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Abstract

We define a metric for measuring behavior similarity betweenstates in a Markov
decision process (MDP), which takes action similarity intoaccount. We show
that the kernel of our metric corresponds exactly to the classes of states defined
by MDP homomorphisms (Ravindran & Barto, 2003). We prove that the differ-
ence in the optimal value function of different states can beupper-bounded by
the value of this metric, and that the bound is tighter than previous bounds pro-
vided by bisimulation metrics (Ferns et al. 2004, 2005). Ourresults hold both
for discrete and for continuous actions. We provide an algorithm for constructing
approximate homomorphisms, by using this metric to identify states that can be
grouped together, as well as actions that can be matched. Previous research on
this topic is based mainly on heuristics.

1 Introduction
Markov Decision Processes (MDPs) are a very popular formalism for decision making under un-
certainty (Puterman, 1994). A significant problem is computing the optimal strategy when the state
and action space are very large and/or continuous. A popularapproach isstate abstraction, in which
states are grouped together in partitions, or aggregates, and the optimal policy is computed over
these. Li et al. (2006) provide a nice comparative survey of approaches to state abstraction. The
work we present in this paper bridges two such methods: bisimulation-based approaches and meth-
ods based on MDP homomorphisms.

Bisimulation is a well-known, well-studied notion of behavioral equivalence between systems
(Larsen & Skou, 1991; Milner, 1995) which has been specialized for MDPs by Givan et al (2003). In
recent work, Ferns et al. (2004, 2005, 2006) introduced (pseudo)metrics for measuring the similarity
of states, which provide approximations to bisimulation. One of the disadvantages of bisimulation
and the corresponding metrics is that they require that the behavior matches for exactly the same
actions. However, in many cases of practical interest, actions with the exact same label may not
match, but the environment may contain symmetries and othertypes of special structure, which may
allow correspondences between states by matching their behavior with differentactions. This idea
was formalized by (Ravindran & Barto, 2003) with the conceptof MDP homomorphisms. MDP ho-
momorphisms specify a map matching equivalent states as well as equivalent actions in such states.
This matching can then be used to transfer policies between different MDPs. However, like any
equivalence relations in probabilistic systems, MDP homomorphisms are brittle: a small change
in the transition probabilities or the rewards can cause twopreviously equivalent state-action pairs
to become distinct. This implies that such approaches do notwork well in situations in which the
model of the system is estimated from data. As a solution to this problem, Ravindran & Barto
(2004) proposed usingapproximate homomorphisms, which allow aggregating states that are not
exactly equivalent. They define an MDP over these partitionsand quantify the approximate loss
resulting from using this MDP, compared to the original system. As expected, the bound depends on



the quality of the partition. Subsequent work (e.g. Wolfe & Barto, 2006) constructs such partitions
heuristically.

In this paper, we attempt to construct provably good, approximate MDP homomorphisms from first
principles. First, we relate the notion of MDP homomorphisms to the concept of lax bisimulation,
explored recently in the process algebra literature (Arun-Kumar, 2006). This allows us to define a
metric on states, similarly to existing bisimulation metrics. Interestingly, this approach works both
for discrete and for continuous actions. We show that the difference in the optimal value function of
two states is bounded above by this metric. This allows us to provide a state aggregation algorithm
with provable approximation guarantees. We illustrate empirically the fact that this approach can
provide much better state space compression than the use of existing bisimulation metrics.

2 Background
A finite Markov decision process (MDP) is a tuple〈S,A,P,R〉, whereS is a finite set of states,A is a
set of actions,P : S×A×S→ [0,1] is the transition model, withP(s,a,s′) denoting the probability
of transition from states to s′ under actiona, andR : S×A→ R is the reward function withR(s,a)
being the reward for performing actiona in states. For the purpose of this paper, the state spaceS
is assumed to be finite, but the action setA could be finite or infinite (as will be detailed later). We
assume without loss of generality that rewards are bounded in [0,1].

