim F$ for $n=1,2, \ldots, N$,

$$
\mathbb{E}\left[g\left(X_{n}\right)-h\left(X_{n}\right)\right]=\mu \quad \text { for } n=1,2, \ldots, N
$$

Therefore,

$$
\begin{aligned}
\mathbb{E}\left[\mathrm{MC}_{1}\right] & =\mathbb{E}\left[\frac{1}{N} \sum_{n=1}^{N}\left(g\left(X_{n}\right)-h\left(X_{n}\right)\right)\right] \\
& =\frac{1}{N} \sum_{n=1}^{N} \mathbb{E}\left[g\left(X_{n}\right)-h\left(X_{n}\right)\right] \\
& =\frac{1}{N} \sum_{n=1}^{N} \mu \\
& =\mu
\end{aligned}
$$

Similarly, since $X_{n, 1} \sim F$ and $X_{n, 2} \sim F$ for $n=1,2, \ldots, N$,

$$
\begin{aligned}
\mathbb{E}\left[g\left(X_{n, 1}\right)\right] & =\mu_{g} \quad \text { for } n=1,2, \ldots, N \\
\mathbb{E}\left[h\left(X_{n, 2}\right)\right] & =\mu_{h} \quad \text { for } n=1,2, \ldots, N \\
\mu & =\mu_{g}-\mu_{h}
\end{aligned}
$$

from (9). Therefore,

$$
\begin{aligned}
\mathbb{E}\left[\mathrm{MC}_{2}\right] & =\mathbb{E}\left[\frac{1}{N} \sum_{n=1}^{N} g\left(X_{n, 1}\right)-\frac{1}{N} \sum_{n=1}^{N} h\left(X_{n, 2}\right)\right] \\
& =\frac{1}{N} \sum_{n=1}^{N} \mathbb{E}\left[g\left(X_{n, 1}\right)\right]-\frac{1}{N} \sum_{n=1}^{N} \mathbb{E}\left[h\left(X_{n, 2}\right)\right] \\
& =\frac{1}{N} \sum_{n=1}^{N} \mu_{g}-\frac{1}{N} \sum_{n=1}^{N} \mu_{h} \\
& =\mu_{g}-\mu_{h} \\
& =\mu
\end{aligned}
$$

Now note that

$$
\begin{equation*}
\operatorname{Var}\left[\mathrm{MC}_{1}\right]=\frac{1}{N} \operatorname{Var}[g(X)-h(X)] \tag{11}
\end{equation*}
$$

where $X \sim F$. Again, the students could just state (11) without proof, since we proved it in class. However, to make this solution self-contained, I show below that (11) holds.
To this end, recall that $X_{n} \sim F$ for $n=1,2, \ldots, N$ and the X_{n} are independent. Hence, if $m \neq n$, then

$$
\begin{align*}
& \mathbb{E}\left[\left(g\left(X_{m}\right)-h\left(X_{m}\right)-\mu\right)\left(g\left(X_{n}\right)-h\left(X_{n}\right)-\mu\right)\right] \\
& \quad=\mathbb{E}\left[\left(g\left(X_{m}\right)-h\left(X_{m}\right)-\mu\right)\right] \mathbb{E}\left[\left(g\left(X_{n}\right)-h\left(X_{n}\right)-\mu\right)\right] \tag{12}\\
& \quad=0
\end{align*}
$$

since X_{m} and X_{n} are independent for $m \neq n$, whence the random variables $Y=$ $g\left(X_{m}\right)-h\left(X_{m}\right)-\mu$ and $Z=g\left(X_{n}\right)-h\left(X_{n}\right)-\mu$ are also independent for $m \neq n$, so $\mathbb{E}[Y Z]=\mathbb{E}[Y] \mathbb{E}[Z]$. In addition, from (9),

$$
\begin{aligned}
\mathbb{E}\left[\left(g\left(X_{m}\right)-h\left(X_{m}\right)-\mu\right)\right] & =0 \\
\mathbb{E}\left[\left(g\left(X_{n}\right)-h\left(X_{n}\right)-\mu\right)\right] & =0
\end{aligned}
$$

