
MMF 2021 Final Exam 30 November 2018.

This is a closed-book exam: no books, no notes, no calculators, no phones, no tablets, no
computers (of any kind) allowed.

Do NOT turn this page over until you are TOLD to start.

Duration of the exam: 3 hours.

Write your answers in the exam booklets provided.

Please fill-in ALL the information requested on the front cover of EACH exam booklet that
you use.

The exam consists of 8 pages, including this one. Make sure you have all 8 pages.

The exam consists of 4 questions. Answer all 4 questions. The mark for each question is
listed at the start of the question.

The exam was written with the intention that you would have ample time to complete it.
You will be rewarded for concise well-thought-out answers, rather than long rambling ones.
We seek quality rather than quantity.

Moreover, an answer that contains relevant and correct information as well as irrelevant or
incorrect information will be awarded fewer marks than one that contains the same relevant
and correct information only.

Write legibly. Unreadable answers are worthless.

Page 1 of 8 pages.

1. [10 marks: 5 marks for each part]

Walter was having trouble debugging his program. He traced the problem to a certain
section of his code, but what he was computing there was fairly complex. So, he
decided to try a simpler example of what he thought might be wrong with his code to
see if that might help him determine the problem.

Walter knew that, if

f(x) =
ex − 1

x

then
lim
x→0

f(x) = 1 (1)

(For this question, just accept (1) as being true: you don’t have to prove it.)

So, he expected that, if he computed f(x) for smaller and smaller positive values of x,
the computed values of f(x) would get closer and closer to 1. He decided to test this
conjecture, since he knew that odd things often happen in floating-point computation.
So, he wrote a little MatLab program that computes f(x) in IEEE double-precision
floating-point arithmetic for x = 10−k and k = 1, 2, . . . , 15. To his surprise, he got the
results shown in the third column of the table on page 3.

He showed his results to his colleague, Irene, who suggested that he try computing
instead

g(x) =
ex − 1

ln(ex)

where ln is the natural logarithm (also referred to as the logarithm to the base e (i.e.,
loge)).

Walter thought that this was a ridiculous suggestion, since ln(ex) = x, whence f(x) =
g(x) for all x ∈ R (assuming you define f(0) = g(0) = 1). Nevertheless, he tried Irene’s
suggestion and, to his surprise, he got the results shown in the fourth column of the
table on page 3.

Page 2 of 8 pages.

k x f(x) g(x)
1 10−1 1.051709180756477 1.051709180756476
2 10−2 1.005016708416795 1.005016708416806
3 10−3 1.000500166708385 1.000500166708342
4 10−4 1.000050001667141 1.000050001666708
5 10−5 1.000005000006965 1.000005000016667
6 10−6 1.000000499962184 1.000000500000167
7 10−7 1.000000049433680 1.000000050000002
8 10−8 0.999999993922529 1.000000005000000
9 10−9 1.000000082740371 1.000000000500000
10 10−10 1.000000082740371 1.000000000050000
11 10−11 1.000000082740371 1.000000000005000
12 10−12 1.000088900582341 1.000000000000500
13 10−13 0.999200722162641 1.000000000000050
14 10−14 0.999200722162641 1.000000000000005
15 10−15 1.110223024625157 1.000000000000000

(a) Explain why, when f(x) is computed in IEEE double-precision floating-point
arithmetic, the computed values first appear to be converging to 1 for k =
1, 2, . . . , 8, but then diverge from 1 for k = 11, 12, . . . , 15.

(b) Explain why, when g(x) is computed in IEEE double-precision floating-point
arithmetic, the computed values appear to be converging to 1 for k = 1, 2, . . . , 15.
In particular, explain why the computed values for g(x) are so much more accurate
than the computed values for f(x) for k = 11, 12, . . . , 15.

In answering the questions above, you can assume that the MatLab function exp(x)
computes an accurate approximation to ex. In particular, you can assume that

exp(x) = ex(1 + δx)

where δx changes with x, but its magnitude is at most a few multiples of ǫmach. (I.e.,
|δx| ≤ c ǫmach for some c that is at most 2 or 3.)

You can make some other reasonable assumption about the accuracy of the MatLab
ln function, but remember that ln(u) is ill-conditioned for u near 1. If you make an
assumption about the accuracy of the MatLab ln function, be sure to state what your
assumption is.

Page 3 of 8 pages.

