
Solution to the Midterm Test

1. [10 marks: 5 marks for each part]

The students were asked to consider the expression

√

1 + sin2(x)− cos(x) for x ∈ [−π
4 ,

π
4 ] (1)

I told them that, when it is evaluated using IEEE Double-Precision Floating-Point Arithmetic,
the computed value for expression (1) is inaccurate in a relative error sense for a range of
values of x within the interval [−π

4 ,
π
4 ], even though the computed values of both sin(x) and

cos(x) are accurate for all x ∈ [−π
4 ,

π
4 ].

(a) They are asked to give a specific value of x ∈ [−π
4 ,

π
4 ] for which the computed value of

expression (1) has a very large relative error and to show that the relative error is orders
of magnitude larger than the machine epsilon (i.e., ǫmach) for IEEE Double-Precision
Floating-Point Numbers.

For x ∈ [−π
4 ,

π
4 ], I think the only values of x for which (1) is very inaccurate are those for

which |x| ≪ 1, but x 6= 0. For such x, there is catastrophic cancellation when evaluating
(1), since

√

1 + sin2(x) ≈ 1 and cos(x) ≈ 1

Note that I have excluded x = 0, since, for x = 0, both the exact and computed values
of (1) are zero. So, even though there is cancellation in (1), the error is zero.

One specific value of x for which the relative error associated with evaluating (1) in
floating-point arithmetic is orders of magnitude larger than the machine epsilon (i.e.,
ǫmach) for IEEE Double-Precision Floating-Point Numbers is x = 10−10. There are many
other values of x as well, but let me explain why x = 10−10 is a good example. You
can use your judgement when assessing whether the examples the students give are also
good examples.

Since

sin(x) = x−
x3

3!
+ · · ·

it follows that

sin2(x) = x2 −
x4

3
+ · · ·

So,
sin2(10−10) ≈ 10−20 ≪ ǫmach ≈ 2.22 · 10−16

Therefore, when evaluated in IEEE Double-Precision Floating-Point Arithmetic,

fl
(

1 + sin2(10−10)
)

= 1

Hence,

fl

(

√

1 + sin2(10−10)

)

= 1
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Also note that

cos(x) = 1−
x2

2
+ · · ·

Therefore, when evaluated in IEEE Double-Precision Floating-Point Arithmetic,

fl
(

cos(10−10)
)

= 1

Hence, when evaluated in IEEE Double-Precision Floating-Point Arithmetic,

fl

(

√

1 + sin2(10−10)− cos(10−10)

)

= 0

On the other hand, in exact arithmetic,

√

1 + sin2(10−10)− cos(10−10) > 0

since
sin(10−10) > 0

implies
√

1 + sin2(10−10) > 1

whereas
cos(10−10) < 1

Therefore the relative error associated with evaluating (1) in IEEE Double-Precision
Floating-Point Arithmetic is

fl
(

√

1 + sin2(10−10)− cos(10−10)
)

−
(

√

1 + sin2(10−10)− cos(10−10)
)

√

1 + sin2(10−10)− cos(10−10)
= −1

That is, the relative error associated with evaluating (1) in IEEE Double-Precision
Floating-Point Arithmetic is orders of magnitude larger than the machine epsilon (i.e.,
ǫmach) for IEEE Double-Precision Floating-Point Numbers. (They could add that ǫmach =
2−52 ≈ 2.22·10−16, but this is not really necessary. All that is really needed is the implicit
recognition that ǫmach is orders of magnitude smaller than 1.
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(b) I asked the students to find another expression that is mathematically equivalent to (1)
that is accurate in a relative error sense for all x ∈ [−π

4 ,
π
4 ].

I also asked them to explain why they believe the computed value of their new expression
is accurate in a relative error sense for all x ∈ [−π

4 ,
π
4 ].

The goal here is to find another expression that is mathematically equivalent to (1), but
does not suffer from catastrophic cancellation. One way to get such an expression is as
follows.