Therefore,

$$
\begin{align*}
& \operatorname{Var}\left[\mathrm{MC}_{1}\right]=\operatorname{Var}\left[\frac{1}{N} \sum_{n=1}^{N}\left(g\left(X_{n}\right)-h\left(X_{n}\right)\right)\right] \\
& =\mathbb{E}\left[\left(\left(\frac{1}{N} \sum_{n=1}^{N}\left(g\left(X_{n}\right)-h\left(X_{n}\right)\right)\right)-\mu\right)^{2}\right] \\
& =\mathbb{E}\left[\left(\frac{1}{N} \sum_{n=1}^{N}\left(g\left(X_{n}\right)-h\left(X_{n}\right)-\mu\right)\right)^{2}\right] \\
& =\frac{1}{N^{2}} \mathbb{E}\left[\left(\sum_{n=1}^{N}\left(g\left(X_{n}\right)-h\left(X_{n}\right)-\mu\right)\right)\left(\sum_{n=1}^{N}\left(g\left(X_{n}\right)-h\left(X_{n}\right)-\mu\right)\right)\right] \\
& =\frac{1}{N^{2}} \mathbb{E}\left[\left(\sum_{m=1}^{N}\left(g\left(X_{m}\right)-h\left(X_{m}\right)-\mu\right)\right)\left(\sum_{n=1}^{N}\left(g\left(X_{n}\right)-h\left(X_{n}\right)-\mu\right)\right)\right] \\
& =\frac{1}{N^{2}} \mathbb{E}\left[\sum_{m=1}^{N} \sum_{n=1}^{N}\left(\left(g\left(X_{m}\right)-h\left(X_{m}\right)-\mu\right)\left(g\left(X_{n}\right)-h\left(X_{n}\right)-\mu\right)\right)\right] \\
& =\frac{1}{N^{2}} \sum_{m=1}^{N} \sum_{n=1}^{N} \mathbb{E}\left[\left(g\left(X_{m}\right)-h\left(X_{m}\right)-\mu\right)\left(g\left(X_{n}\right)-h\left(X_{n}\right)-\mu\right)\right] \\
& =\frac{1}{N^{2}}\left(\sum_{n=1}^{N} \mathbb{E}\left[\left(g\left(X_{n}\right)-h\left(X_{n}\right)-\mu\right)\left(g\left(X_{n}\right)-h\left(X_{n}\right)-\mu\right)\right]\right. \\
& \left.+\sum_{m=1}^{N} \sum_{\substack{n=1 \\
n \neq m}}^{N} \mathbb{E}\left[\left(g\left(X_{m}\right)-h\left(X_{m}\right)-\mu\right)\left(g\left(X_{n}\right)-h\left(X_{n}\right)-\mu\right)\right]\right) \\
& =\frac{1}{N^{2}} \sum_{n=1}^{N} \mathbb{E}\left[\left(g\left(X_{n}\right)-h\left(X_{n}\right)-\mu\right)\left(g\left(X_{n}\right)-h\left(X_{n}\right)-\mu\right)\right] \\
& =\frac{1}{N^{2}} \sum_{n=1}^{N} \mathbb{E}\left[\left(g\left(X_{n}\right)-h\left(X_{n}\right)-\mu\right)^{2}\right] \\
& =\frac{1}{N^{2}} \sum_{n=1}^{N} \operatorname{Var}\left[g\left(X_{n}\right)-h\left(X_{n}\right)\right] \\
& =\frac{1}{N^{2}} \sum_{n=1}^{N} \operatorname{Var}[g(X)-h(X)] \\
& =\frac{1}{N} \operatorname{Var}[g(X)-h(X)] \tag{13}
\end{align*}
$$

Page 7 of 14 pages.
where we used (12) in the fifth equation from the bottom in the sequence of equations (13) and

$$
\begin{equation*}
\operatorname{Var}\left[g\left(X_{n}\right)-h\left(X_{n}\right)\right]=\operatorname{Var}[g(X)-h(X)] \tag{14}
\end{equation*}
$$

in the second equation from the bottom in the sequence of equations (13). Note that (14) holds because both $X_{n} \sim F$ and $X \sim F$.