A deterministic policyπ : S→ A specifies which action should be taken in every state. By following
policyπ from states, an agent can expect a value ofVπ(s) = E(∑∞

t=1 γt−1rt |s0 = s,π) whereγ∈ (0,1)
is a discount factor andrt is the sample reward received at timet. In a finite MDP, the optimal
value functionV∗ is unique and satisfies the following formulas, known as the Bellman optimality
equations:

V∗(s) = max
a∈A

(

R(s,a)+ γ∑
s′

P(s,a,s′)V∗(s′)

)

,∀s∈ S

If the action space is continuous, we will assume that it is compact, so the max can be taken and
the above results still hold (Puterman, 1994). Given the optimal value function, an optimal policy
is easily inferred by simply taking at every state the greedyaction with respect to the one-step-
lookahead value. It is well known that the optimal value function can be computed by turning the
above equation into an update rule, which can be applied iteratively.

Ideally, if the state space is very large, “similar” states should be grouped together in order to speed
up this type of computation. Bisimulation for MDPs (Givan etal., 2003) is a notion of behavioral
equivalence between states. A relationE ⊆ S×S is abisimulation relationif:

sEu⇔∀a.(R(s,a) = R(u,a) and∀X ∈ S/E.Pr(X|s,a) = Pr(X|u,a))

whereS/E denotes the partition ofS into E-equivalent subsets of states. The relation∼ is the union
of all bisimulation relations and two states in an MDP are said to bebisimilar if s∼ u. From this
definition, it follows that bisimilar states can match each others’ actions to achieve the same returns.
Hence, bisimilar states have the same optimal value (Givan et al., 2003). However, bisimulation is
not robust to small changes in the rewards or the transition probabilities.

One way to avoid this problem is to quantify the similarity between states using a (pseudo)-metric.
Ferns et al. (2004) proposed abisimulation metric, defined as the least fixed point of the following
operator on the lattice of 1-bounded metricsd : S×S→ [0,1]:

G(d)(s, t) = max
a

(cr |R(s,a)−R(u,a)|+cpK(d)(P(s,a, ·),P(u,a, ·)) (1)

The first term above measures reward similarity. The second term is the Kantorovich metric between
the probability distributions of the two states. Given probability distributionsP andQ over the state
spaceS, and a semimetricd on S, the Kantorovich metricK(d)(P,Q) is defined by the following
linear program:

max
vi

|S|

∑
i=1

(P(si)−Q(si))vi subject to:∀i, j.vi −v j ≤ d(si ,sj) and∀i.0≤ vi ≤ 1

which has the following equivalent dual program:

min
λk j

|S|

∑
k, j=1

λk jd(sk,sj) subject to:∀k.∑
j

λk j = P(sk), ∀ j.∑
k

λk j = Q(sj) and∀k, j.λk j ≥ 0



Ferns et al. (2004) showed that by applying (1) iteratively,the least fixed pointef ix can be obtained,
and thats andu are bisimilar if and only ifef ix(s,u) = 0. In other words, bisimulation is the kernel
of this metric.

3 Lax bisimulation
In many cases of practical interest, actions with exactly the same label may not match, but the
environment may contain symmetries and other types of special structure, which may allow corre-
spondences betweendifferentactions at certain states. For example, consider the environment in
Figure 1. Because of symmetry, going south in state N6 is “equivalent” to going north in state S6.
However, no two states are bisimilar. Recent work in processalgebra has rethought the definition of
bisimulation to allow certain distinct actions to be essentially equivalent (Arun-Kumar, 2006). Here,
we define lax bisimulation in the context of MDPs.

Definition 1. A relationB is alax (probabilistic) bisimulation relationif wheneversBuwe have that:
∀a ∃b such thatR(s,a) = R(u,b) and for allB-closed setsX we have thatPr(X|s,a) = P(X|u,b),
and vice versa. Thelax bisimulation∼ is the union of all the lax bisimulation relations.

It is easy to see thatB is an equivalence relation and we denote the equivalence classes ofS by
S/B. Note that the definition above assumes that any action can bematched by any other action.
However, the set of actions that can be used to match another action can be restricted based on prior
knowledge.

Lax bisimulation is very closely related to the idea of MDP homomorphisms (Ravindran & Barto,
2003). We now formally establish this connection.