2. [10 marks: 5 marks for each part]

Suppose you want to generate a pseudo-random variable X having the pdf

fn(x) =
xne−x

n!
for x ≥ 0

where n ≥ 0 is an integer. Assume throughout this question that n is given. (I.e.,
you don’t have a choice of n — it is specified — and n doesn’t change throughout the
question.)

You can try to compute the CDF of the distribution

Fn(x) =

∫ x

0

fn(t) dt for x ≥ 0

but the expression for Fn(x) is fairly long and complicated if n is not very small.
Hence, it is fairly messy to used the Inverse Transform Method. So, let’s try the
Acceptance-Rejection Method with

gλn
(x) = λne

−λnx for x ≥ 0

where λn > 0. Also, note that, since we require that fn(x)/gλn
(x) is bounded for all

x ≥ 0, we must have λn < 1. Hence, assume throughout this question that λn ∈ (0, 1).

Since gλn
(x) is the pdf of the exponential distribution, it follows from our discussion in

class that we can easily generate a random variable Y having this distribution by first
generating a uniform [0, 1] random variable U (using, for example, the function rand

in MatLab) and then setting

Y =
−1

λn

ln(U)

where ln is the natural logarithm (also referred to as the logarithm to the base e (i.e.,
loge)).

(a) In part (b) below, we will discuss how to choose λn to optimize the Acceptance-
Rejection Method developed below based on gλn

(x), but, for this part of the
question, assume only that you are given a λn ∈ (0, 1).

For the Acceptance-Rejection Method, you need a parameter cn,λn
such that

fn(x)/gλn
(x) ≤ cn,λn

(2)

for all x ≥ 0.

• For a given integer n ≥ 0 and a given λn ∈ (0, 1), what is the best choice for
the value of the parameter cn,λn

?

• State why to think the value for cn,λn
you chose is the best choice for the

given n ≥ 0 and the given λn ∈ (0, 1).

• Write the Acceptance-Rejection Method in enough detail that a programmer
who does not know any Mathematical Finance can program your version of
the the Acceptance-Rejection Method to generate a pseudo-random variable
X having the pdf fn(x) given above.

Page 4 of 8 pages.

In writing your Acceptance-Rejection Method, you can use any of the stan-
dard MatLab functions, such as rand.

(b) For a given integer n ≥ 0, what is the best choice of the parameter λn ∈ (0, 1) for
your Acceptance-Rejection Method described in part (a)?

Given your choice of λn ∈ (0, 1), how efficient is your Acceptance-Rejection
Method described in part (a)? Consider the cases for which

• n is fairly small (e.g., 1 ≤ n ≤ 5)

• n is of medium size (e.g., 6 ≤ n ≤ 20)

• n is large (e.g., n > 20)

In answering this question, you can use the table of values below for

αn =
e−n (n+ 1)n+1

n!

n αn

1 1.4715
2 1.8270
3 2.1242
4 2.3848
5 2.6197
6 2.8352
7 3.0355
8 3.2233
9 3.4008
10 3.5695
11 3.7306
12 3.8850
13 4.0335
14 4.1767
15 4.3152
16 4.4494
17 4.5796
18 4.7063
19 4.8296
20 4.9498

as well as the asymptotic result that

αn ≈ 1.1
√
n

for large n.

Page 5 of 8 pages.

3. [10 marks]

Consider a basket option that is based on two underlyings, S
(1)
t and S

(2)
t , with payoff

at expiry (i.e., at time t = T) given by

h(S
(1)
T , S

(2)
T) = max(ω1S

(1)
T + ω2S

(2)
T − K̂, 0)

where ω1 and ω2 are real constants satisfying ω1 ∈ [0, 1], ω2 ∈ [0, 1], ω1 + ω2 = 1 and

K̂ ∈ R is a positive constant. Assume that the two underlyings, S
(1)
t and S

(2)
t , start

with values S
(1)
0 and S

(2)
0 , respectively, at time t = 0 and evolve in time according to

the SDEs

dS
(1)
t = rS

(1)
t dt+ σ1S

(1)
t dW

(1)
t

dS
(2)
t = rS

(2)
t dt+ σ2S

(2)
t dW

(2)
t

where r is the risk free interest rate, σ1 and σ2 are the volatilities associated with S
(1)
t

and S
(2)
t , respectively, and the Brownian motions, W

(1)
t and W

(2)
t , are correlated with

correlation coefficient ρ ∈ [−1, 1]. Hence,

S
(1)
T = S

(1)
0 e(r−σ2

1/2)T+σ1W
(1)
T

S
(2)
T = S

(2)
0 e(r−σ2

2/2)T+σ2W
(2)
T

and

W
(1)
T =

√
T
(

√

1− ρ2Z(1) + ρZ(2)
)

W
(2)
T =

√
TZ(2)

where Z(1) ∼ N(0, 1), Z(2) ∼ N(0, 1) and Z(1) and Z(2) are independent.