Now, using (9), we can expand (11) to get

$$
\begin{aligned}
\operatorname{Var}\left[\mathrm{MC}_{1}\right] & =\frac{1}{N} \operatorname{Var}[g(X)-h(X)] \\
& =\frac{1}{N} \mathbb{E}\left[(g(X)-h(X)-\mu)^{2}\right] \\
& =\frac{1}{N} \mathbb{E}\left[\left(g(X)-h(X)-\left(\mu_{g}-\mu_{h}\right)\right)^{2}\right] \\
& =\frac{1}{N} \mathbb{E}\left[\left(\left(g(X)-\mu_{g}\right)-\left(h(X)-\mu_{h}\right)\right)^{2}\right] \\
& \left.=\frac{1}{N} \mathbb{E}\left[\left(g(X)-\mu_{g}\right)^{2}-2\left(g(X)-\mu_{g}\right)\left(h(X)-\mu_{h}\right)+\left(h(X)-\mu_{h}\right)\right)^{2}\right] \\
& =\frac{1}{N}\left(\mathbb{E}\left[\left(g(X)-\mu_{g}\right)^{2}\right]-2 \mathbb{E}\left[\left(g(X)-\mu_{g}\right)\left(h(X)-\mu_{h}\right)\right]+\mathbb{E}\left[\left(h(X)-\mu_{h}\right)^{2}\right]\right) \\
& =\frac{1}{N}(\operatorname{Var}[g(X)]-2 \operatorname{Cov}[g(X), h(X)]+\operatorname{Var}[h(X)])
\end{aligned}
$$

Therefore, we have verified (7).

Equation (8) is a little different from any results that we proved in class, but it is not too different. Therefore, the students should give a little justification of why (8) is true, but their justification need not be as detailed as the one I give below.
To verify (8), assume $X_{n, 1} \sim F, X_{n, 2} \sim F$ for $n=1,2, \ldots, N$ and also assume that all
the $\left\{X_{n, 1}, X_{n, 2}: n=1,2, \ldots, N\right\}$ are independent. Hence,

$$
\begin{align*}
& \operatorname{Var}\left[\mathrm{MC}_{2}\right]=\operatorname{Var}\left[\frac{1}{N} \sum_{n=1}^{N} g\left(X_{n, 1}\right)-\frac{1}{N} \sum_{n=1}^{N} h\left(X_{n, 2}\right)\right] \\
& =\mathbb{E}\left[\left(\left(\frac{1}{N} \sum_{n=1}^{N} g\left(X_{n, 1}\right)-\frac{1}{N} \sum_{n=1}^{N} h\left(X_{n, 2}\right)\right)-\mu\right)^{2}\right] \\
& =\mathbb{E}\left[\left(\left(\frac{1}{N} \sum_{n=1}^{N} g\left(X_{n, 1}\right)-\frac{1}{N} \sum_{n=1}^{N} h\left(X_{n, 2}\right)\right)-\left(\mu_{g}-\mu_{h}\right)\right)^{2}\right] \\
& =\mathbb{E}\left[\left(\left(\frac{1}{N} \sum_{n=1}^{N}\left(g\left(X_{n, 1}\right)-\mu_{g}\right)\right)-\left(\frac{1}{N} \sum_{n=1}^{N}\left(h\left(X_{n, 2}\right)-\mu_{h}\right)\right)\right)^{2}\right] \\
& =\mathbb{E}\left[\left(\left(\frac{1}{N} \sum_{n=1}^{N}\left(g\left(X_{n, 1}\right)-\mu_{g}\right)\right)-\left(\frac{1}{N} \sum_{n=1}^{N}\left(h\left(X_{n, 2}\right)-\mu_{h}\right)\right)\right)\right. \\
& \left.\times\left(\left(\frac{1}{N} \sum_{n=1}^{N}\left(g\left(X_{n, 1}\right)-\mu_{g}\right)\right)-\left(\frac{1}{N} \sum_{n=1}^{N}\left(h\left(X_{n, 2}\right)-\mu_{h}\right)\right)\right)\right] \tag{15}\\
& =\mathbb{E}\left[\left(\left(\frac{1}{N} \sum_{m=1}^{N}\left(g\left(X_{m, 1}\right)-\mu_{g}\right)\right)-\left(\frac{1}{N} \sum_{m=1}^{N}\left(h\left(X_{m, 2}\right)-\mu_{h}\right)\right)\right)\right. \\
& \left.\times\left(\left(\frac{1}{N} \sum_{n=1}^{N}\left(g\left(X_{n, 1}\right)-\mu_{g}\right)\right)-\left(\frac{1}{N} \sum_{n=1}^{N}\left(h\left(X_{n, 2}\right)-\mu_{h}\right)\right)\right)\right] \\
& =\mathbb{E}\left[\left(\frac{1}{N} \sum_{m=1}^{N}\left(g\left(X_{m, 1}\right)-\mu_{g}\right)\right)\left(\frac{1}{N} \sum_{n=1}^{N}\left(g\left(X_{n, 1}\right)-\mu_{g}\right)\right)\right. \\
& -\left(\frac{1}{N} \sum_{m=1}^{N}\left(g\left(X_{m, 1}\right)-\mu_{g}\right)\right)\left(\frac{1}{N} \sum_{n=1}^{N}\left(h\left(X_{n, 2}\right)-\mu_{h}\right)\right) \\
& -\left(\frac{1}{N} \sum_{m=1}^{N}\left(h\left(X_{m, 2}\right)-\mu_{h}\right)\right)\left(\frac{1}{N} \sum_{n=1}^{N}\left(g\left(X_{n, 1}\right)-\mu_{g}\right)\right) \\
& \left.+\left(\frac{1}{N} \sum_{m=1}^{N}\left(h\left(X_{m, 2}\right)-\mu_{h}\right)\right)\left(\frac{1}{N} \sum_{n=1}^{N}\left(h\left(X_{n, 2}\right)-\mu_{h}\right)\right)\right]
\end{align*}
$$