Definition 2. (Ravindran & Barto, 2003) AMDP homomorphism hfrom M = 〈S,A,P,R〉 to M′ =
〈S′,A′,P′,R′〉 is a tuple of surjections〈 f ,{gs : s∈ S}〉 with h(s,a) = ( f (s),gs(a)), wheref : S→ S′

andgs : A→ A′ such thatR(s,a) = R′( f (s),gs(a)) andP(s,a, f−1( f (s′))) = P′( f (s),gs(a), f (s′))

Hence, a homomorphism puts in correspondence states, and has a state-dependent mapping between
actions as well. We now show that homomorphisms are identical to lax probabilistic bisimulation.

Theorem 3. Two states s and u are bisimilar if and only if they are relatedby some MDP homomor-
phism〈 f ,{gs : s∈ S}〉 in the sense that f(s) = f (u).

Proof: For the first direction, leth be a MDP homomorphism and define the relationB such thatsBu
iff f (s) = f (u). Sincegu is a surjection toA, there must be someb∈ A with gu(b) = gs(a). Hence,

R(s,a) = R′( f (s),gs(a)) = R′( f (u),gu(b)) = R(u,b)

Let X be a non-emptyB-closed set such thatf−1( f (s′)) = X for somes′. Then:

P(s,a,X) = P′( f (s),gs(a), f (s′)) = P′( f (u),gu(b), f (s′)) = P(u,b,X)

soB is a lax bisimulation relation.

For the other direction, letB be a lax bisimulation relation. We will construct an MDP homo-
morphism in whichsBu =⇒ f (s) = f (u). Consider the partitionS/B induced by the equivalence
relationB on setS. For each equivalence classX ∈ S/B, we choose a representative statesX ∈ X
and definef (sX) = sX andgsX (a) = a,∀a ∈ A. Then, for anys∼ sX , we definef (s) = sX . From
definition 1, we have that∀a∃b s.t. Pr(X′|s,a) = Pr(X′|sX ,b),∀X′ ∈ S/B. Hence, we setgs(a) = b.
Then, we have:

P′( f (s),gs(a), f (s′)) = P′( f (sX),b′, f−1( f (s′)) = P(sX ,b, f−1( f (s′)) = P(s,a, f−1( f (s′))

Also, R′( f (s),gs(a)) = R′( f (sX),b) = R(sX ,a). Hence, we constructed a homomorphism.⋄

4 A metric for lax bisimulation
We will now define a lax bisimulation metric for measuring similarity between state-action pairs,
following the approach used by Ferns et al. (2004) for defining the bisimulation metric between
states. We want to say that statessandu are close exactly when every action of one state is close to
someaction available in the other state. In order to capture thismeaning, we first define similarity
between state-action pairs, then we lift this to states using the Hausdorff metric (Munkres, 1999).



Definition 4. Let cr ,cp ≥ 0 be constants withcr +cp ≤ 1. Given a 1-bounded semi-metricd on S,
the metricδ(d) : S×A→ [0,1] is defined as follows:

δ(d)((s,a),(u,b)) = cr |R(s,a)−R(u,b)|+cpK(d)(P(s,a, ·),P(u,b, ·))

We now have to measure the distance between the set of of actions at states and the set of actions
at stateu. Given a metric between pairs of points, the Hausdorff metric can be used to measure the
distance betweensets of points. It is defined as follows.
Definition 5. Given a finite 1-bounded metric space(M ,d), letP (M ) be the set of compact spaces
(e.g. closed and bounded inR). TheHausdorff metric H(d) : P (M )×P (M ) → [0,1] is defined as:

H(d)(X,Y) = max(sup
x∈X

inf
y∈Y

d(x,y),sup
y∈Y

inf
x∈X

d(x,y))

Definition 6. DenoteXs = {(s,a)|a∈ A}. LetM be the set of all semimetrics onS. We define the
operatorF :M →M asF(d)(s,u) = H(δ(d))(Xs,Xu)

We note that the same definition can be applied both for discrete and for compact continuous action
spaces. If the action set is compact thenXs = {s}×A is also compact, so the Hausdorff metric is
still well defined. For simplicity, we consider the discretecase, so that max and min are defined.
Theorem 7. F is monotonic and has a least fixed point df ix in which df ix(s,u) = 0 iff s∼ u.