The price of this option at time t = 0 is

P0 = E[e−rTh(S
(1)
T , S

(2)
T)]

We can easily do a “standard” Monte Carlo simulation to approximate P0 as follows.

(a) For n = 1, 2, . . . , N , let

Yn = e−rTh(S
(1)
T,n, S

(2)
T,n)

where

S
(1)
T,n = S

(1)
0 e(r−σ2

1/2)T+σ1W
(1)
T,n

S
(2)
T,n = S

(2)
0 e(r−σ2

2/2)T+σ2W
(2)
T,n

and

W
(1)
T,n =

√
T
(

√

1− ρ2Z(1)
n + ρZ(2)

n

)

W
(2)
T,n =

√
TZ(2)

n

Page 6 of 8 pages.

and each Z
(1)
n ∼ N(0, 1), each Z

(2)
n ∼ N(0, 1) and all the Z

(1)
n and Z

(2)
n , for

n = 1, 2, . . . , N , are independent.

(b) Approximate the option price P0 by

P̂0 =
1

N

N
∑

n=1

Yn

Assume that you have a function, such as blsprice in MatLab,

[Call, Put] = blsprice(S0, K, r, T, σ)

that computes the price at time t = 0 of a “vanilla” European call or put option that
expires at time t = T , with strike price K, risk free interest rate r, volatility σ and
underlying St that starts with value S0 at time t = 0 and evolves in time according to
the SDE

dSt = rStdt+ σStdWt

Assume also that you have a program such as randn in MatLab that generates inde-
pendent standard normal random numbers (i.e., generates independent Z ∼ N(0, 1)).
(You can use any other standard MatLab functions as well.)

How can you use blsprice and randn together with conditional expectation to de-
velop a more efficient Monte Carlo simulation than the “standard” one given above to
approximate the price P0 of this basket option?

The description of your new Monte Carlo simulation should be detailed enough so
that someone who does not know any mathematical finance can implement it easily in
MatLab.

Page 7 of 8 pages.

4. [13 marks: 3 marks for part (a) and 5 marks for each of parts (b) and (c)]

We didn’t have time to discuss Asian options in detail; I hope you talked about them
in another course.

Here’s a very quick summary. If St is the stock price that evolves according to the
standard SDE

dSt = rStdt+ σStdWt

where r is the risk free interest rate, σ is the volatility and Wt is a standard Brownian
motion, and you also let

It =

∫ t

0

Sτdτ

At = It/t

then the price of an arithmetic-average European-style Asian option at time t ≤ T is
V (t, S, I), where V (t, S, I) satisfies the PDE

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
+ S

∂V

∂I
− rV = 0 (3)

with an appropriate terminal condition at time t = T based on the payoff of the option
at the option expiry time t = T and appropriate boundary conditions.

The PDE (3) is a fairly simple extension of the standard Black-Scholes PDE. However,
one interesting thing about the PDE (3) is that it seems like a parabolic PDE in S
(like the Black-Scholes PDE or the Heat Equation), but like a hyperbolic PDE in I
(like the Transport Equation). This creates some challenges to solve (3) numerically.

To get some idea of how to solve these mixed parabolic-hyperbolic PDEs, consider the
simpler PDE

∂u

∂t
+

∂u

∂x
=

∂2u

∂y2
(4)

for u(t, x, y), where t ∈ (0, T), x ∈ (0, 1) and y ∈ (0, 1). Assume that you are given an
initial condition at t = 0

u(0, x, y) = u0(x, y) for x ∈ [0, 1] and y ∈ [0, 1]

and appropriate boundary conditions for t ∈ (0, T].

(a) Give a numerical method to solve (4). You numerical method should be both
consistent and stable.

(b) What is the order of consistency of your numerical method specified in part (a)
to solve (4)? More specifically, state what the order of consistency is in t, x and
y. Justify your answer.

(c) Show that your numerical method specified in part (a) to solve (4) is stable.

Page 8 of 8 pages.