Carrying on from (15) above, we get

$$
\begin{align*}
\operatorname{Var}\left[\mathrm{MC}_{2}\right]=\mathbb{E} & {\left[\frac{1}{N^{2}} \sum_{m=1}^{N} \sum_{n=1}^{N}\left(g\left(X_{m, 1}\right)-\mu_{g}\right)\left(g\left(X_{n, 1}\right)-\mu_{g}\right)\right.} \\
& -\frac{1}{N^{2}} \sum_{m=1}^{N} \sum_{n=1}^{N}\left(g\left(X_{m, 1}\right)-\mu_{g}\right)\left(h\left(X_{n, 2}\right)-\mu_{h}\right) \\
& -\frac{1}{N^{2}} \sum_{m=1}^{N} \sum_{n=1}^{N}\left(h\left(X_{m, 2}\right)-\mu_{h}\right)\left(g\left(X_{n, 1}\right)-\mu_{g}\right) \\
& \left.+\frac{1}{N^{2}} \sum_{m=1}^{N} \sum_{n=1}^{N}\left(h\left(X_{m, 2}\right)-\mu_{h}\right)\left(h\left(X_{n, 2}\right)-\mu_{h}\right)\right] \tag{16}\\
= & \frac{1}{N^{2}}\left(\sum_{m=1}^{N} \sum_{n=1}^{N} \mathbb{E}\left[\left(g\left(X_{m, 1}\right)-\mu_{g}\right)\left(g\left(X_{n, 1}\right)-\mu_{g}\right)\right]\right. \\
& -\sum_{m=1}^{N} \sum_{n=1}^{N} \mathbb{E}\left[\left(g\left(X_{m, 1}\right)-\mu_{g}\right)\left(h\left(X_{n, 2}\right)-\mu_{h}\right)\right] \\
& -\sum_{m=1}^{N} \sum_{n=1}^{N} \mathbb{E}\left[\left(h\left(X_{m, 2}\right)-\mu_{h}\right)\left(g\left(X_{n, 1}\right)-\mu_{g}\right)\right] \\
& \left.+\sum_{m=1}^{N} \sum_{n=1}^{N} \mathbb{E}\left[\left(h\left(X_{m, 2}\right)-\mu_{h}\right)\left(h\left(X_{n, 2}\right)-\mu_{h}\right)\right]\right)
\end{align*}
$$