The proof is similar in flavor to (Ferns et al., 2004) and we omit it for lack of space.

As bothef ix anddf ix quantify the difference in behaviour between states, it is not surprising to see
that they constrain the difference in optimal value. Indeed, the bound below has previously been
shown in (Ferns et al., 2004) foref ix, but we also show that our metricdf ix is tighter.
Theorem 8. Let ef ix be the metric defined in (Ferns et al., 2004). Then we have:

cr |V
∗(s)−V∗(u)| ≤ df ix(s,u) ≤ ef ix(s,u)

Proof: We show via induction onn that for the sequence of iteratesVn encountered during value
iteration, cr |Vn(s)−Vn(u)| ≤ df ix(s,u) ≤ ef ix(s,u), and then the result follows by merely taking
limits.

For the base case note thatcr |V0(s)−V0(u)| = d0(s,u) = e0(s,u) = 0.

Assume this holds forn. By the monotonicity ofF , we have thatF(dn)(s,u) ≤ F(en)(s,u). Now,
for anya, δ(en)((s,a),(u,a)) ≤ G(en)(s,u), which implies:

F(en)(s,u) ≤ max(max
a

δ(en)((s,a),(u,a)),max
b

δ(en)((s,b),(u,b))

≤ max(max
a

G(en)(s,u),G(en)(s,u)) = G(en)(s,u)

sodn+1 ≤ en+1 Without loss of generality, assume thatVn+1(s) > Vn+1(u). Then:

cr |Vn+1(s)−Vn+1(u)|=cr |max
a

(R(s,a)+ γ∑
s′

P(s,a,s′)Vn(s
′))−max

b
(R(u,b)+ γ∑

s′
P(u,b,s′)Vn(s

′))|

=cr |(R(s,a′)+ γ∑
s′

P(s,a′,s′)Vn(s
′))− (R(t,b′)+ γ∑

s′
P(u,b′,s′)Vn(s

′))|

=cr min
b

|(R(s,a′)+ γ∑
s′

P(s,a′,s′)Vn(s
′))− (R(u,b)+ γ∑

s′
P(u,b,s′)Vn(s

′))|

≤cr max
a

min
b

|(R(s,a)+ γ∑
s′

P(s,a,s′)Vn(s
′))− (R(t,b)+ γ∑

s′
P(u,b,s′)Vn(s

′))|

≤max
a

min
b

(cr |R(s,a)−R(u,b)|+cp|∑
s′

(P(s,a,s′)−P(u,b,s′))
cr γ
cp

Vn(s
′)|)

Now sinceγ ≤ cp, we have 0≤ cr γ
cp

Vi(s′) ≤
(1−cp)γ
cp(1−γ) ≤ 1 and by the induction hypothesis

crγ
cp

Vn(s)−
crγ
cp

Vn(u) ≤ cr |Vn(s)−Vn(u)| ≤ dn(s,u)

So{ cr γ
cp

Vn(s′) : s′ ∈S} is a feasible solution to the LP forK(dn)(P(s,a),P(t,b)). We then continue the

inequality: cr |Vn+1(s)−Vn+1(u)| ≤ maxaminb(cr |R(s,a)−R(u,b)|+ cpK(dn)(P(s,a),P(u,b))) =
F(dn)(s,u) = dn+1(s,u)⋄



5 State aggregation
We now show how we can use this notion of lax bisimulation metrics to construct approximate MDP
homomorphisms. First, if we have an MDP homomorphism, we canuse it to provide a state space
aggregation, as follows.

Definition 9. Given a MDP M and a homomorphism, an aggregated MDPM′ is given by
(S′,A,{P(C,a,D) : a∈ A;C,D ∈ S′},{R(C,a) : a∈ A,C∈ S′},ρ,gs : s∈ S) whereS′ is a partition of
S, ρ : S→ S′ maps states to their aggregates, eachgs : A→ A relabels the action set and we have that
∀C,D ∈ S′ anda∈ A,

P(C,a,D) =
1
|C| ∑

s∈C

P(s,gs(a),D) andR(C,a) =
1
|C| ∑

s∈C

R(s,gs(a))

Note that all the states in a partition have actions that are relabelled specifically so they can exactly
match each other’s behaviour. Thus, a policy in the aggregate MDP can be lifted to the original
MDP by using this relabeling.