√

1 + sin2(x)− cos(x) =

(

√

1 + sin2(x)− cos(x)

)

√

1 + sin2(x) + cos(x)
√

1 + sin2(x) + cos(x)

=
1 + sin2(x)− cos2(x)
√

1 + sin2(x) + cos(x)

=
2 sin2(x)

√

1 + sin2(x) + cos(x)

Therefore, the expression
2 sin2(x)

√

1 + sin2(x) + cos(x)
(2)

is mathematically equivalent to (1), but (2) does not suffer from catastrophic cancella-
tion.

To explain why (2) is accurate in a relative error sense for all x ∈ [−π
4 ,

π
4 ] they could

try to use a δ-type rounding argument, but it’s fairly long and complex. Since this part
of the question is worth only two or three marks (depending on how many marks you
decide to give for finding (2), I think it is fine if they use a “hand waiving” argument.

To start, note that I told them that the computed values of both sin(x) and cos(x) are
accurate for all x ∈ [−π

4 ,
π
4 ]. Therefore the numerator of (2) will be accurate, since

it involves only the multiplication of accurate values. The term
√

1 + sin2(x) in the
denominator will also be accurate because sin2(x) will be accurate, the addition of two
positive accurate values is accurate and the square root of an accurate value is accurate.
One reason why I restricted x to be in [−π

4 ,
π
4 ] is to ensure that cos(x) is accurate (in

a relative error sense) and that cos(x) > 0. Since then we can claim the denominator
is accurate, because it is the sum of two positive accurate values. So, we have “hand
waived” to the point that we can claim that both the numeration and denominator of (2)
are accurate. However, the division of two accurate values is always accurate (assuming
the denominator is not zero, which is the case here). So, the floating-point computation
of (2) is accurate in a relative error sense.
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2. [5 marks]

I started this question by reviewing the method I gave them in class that uses two Unif[0, 1]
pseudo-random variables to generate one doubly-exponential pseudo-random variable, X.

In this question, I asked them to find a method that uses only one Unif[0, 1] pseudo-random
variable (and no other pseudo-random variables) to generate a doubly-exponential pseudo-
random variable, X.

During the test, I noticed that several students seemed to be trying to modify the method I
gave them in class so that it uses only one Unif[0, 1] pseudo-random variable (and no other
pseudo-random variables) to generate a doubly-exponential pseudo-random variable, X. I
don’t think this is possible. (Let me know if I am wrong about this.) However, they can
easily develop a method based on the inverse transform method that meets the requirement.

Unfortunately, I gave them the wrong formula for the pdf of the doubly-exponential pseudo-
random variable. Luckily, though, one of your students found my error and I think we both
told our groups that the pdf of a doubly-exponential pseudo-random variable is

f(x) =
λ

2
e−λ|x| for x ∈ R

From this it follows that the CDF of a doubly-exponential pseudo-random variable is

F (x) =

∫ x

−∞
f(x) dx =

{

1
2e

λx for x ≤ 0
1− 1

2e
−λx for x > 0

Moreover, note that F (0) = 1
2 .

For the inverse transform method, we generate a pseudo-random variable U ∼ Unif[0, 1] and
then solve

F (X) = U (3)

for a doubly-exponential pseudo-random variable, X. If U ≤ 1
2 , then (3) becomes

1

2
eλX = U

which gives

X =
1

λ
log(2U)

On the other hand, if U > 1
2 , then (3) becomes

1−
1

2
e−λX = U

which gives

X = −
1

λ
log(2(1− U))

Hence, the method is
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Inverse transform method to compute a doubly-exponential pseudo-random variable, X.

(1) generate a pseudo-random variable U ∼ Unif[0, 1]

(2) if U ≤ 1/2
then X = 1

λ log(2U)
else X = − 1

λ log(2(1− U))
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3. [5 marks]

I told the students to assume f(x) = αf̂(x), where f̂(x) ≥ 0 for all x ∈ R and α > 0 is the
normalizing constant so that

∫

f(x) dx = 1. That is, f(x) is a probability density function.

In many practical problems, you know f̂(x), but you don’t know α, and α is expensive to
compute. However, you may know another probability density function g(x), having a shape
similar to f̂(x), for which f̂(x) ≤ Mg(x) for all x ∈ R and it may be relatively easy to find
such an M and to generate a pseudo-random variable Y with probability density function
g(x).