Now note that, since $X_{m, 1}$ and $X_{n, 2}$ are independent for all $m=1,2, \ldots, N$ and $n=1,2, \ldots, N,\left(g\left(X_{m, 1}\right)-\mu_{g}\right)$ and $\left(h\left(X_{n, 2}\right)-\mu_{h}\right)$ are also independent for all $m=$ $1,2, \ldots, N$ and $n=1,2, \ldots, N$. In addition, since $X_{m, 1} \sim F$ and $X_{n, 2} \sim F$ for all $m=1,2, \ldots, N$ and $n=1,2, \ldots, N$, it follows from (9) that

$$
\begin{array}{ll}
\mathbb{E}\left[\left(g\left(X_{m, 1}\right)-\mu_{g}\right)\right]=0 & \text { for all } m=1,2, \ldots, N \\
\mathbb{E}\left[\left(h\left(X_{n, 2}\right)-\mu_{h}\right)\right]=0 & \text { for all } n=1,2, \ldots, N
\end{array}
$$

Therefore,

$$
\begin{aligned}
& \mathbb{E}\left[\left(g\left(X_{m, 1}\right)-\mu_{g}\right)\left(h\left(X_{n, 2}\right)-\mu_{h}\right)\right] \\
& \quad=\mathbb{E}\left[\left(g\left(X_{m, 1}\right)-\mu_{g}\right)\right] \mathbb{E}\left[\left(h\left(X_{n, 2}\right)-\mu_{h}\right)\right] \\
& \quad=0
\end{aligned}
$$

for all $m=1,2, \ldots, N$ and $n=1,2, \ldots, N$, Similarly,

$$
\mathbb{E}\left[\left(h\left(X_{m, 2}\right)-\mu_{h}\right)\left(g\left(X_{n, 1}\right)-\mu_{g}\right)\right]=0
$$

for all $m=1,2, \ldots, N$ and $n=1,2, \ldots, N$. Therefore, carrying on from (16) above, we get

$$
\begin{align*}
\operatorname{Var}\left[\mathrm{MC}_{2}\right]= & \frac{1}{N^{2}}\left(\sum_{m=1}^{N} \sum_{n=1}^{N} \mathbb{E}\left[\left(g\left(X_{m, 1}\right)-\mu_{g}\right)\left(g\left(X_{n, 1}\right)-\mu_{g}\right)\right]\right. \\
& \left.+\sum_{m=1}^{N} \sum_{n=1}^{N} \mathbb{E}\left[\left(h\left(X_{m, 2}\right)-\mu_{h}\right)\left(h\left(X_{n, 2}\right)-\mu_{h}\right)\right]\right) \tag{17}
\end{align*}
$$

Since $X_{m, 1}$ and $X_{n, 1}$ are independent for $m \neq n$, it follows from an argument similar to the one above that

$$
\mathbb{E}\left[\left(g\left(X_{m, 1}\right)-\mu_{g}\right)\left(g\left(X_{n, 1}\right)-\mu_{g}\right)\right]=0
$$

for $m \neq n$. Similarly,

$$
\mathbb{E}\left[\left(h\left(X_{m, 2}\right)-\mu_{h}\right)\left(h\left(X_{n, 2}\right)-\mu_{h}\right)\right]=0
$$