Definition 10. If M′ is an aggregation of MDPM andπ′ is a policy inM′, then the lifted policy is
defined byπ(s) = gs(π′(s′)).

Using a lax bisimulation metric, it is possible to choose appropriate re-labelings so that states within
a partition can approximately match each other’s actions.

Definition 11. Given a lax bisimulation metricd and a MDPM, we say that an aggregated MDPM′

is d-consistent if each aggregated classC has a states∈C, called the representative ofC, such that:

∀u∈C,δ(d)((s,gs(a)),(u,gu(a))) ≤ F(d)(s,u)

When the re-labelings are chosen in this way, we can solve forthe optimal value function of the
aggregated MDP and be assured that for each state, its true optimal value is close to the optimal
value of the partition in which it is contained.

Theorem 12. If M ′ is a dζ-consistent aggregation of a MDP M and n≤ ζ, then∀s∈ S we have:

cr |Vn(ρ(s))−Vn(s)| ≤ m(ρ(s))+M
n−1

∑
k=1

γn−k.

where m(C) = 2maxu∈C dζ(s
′,u), s′ denotes the representative state of C and M= maxC m(C). Fur-

thermore, ifπ′ is a policy in M′ andπ is the corresponding lifted policy in M, then:

cr |V
π′
n (ρ(s))−Vπ

n (s)| ≤ m(ρ(s))+M
n−1

∑
k=1

γn−k

Proof: |Vn+1(ρ(s))−Vn+1(s)| =

= |max
a

(R(ρ(s),a)+ γ ∑
D∈S′

P(ρ(s),a,D)Vn(D))−max
a

(R(s,a)+ γ∑
s′

P(s,a,s′)Vn(s
′))|

≤
1

|ρ(s)| ∑
u∈ρ(s)

max
a

(

|R(u,gu(a))−R(s,gs(a))|+ γ| ∑
D∈S′

P(u,gu(a),D)Vn(D)−∑
s′

P(s,gs(a),s′)Vn(s
′)|

)

≤
1

|ρ(s)| ∑
u∈ρ(s)

max
a

(

|R(u,gu(a))−R(s,gs(a))|+ γ|∑
s′

(P(u,gu(a),s′)Vn(ρ(s′))−P(s,gs(a),s′)Vn(s
′))|

)

≤
1

|ρ(s)| ∑
u∈ρ(s)

max
a

(|R(u,gu(a))−R(s,gs(a))|+ γ|∑
s′

(P(u,gu(a),s′)−P(s,gs(a),s′))Vn(s
′)

+ γ|∑
s′

P(u,gu(a),s′)(Vn(ρ(s′))−Vn(s
′))|) ≤

1
cr |ρ(s)| ∑

u∈ρ(s)

max
a

(cr |R(s,gs(a))−R(u,gu(a))|

+cp|∑
s′

(P(u,gu(a),s′)−P(s,gs(a),s′))
cr γ
cp

Vn(s
′)|)+

γ
|ρ(s)| ∑

u∈ρ(s)

max
a ∑

s′
P(u,gu(a),s′)|Vn(ρ(s′))−Vn(s

′)|



From Theorem 8, we know that{ cr γ
cp

Vn(s′) : s′ ∈ S} is a feasible solution to the primal LP for

K(dn)(P(s,gs(a)),P(u,gu(a))). Let z be the representative used forρ(s). Then we can continue
as follows:

≤ cr |R(s,gs(a)−R(u,gu(a))|+cpK(dn)(P(s,gs(a)),P(u,gu(a)))

≤ cr |R(s,gs(a))−R(u,gu(a))|+cpK(dζ)(P(s,gs(a)),P(u,gu(a)))

≤ cr |R(s,gs(a))−R(z,gz(a))|+cpK(dζ)(P(s,gs(a)),P(z,gz(a)))