I also told them that they can make a small modification to the acceptance-rejection method
that we discussed in class so that they can use this modified version of the acceptance-rejection
method to generate a pseudo-random variable X having probability density function f(x)
without knowing α.

I asked them to explain how this can be done.

One of the two key observation needed to develop such a modified version of the acceptance-
rejection method is that

f(x) = αf̂(x) ≤ αMg(x) for all x ∈ R

which follows immediately from the assumptions above that

f(x) = αf̂(x) for all x ∈ R

and
f̂(x) ≤ Mg(x) for all x ∈ R

So, for c = αM , we have
f(x) ≤ cg(x) for all x ∈ R

which is one of the requirements of the acceptance-rejection method that we talked about in
class. Note that, since we don’t know α, we don’t know c explicitly, but we will see below
that this doesn’t matter.

The other key observation is that, using f(x) = αf̂(x) and c = αM , the acceptance condition

U ≤
f(x)

cg(x)
(4)

for the acceptance-rejection method we discussed in class can be rewritten as

U ≤
αf̂(x)

αMg(x)
=

f̂(x)

Mg(x)
(5)

So, we see from (5) that we can write the acceptance condition in a form that doesn’t require
us to know α. We only need to know f̂(x), M and g(x), which is what I said to assume we
know.

Hence, the modified acceptance-rejection method, that doesn’t require us to know α, is
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Modified Acceptance-Rejection Method

(1) generate a Y ∼ g

(2) generate a U ∼ Unif[0, 1]

(3) if U ≤
f̂(Y )

Mg(Y )

then accept X = Y
else reject Y and go to step (1)
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4. [10 marks: 5 marks each part]

This question is about using Monte Carlo with Stratified Sampling to price a deep-out-of-
the-money call option with underlying St that satisfies the SDE

dSt = rStdt+ σStdWt (6)

in the risk-neutral world, where r is the risk-free interest rate and σ is the volatility. The
parameters for the option are:

• the initial stock price is S0 = $80.00,

• the strike price is K = $100.00

• the time to maturity is T = 0.25 years,

• the risk-free interest rate is r = 0.02, and

• the volatility is σ = 0.2.

I told the students to use just two strata:

• stratum (1) corresponds to ST < K, and

• stratum (2) corresponds to ST ≥ K.

I also told them that the ẑ that satisfies the equation

K = S0e
(r−σ

2

2
)T+σ

√
T ẑ

is
ẑ ≈ 2.2314

and

p = F (ẑ) ≈ 0.98717

q = 1− p ≈ 0.012826

where F is the CDF for the standard normal distribution (i.e., N(0, 1)).

(a) I asked the students to describe how they could use Monte Carlo Stratified Sampling
with the two strata described above to approximate efficiently the price of this deep-out-
of-the-money call option. I also told them that, in describing their algorithm, they can
assume they have access to functions that compute F , F−1 (in MatLab these functions
are normcdf and norminv, respectively) and a pseudo-random number generator (such
as rand in MatLab) that computes uniform [0, 1] pseudo-random numbers.

I asked them to provide sufficient detail in the description of their Monte Carlo Stratified
Sampling method so that an experienced MatLab programmer with no knowledge of
computational finance can implement their method in MatLab.
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The first thing to note is that, since St satisfies the SDE (6), ST satisfies

ST = S0e
(r−σ

2

2
)T+σ

√
TZ for Z ∼ N(0, 1)

Also, I noted above that

K = S0e
(r−σ

2

2
)T+σ

√
T ẑ

where
ẑ ≈ 2.2314

Hence, stratum (1), which corresponds to ST < K, also corresponds to Z < ẑ. Similarly,
stratum (2), which corresponds to ST ≥ K, also corresponds to Z ≥ ẑ. Therefore, we
can use Z < ẑ and Z ≥ ẑ to define the two strata. Moreover, the probability that ST is
in stratum (1) is

P (ST < K) = P (Z < ẑ) = F (ẑ) = p ≈ 0.98717

and the probability that ST is in stratum (2) is

P (ST ≥ K) = P (Z ≥ ẑ) = 1− F (ẑ) = 1− p = q ≈ 0.012826

In our Monte Carlo Stratified Sampling method, there is no need to sample ST in stratum
(1), since the payoff for a call option is zero for all ST in stratum (1). So, we only need
to sample ST in stratum (2). To do this, we need to be able to generate Z ∼ N(0, 1)
conditional on Z ≥ ẑ. We can generate such a Z by

Z = F−1(p+ Uq), U ∼ Unif[0, 1]

where F−1 is the inverse of the standard normal CDF function (i.e., norminv in MatLab).