for $m \neq n$. Hence, (17) reduces to

$$
\begin{align*}
\operatorname{Var}\left[\mathrm{MC}_{2}\right]= & \frac{1}{N^{2}}\left(\sum_{n=1}^{N} \mathbb{E}\left[\left(g\left(X_{n, 1}\right)-\mu_{g}\right)\left(g\left(X_{n, 1}\right)-\mu_{g}\right)\right]\right. \\
& \left.+\sum_{n=1}^{N} \mathbb{E}\left[\left(h\left(X_{n, 2}\right)-\mu_{h}\right)\left(h\left(X_{n, 2}\right)-\mu_{h}\right)\right]\right) \\
= & \frac{1}{N^{2}}\left(\sum_{n=1}^{N} \mathbb{E}\left[\left(g\left(X_{n, 1}\right)-\mu_{g}\right)^{2}\right]\right. \\
& \left.+\sum_{n=1}^{N} \mathbb{E}\left[\left(h\left(X_{n, 2}\right)-\mu_{h}\right)^{2}\right]\right) \tag{18}\\
= & \frac{1}{N^{2}}\left(\sum_{n=1}^{N} \operatorname{Var}\left[g\left(X_{n, 1}\right)\right]+\sum_{n=1}^{N} \operatorname{Var}\left[h\left(X_{n, 2}\right)\right]\right) \\
= & \frac{1}{N^{2}}\left(\sum_{n=1}^{N} \operatorname{Var}[g(X)]+\sum_{n=1}^{N} \operatorname{Var}[h(X)]\right) \\
= & \frac{1}{N}(\operatorname{Var}[g(X)]+\operatorname{Var}[h(X)])
\end{align*}
$$

where we used in the second to last equation in the sequence of equations (18) that

$$
\begin{aligned}
\operatorname{Var}\left[g\left(X_{n, 1}\right)\right] & =\operatorname{Var}[g(X)] \\
\operatorname{Var}\left[h\left(X_{n, 2}\right)\right] & =\operatorname{Var}[h(X)]
\end{aligned}
$$

since $X_{n, 1} \sim F, X_{n, 2} \sim F$ and $X \sim F$. Therefore, we have verified that (8) holds.
4. [5 marks]

As noted in the question, the option price at time $t=0$ is

$$
\begin{equation*}
P_{0}=\mathbb{E}\left[\mathrm{e}^{-r T} h\left(S_{T}^{(1)}, S_{T}^{(2)}\right)\right] \tag{19}
\end{equation*}
$$

where

$$
\begin{equation*}
h\left(S_{T}^{(1)}, S_{T}^{(2)}\right)=\max \left(S_{T}^{(1)}-S_{T}^{(2)}-\hat{K}, 0\right) \tag{20}
\end{equation*}
$$

for some constant \hat{K}. So, combining (19) and (20), we get

$$
\begin{equation*}
P_{0}=\mathbb{E}\left[\mathrm{e}^{-r T} \max \left(S_{T}^{(1)}-S_{T}^{(2)}-\hat{K}, 0\right)\right] \tag{21}
\end{equation*}
$$

Also, the question notes that

$$
\begin{aligned}
& S_{T}^{(1)}=S_{0}^{(1)} \mathrm{e}^{\left(r-\sigma_{1}^{2} / 2\right) T+\sigma_{1} W_{T}^{(1)}} \\
& S_{T}^{(2)}=S_{0}^{(2)} \mathrm{e}^{\left(r-\sigma_{2}^{2} / 2\right) T+\sigma_{2} W_{T}^{(2)}}
\end{aligned}
$$

and the correlated Brownian motions $W_{T}^{(1)}$ and $W_{T}^{(2)}$ satisfy

$$
\begin{aligned}
& W_{T}^{(1)}=\sqrt{T}\left(\sqrt{1-\rho^{2}} Z^{(1)}+\rho Z^{(2)}\right) \\
& W_{T}^{(2)}=\sqrt{T} Z^{(2)}
\end{aligned}
$$

where $Z^{(1)} \sim N(0,1), Z^{(2)} \sim N(0,1)$ and $Z^{(1)}$ and $Z^{(2)}$ are independent. Therefore,

$$
\begin{align*}
& S_{T}^{(1)}=S_{0}^{(1)} \mathrm{e}^{\left(r-\sigma_{1}^{2} / 2\right) T+\sigma_{1} \sqrt{T}\left(\sqrt{1-\rho^{2}} Z^{(1)}+\rho Z^{(2)}\right)} \tag{22}\\
& S_{T}^{(2)}=S_{0}^{(2)} \mathrm{e}^{\left(r-\sigma_{2}^{2} / 2\right) T+\sigma_{2} \sqrt{T} Z^{(2)}}
\end{align*}
$$