+ cr |R(z,gz(a))−R(u,gu(a))|+cpK(dζ)(P(z,gz(a)),P(u,gu(a))) = dζ(s,z)+dζ(z,u) ≤ m(ρ(s))

We continue with the original inequality using these two results:

≤
1
cr

∑
u∈ρ(s)

(cr |R(s,gs(a))−R(u,gu(a))|+cpK(dn)(P(s,gs(a)),P(u,gu(a))))

+
γ

|ρ(s)| ∑
u∈ρ(s)

max
a ∑

s′
P(u,gu(a),s′)max

s′′
|Vn(ρ(s′′))−Vn(s

′′)|

≤
1

cr |ρ(s)| ∑
u∈ρ(s)

m(ρ(s))+ γmax
s′

|Vn(ρ(s′))−Vn(s
′)| ≤

m(ρ(s))
cr

+ γmax
s′′

(

m(ρ(s))
cr

+M
n−1

∑
k=1

γn−k

)

≤
1
cr

(

m(ρ(s))+ γmax
s′

m(ρ(s′))+M
n−1

∑
k=1

γn+1−k

)

≤
1
cr

(

m(ρ(s))+M
n

∑
k=1

γ(n+1)−k

)

The second proof is nearly identical except that instead of maximizing over actions, the action
selected by the policy,a = π′(ρ(s)), and the lifted policy,gs(a) = π(s) are used. ⋄

By taking limits we get the following theorem:

Theorem 13. If M ′ is a df ix-consistent aggregation of a MDP M, then∀s∈ S we have:

cr |V
∗(ρ(s))−V∗(s)| ≤ m(ρ(s))+

γ
1− γ

M

Furthermore, ifπ′ is any policy in M′ andπ is the lifted policy to M then

cr |V
π′(ρ(s))−Vπ(s)| ≤ m(ρ(s))+

γ
1− γ

M

where m(C) = 2maxu∈C df ix(s′,u), s′ is the representative state of C and M= maxC m(C).

One appropriate way to aggregrate states is to choose some desired error boundε > 0 and ensure
that the states in each partition are within anε-ball. A simple way to do this is to pick states and
random and add to a partition each state within theε-ball. Of course, better clustering heuristics can
be used here as well.

It has been noted that when the above condition holds, then under the unlaxed bisimulation metric
ef ix, we can be assured that for each states, |V∗(ρ(s))−V(s)| is bounded by 2ε

cr (1−γ) . The theorem

above shows that under the lax bisimulation metricdf ix this difference is actually bounded by4ε
cr (1−γ) .

However, as we illustrate in the next section. a massive reduction in the size of the state space can
be achieved by moving fromef ix to df ix, even when usingε′ = ε

2.

For large systems, it might not be feasible to compute the metric ef ix in the original MDP. In this
case, we might want to use some sort of heuristic or prior knowledge to create an aggregation.
Ravindran & Barto (2003) provided, based on a result from Whitt (1978), a bound on the difference
in values between the optimal policy in the aggregated MDP and the lifted policy in the original
MDP. We now show that our metric can be used to tighten this bound.

Theorem 14. If M ′ is an aggregation of a MDP M,π′ is an optimal policy in M′, π is the policy
lifted fromπ′ to M and d′f ix corresponds to our metric computed on M′, then

|Vπ(s)−Vπ′(ρ(s))| ≤
2

1− γ
max

s,a
|R(s,gs(a))−R(ρ(s),a)|+

γ
cr

max
s,a

K(d′
f ix)(P(s,gs(a)),P(ρ(s),a))
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Figure 1: Example environment exhibiting symmetries (left). Aggregation performance (right)

Proof: We have:

|Vπ(s)−Vπ′(ρ(s))|) ≤
2

1− γ
max

s,a
|R(s,gs(a))−R(ρ(s),a)+ γ∑

C

(P(s,gs(a),C)−P(ρ(s),a,C))Vπ′(C)|

≤
2

1− γ
max

s,a
|R(s,gs(a))−R(ρ(s),a)|+ γmax

s,a
|∑

C

(P(s,gs(a),C)−P(ρ(s),a,C))Vπ′(C)|

≤
2

1− γ
max

s,a
|R(s,gs(a))−R(ρ(s),a)|+max

s,a

γ
cr

K(d′
f ix)(P(s,gs(a)),P(ρ(s),a))

The first inequality originally comes from (Whitt, 1978) andis applied to MDPs in (Ravindran &
Barto, 2003). The last inequality holds sinceπ′ is an optimal policy and thus by Theorem 8 we know

that{Vπ′ (C)
cr

: C∈ S′} is a feasible solution.⋄

As a corrolary, we can get the same bound as in (Ravindran & Barto, 2003) by bounding the Kan-
torovich by the total variation metric.