Therefore, if we know how many samples, N , of ST in stratum (2) we want to take in our
Monte Carlo Stratified Sampling method, we can generate an approximation, θMCSS, to
the price of this deep-out-of-the-money call option by

θMCSS = q θ2

where θ2 is Monte Carlo restricted to stratum (2):

θ2 =
1

N

N
∑

n=1

e−rT (S
(n)
T −K) (7)

for
S
(n)
T = S0e

(r−σ2/2)T+σ
√
TZn

and
Zn = F−1(p+ Unq)

for
Un ∼ Unif[0, 1]
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Note that I used S
(n)
T −K in (7), rather than the usual max(S

(n)
T −K, 0), since we know

S
(n)
T ≥ K in stratum (2). The students don’t have to do this, but it is a good idea if

they do.

Therefore, assuming that S0, K, T , r and σ are already initialized, we can write the
Monte Carlo Stratified Sampling method in MatLab as follows.

zhat = ( log(K/S0) - (r - sigma2/2)*T ) / ( sigma * sqrt(T) )

p = normcdf(zhat)

q = 1 - p

U = rand(N,1)

Z = norminv(p + U * q)

ST = S0 * exp( (r - sigma2/2) * T + sigma * sqrt(T) * Z )

theta2 = exp(-r*T) * mean( ST - K )

thetaMCSS = q * theta2

Note that the students don’t have to write a MatLab program as I have done above. I
asked them only to provide sufficient detail in the description of their Monte Carlo Strat-
ified Sampling method so that an experienced MatLab programmer with no knowledge
of computational finance can implement their method in MatLab. However, if they do
write a MatLab program or a MatLab pseudo-code, that’s good.

David: when I ran a little simulation based on the MatLab code above, I got an approx-
imate value for the option that was a little too high. The price I got was usually around
0.0459, while the price from blkprice was 0.0397. Do you see anything that might be
wrong with what I wrote above?

(b) I asked the students if they expect that their method described in part (a) will be
significantly more efficient than simple Monte Carlo for pricing this deep-out-of-the-
money call option.

I told them to be as quantitative as possible in answering this question.

This question is essentially asking them to compare the variances for

• the Monte Carlo method with Stratified Sampling developed in part (a), and

• the simple Monte Carlo method.

From the note on Monte Carlo with Stratified Sampling that I gave them recently, it
follows that

Var(θMCSS) =
1

N
q2Var(X1)

where
X1 = S0e

(r−σ2/2)T+σ
√
TZ1

and
Z1 ∼ N(0, 1) | Z ≥ ẑ
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On the other hand, the variance for simple Monte Carlo is

Var(θ) =
1

N
Var(X)

where
X = S0e

(r−σ2/2)T+σ
√
TZ

and
Z ∼ N(0, 1)

So, the variance reduction is given by

Var(θMCSS)

Var(θ)
= q2

Var(X1)

Var(X)
(8)

When I wrote this question, I thought that Var(X1) and Var(X) would be about the
same size. However, I just did a quick simulation and it seems that

Var(X1)

Var(X)
≈ 37

(at least for the few simple simulations that I ran). Fortunately, though q2 ≈ 1.645·10−4.
So, for my simple simulations, I get

Var(θMCSS)

Var(θ)
= q2

Var(X1)

Var(X)
≈ 0.0061

This is not as good a variance reduction as I was hoping for (I thought it would be about
q2), but it is still fairly good.

Of course, the students won’t be able to say anything about the values of Var(θMCSS)
and Var(θ). However, they should be able to derive a formula similar to (8) for the
variance reduction and argue from the fact that q ≈ 10−4 that we should get a fairly
good variance reduction.
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