where $Z^{(1)} \sim N(0,1), Z^{(2)} \sim N(0,1)$ and $Z^{(1)}$ and $Z^{(2)}$ are independent. Substituting the $S_{T}^{(1)}$ and $S_{T}^{(2)}$ from (22) into (21), we get

$$
\begin{array}{r}
P_{0}=\mathbb{E}\left[\mathrm { e } ^ { - r T } \operatorname { m a x } \left(S_{0}^{(1)} \mathrm{e}^{\left(r-\sigma_{1}^{2} / 2\right) T+\sigma_{1} \sqrt{T}\left(\sqrt{1-\rho^{2}} Z^{(1)}+\rho Z^{(2)}\right)}\right.\right. \tag{23}\\
\left.\left.-S_{0}^{(2)} \mathrm{e}^{\left(r-\sigma_{2}^{2} / 2\right) T+\sigma_{2} \sqrt{T} Z^{(2)}}-\hat{K}, 0\right)\right]
\end{array}
$$

Now we can apply conditional expectation to (23) to get

$$
\begin{align*}
P_{0}=\mathbb{E}_{Z^{(2)}}\left[\mathbb { E } _ { Z ^ { (1) } } \left[\mathrm{e}^{-r T} \max (\right.\right. & S_{0}^{(1)} \mathrm{e}^{\left(r-\sigma_{1}^{2} / 2\right) T+\sigma_{1} \sqrt{T}}\left(\sqrt{1-\rho^{2}} Z^{(1)}+\rho Z^{(2)}\right) \tag{24}\\
& \left.\left.\left.-S_{0}^{(2)} \mathrm{e}^{\left(r-\sigma_{2}^{2} / 2\right) T+\sigma_{2} \sqrt{T} Z^{(2)}}-\hat{K}, 0\right) \mid Z^{(2)}\right]\right]
\end{align*}
$$

where the outer expectation is with respect to $Z^{(2)}$ and the inner expectation is with respect to $Z^{(1)}$. To clarify (24) a little, we introduce a deterministic variable z_{2} and re-write (24) as

$$
\begin{align*}
P_{0}=\mathbb{E}_{Z^{(2)}}\left[\mathbb { E } _ { Z ^ { (1) } } \left[\mathrm{e}^{-r T} \max (\right.\right. & S_{0}^{(1)} \mathrm{e}^{\left(r-\sigma_{1}^{2} / 2\right) T+\sigma_{1} \sqrt{T}\left(\sqrt{1-\rho^{2}} Z^{(1)}+\rho z_{2}\right)} \\
& \left.\left.\left.\quad-S_{0}^{(2)} \mathrm{e}^{\left(r-\sigma_{2}^{2} / 2\right) T+\sigma_{2} \sqrt{T} z_{2}}-\hat{K}, 0\right) \mid z_{2}=Z^{(2)}\right]\right] \tag{25}
\end{align*}
$$

Now note that

$$
\begin{aligned}
& S_{0}^{(1)} \mathrm{e}^{\left(r-\sigma_{1}^{2} / 2\right) T+\sigma_{1} \sqrt{T}\left(\sqrt{1-\rho^{2}} Z^{(1)}+\rho z_{2}\right)} \\
& \quad=S_{0}^{(1)} \mathrm{e}^{\left(r-\sigma_{1}^{2}\left(1-\rho^{2}\right) / 2\right) T-\sigma_{1}^{2} \rho^{2} T / 2+\sigma_{1} \sqrt{1-\rho^{2}} \sqrt{T} Z^{(1)}+\sigma_{1} \rho \sqrt{T} z_{2}} \\
& \quad=S_{0}^{(1)} \mathrm{e}^{-\sigma_{1}^{2} \rho^{2} T / 2+\sigma_{1} \rho \sqrt{T} z_{2}} \mathrm{e}^{\left(r-\sigma_{1}^{2}\left(1-\rho^{2}\right) / 2\right) T+\sigma_{1} \sqrt{1-\rho^{2}} \sqrt{T} Z^{(1)}} \\
& \quad=S_{0}\left(z_{2}\right) \mathrm{e}^{\left(r-\sigma^{2} / 2\right) T+\sigma \sqrt{T} Z^{(1)}}
\end{aligned}
$$

where

$$
\begin{align*}
S_{0}\left(z_{2}\right) & =S_{0}^{(1)} \mathrm{e}^{-\sigma_{1}^{2} \rho^{2} T / 2+\sigma_{1} \rho \sqrt{T} z_{2}} \\
\sigma & =\sigma_{1} \sqrt{1-\rho^{2}} \tag{26}
\end{align*}
$$