Definition 15. Given two finite distributionsP andQ, the total variation metricTV(P,Q) is defined
as:TV(P,Q) = ∑s

1
2|P(s)−Q(s)|

Corollary 16. Let∆ = maxC,a R(C,a)−minC,a R(C,a) be the maximum difference in rewards in the
aggregated MDP. Then:

|Vπ(s)−Vπ(ρ(s))| ≤
2

1− γ

(

max
s,a

|R(s,gs(a))−R(ρ(s),a)|+
γ

1− γ
∆ ·TV(P(s,gs(a)),P(ρ(s),a))

)

Proof: This follows from the fact that:

max
C,D

d′
f ix(C,D) ≤ cr∆ +cpmax

C,D
d′

f ix(C,D) · · · ≤
cr∆

1−cp
≤

cr∆
1− γ

and using the total variation as an approximation (Gibbs & Su, 2002), we have:

K(d′
f ix)(P(s,gs(a)),P(ρ(s),a)) ≤ max

C,D
d′

f ix(C,D) ·TV(P(s,gs(a)),P(ρ(s),a)) ⋄

6 Illustration

Consider the cross-shaped MDP displayed in Figure 1. There is a reward of 1 in the center and the
probability of the agent moving in the intended direction is0.8. For a givenε, we used the random
partitioning algorithm outlined earlier to create a state aggregation. The graph plots the size of the
aggregated MDPs obtained againstε, using the lax and the non-lax bisimulation metrics. In the case
of the lax metric, we usedε′ = ε/2 to compensate for the factor of 2 difference in the error bound.
It is very revealing that the number of partitions drops veryquickly and levels at around 6 or 7 for
our algorithm. This is because the MDP is collapsing to a state space close to the natural choice of
{{C}}∪{{Ni,Si,Wi,Ei} : i ∈ {1,2,3,4,5,6}}. Under the unlaxed metric, this is not likely to occur,
and thus the first states to be partitioned together are the ones neighbouring each other (which can
actually have quite different behaviours).



7 Discussion and future work
We defined a metric for measuring the similarity of state-action pairs in a Markov Decision Process
and used it in an algorithm for constructing approximate MDPhomomorphisms. Our approach
works significantly better than the bisimulation metrics ofFerns et al., as it allows capturing different
regularities in the environment. The theoretical bound on the error in the value function presented
in (Ravindran & Barto, 2004) can be derived using our metric.

Although the metric is potentially expensive to compute, there are domains in which having an
accurate aggregation is worth it. For example, in mobile device applications, one may have big
computational resources initially to build an aggregation, but may then insist on a very coarse,
good aggregation, to fit on a small device. The metric can alsobe used to find subtasks in a larger
problem that can be solved using controllers from a pre-supplied library. For example, if a controller
is available to navigate single rooms, the metric might be used to lump states in a building schematic
into “rooms”. The aggregate MDP can then be used to solve the high level navigational task using
the controller to navigate specific rooms.

An important avenue for future work is reducing the computational complexity of this approach.
Two sources of complexity include the quadratic dependenceon the number of actions, and the
evaluation of the Kantorovich metric. The first issue can be addressed by sampling pairs of actions,
rather than considering all possibilities. We are also investigating the possibility of replacing the
Kantorovich metric (which is very convenient from the theoretical point of view) with a more prac-
tical approximation. Finally, the extension to continuousstates is very important. We currently have
preliminary results on this issue, using an approach similar to (Ferns et al, 2005), which assumes
lower-semi-continuity of the reward function. However, the details are not yet fully worked out.
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