In addition, let

$$
\begin{equation*}
K\left(z_{2}\right)=S_{0}^{(2)} \mathrm{e}^{\left(r-\sigma_{2}^{2} / 2\right) T+\sigma_{2} \sqrt{T} z_{2}}+\hat{K} \tag{27}
\end{equation*}
$$

So, we can re-write the inner expectation in (25) as

$$
\begin{equation*}
\mathbb{E}_{Z^{(1)}}\left[\mathrm{e}^{-r T} \max \left(S_{0}\left(z_{2}\right) \mathrm{e}^{\left(r-\sigma^{2} / 2\right) T+\sigma \sqrt{T} Z^{(1)}}-K\left(z_{2}\right), 0\right)\right] \tag{28}
\end{equation*}
$$

Note that (28) is the price of a "vanilla" call option with strike price $K\left(z_{2}\right)$, expiry $t=T$ and underlying asset S_{t} that starts from $S_{0}\left(z_{2}\right)$ at time $t=0$ and evolves in time according to the SDE

$$
d S_{t}=r S_{t} d t+\sigma S_{t} d W_{t}
$$

Therefore,

$$
\text { Call }=\mathbb{E}_{Z^{(1)}}\left[\mathrm{e}^{-r T} \max \left(S_{0}\left(z_{2}\right) \mathrm{e}^{\left(r-\sigma^{2} / 2\right) T+\sigma \sqrt{T} Z^{(1)}}-K\left(z_{2}\right), 0\right)\right]
$$

where

$$
\text { [Call, Put] = blsprice }\left(S_{0}\left(z_{2}\right), K\left(z_{2}\right), r, T, \sigma\right)
$$

and $\sigma=\sigma_{1} \sqrt{1-\rho^{2}}$. So, write a little wrapper function blspriceCall such that

$$
\text { Call = blspriceCall }\left(S_{0}\left(z_{2}\right), K\left(z_{2}\right), r, T, \sigma\right)
$$

where Call is given above by blsprice with the same parameters. Therefore,

$$
\begin{gather*}
\mathbb{E}_{Z^{(1)}}\left[\mathrm{e}^{-r T} \max \left(S_{0}\left(z_{2}\right) \mathrm{e}^{\left(r-\sigma^{2} / 2\right) T+\sigma \sqrt{T} Z^{(1)}}-K\left(z_{2}\right), 0\right)\right] \tag{29}\\
\quad=\text { blspriceCall }\left(S_{0}\left(z_{2}\right), K\left(z_{2}\right), r, T, \sigma\right)
\end{gather*}
$$

So, we can use (29) to rewrite (25) as

$$
\begin{equation*}
P_{0}=\mathbb{E}_{Z^{(2)}}\left[\text { blspriceCall }\left(S_{0}\left(Z_{2}\right), K\left(Z_{2}\right), r, T, \sigma\right)\right] \tag{30}
\end{equation*}
$$

We can use (30) as the basis for the Monte Carlo simulation below to price this exchange spread option.
(a) For $n=1,2, \ldots, N$,
i. Generate $Z_{n} \sim N(0,1)$ using a function such as MatLab's randn
ii. Let

$$
Y_{n}=\text { blspriceCall }\left(S_{0}\left(Z_{n}\right), K\left(Z_{n}\right), r, T, \sigma\right)
$$

where $S_{0}\left(z_{2}\right)$ and σ are given in (26) and $K\left(z_{2}\right)$ is given in (27).
(b) Approximate the option price P_{0} by

$$
\hat{P}_{0}=\frac{1}{N} \sum_{n=1}^{N} Y_{n}
$$

