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The supplementary material for our CVPR 2012 paper
The Vitruvian Manifold: Inferring Dense Correspondences
for One-Shot Human Pose Estimation comprises this docu-
ment and the accompanying video.

1. Supplementary Results
The accompanying video illustrates the inferred corre-

spondences and convergence of the optimization algorithm
for several poses, and additionally gives demonstrations of
how the algorithm performs on extended sequences contain-
ing complex motion. In addition to this we include in Fig. 1
a qualitative comparison of the skeletons inferred by the al-
gorithms of [1, 2] and the Microsoft Kinect for Windows
software development kit (SDK) to accompany the quanti-
tative results in the main paper.

2. Implementation Appendix
While the paper contains a full description of the algo-

rithm, this section includes further details of the specific
implementation we used for the interested reader, includ-
ing parameter settings (Fig. 2) and many of the derivatives
of the energy function required by the L-BFGS optimizer.

2.1. Prior

Our prior consists of: (i) a Gaussian on pose, learned
from motion capture data; and (ii) a heuristic term that dis-
courages self-intersection. These each provide a modest
quantifiable increase in accuracy, and qualitatively encour-
age more realistic poses.

The Gaussian over pose has full covariance over the ro-
tation degrees of freedom and a single independent element
corresponding to the scale degree of freedom. There is no
prior over global translation as the actor can appear at any
point in the scene. See Fig. 3 for 16 random samples from
the rotational component of the Gaussian pose prior (i.e.
global scale, rotation and translation is fixed).

2.2. Model Parameterization

We explicitly write out the parameters of our model as
θ = (sT ,tT ,qT0 , ...,q

T
L)
T ∈ Rd with s ∈ R defining

global scale, t ∈ R3 global translation and each ql ∈ R4

a quaternion defining the relative rotation of limb l if l ∈
{1, ..., L} or global rotation if l = 0. To avoid overloading
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Figure 1. Qualitative comparison with [2, 1] and the Kinect
SDK. All algorithms produce reasonable results on this random
selection of test images. The quantitative results in the main pa-
per, however, demonstrate the marked quantitative improvement in
accuracy obtained by our algorithm. (Hips not drawn as [2, 1] do
not predict hips, and the Kinect SDK hips are incompatible with
our hips. Hips were not part of the metrics for this comparison).
Note that the results from [2, 1] use the ‘best of top 5’ oracle and
are not a realizable algorithm.
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Parameter Description Value Explanation
λvis energy term weighting 1

n n is the number of image pixels
λprior energy term weighting 2× 10−4

λint energy term weighting 1
|S|

β visibiliy sharpness 100
γ intersection sharpness 1000
rs sphere radii 0.025m
m number of mesh vertices ∼7000
η Geman-McClure parameter 0.1m / 10 pixels meters→ depth; pixels→ silhouettes
τ back-facing penalty 1.0 penalty paid

number of trees 3
maximum depth of trees 20

b mean shift bandwidth 5 vits used to cluster correspondences during tree training

Figure 2. Settings for parameters introduced in the main paper and the derivations below.

notation from the main paper, we use a fixed width font to
denote these parameters and the transformations they spec-
ify. Explicitly, these specify a scaling transformation for s

S(s) =


s 0 0 0
0 s 0 0
0 0 s 0
0 0 0 1

 , (1)

a translation transformation for t = (t1,t2,t3)

T(t) =


1 0 0 t1

0 1 0 t2

0 0 1 t3

0 0 0 1

 , (2)

and for each vector ql, a rotation R(ϑ(ql)) where ϑ(q) =
q
||q|| normalizes q and for a unit quaternion p = (x,y,z,w)

R(p) = (3) 1− 2(y2 + z2) 2(xy− zw) 2(xz+ yw) 0
2(xy+ zw) 1− 2(x2 + z2) 2(yz− xw) 0
2(xz− yw) 2(yz+ xw) 1− 2(x2 + y2) 0

0 0 0 1

 .

We can explicitly define the remaining quantities in
equation (1) and (2) of the main paper by

Rglob(θ) = T(t)R(ϑ(q0))S(s) (4)
Rl(θ) = T(tl)R(ϑ(ql)) (5)

where tl for l ∈ {1, ..., L} are fixed. It is readily seen
that all transformations preserve unity in the 4th homoge-
nous coordinate, a property assumed in each vertex position
pi, and thus we can assume that π = P = I3×4, a ma-
trix that drops the fourth coordinate. Further, dropping the

distinction between model vertices vj and predicted corre-
spondences ui, we have

M(ui; θ) = P

K∑
k=1

αikTlik(θ)T
−1
lik

(θ0)pi (6)

For each, vertex ui let n(ui) denote it’s surface normal
in the base pose θ0, perhaps computed using the local mesh
geometry. Then an appropriate way to define the surface
normal in a new pose θ is

N(ui; θ) =
N̂(ui; θ)

||N̂(ui; θ)||2
(7)

N̂(ui; θ) = P

K∑
k=1

αikT̂lik(θ)T̂
−1
lik

(θ0)n(ui) , (8)

where T̂l is composed only of the rotational components of
Tl. That is, n(ui) is simply rotated by each limb’s transfor-
mation, and the resulting combination normalized.

2.3. Gradient

The L-BFGS optimizer requires the gradient of the en-
ergy function to be provided. This could be computed us-
ing finite differences, but this would be inexact and need-
lessly slow, especially considering that the Jacobian of ver-
tex coordinates with respect to the optimization parameters
is particularly sparse. Therefore it is of benefit to compute
the derivatives analytically so that they can be calculated
directly. Below, we provide a recipe for doing this with a
simplified energy function consisting of just E′vis with pixel
weights and β set to unity:



E′vis =

n∑
i=1

Vi(θ) · ρ(ei(θ)) + (1− Vi(θ)) · τ (9)

= nτ +

n∑
i=1

Vi(θ) · [ρ(ei(θ))− τ ] , (10)

where ei(θ) = ||xi −M(ui; θ)||2, Geman-McClure func-
tion ρ(e) = e2

e2+η2 , and visibility weighting Vi(θ) =

σ(−N(ui; θ)
>A) where σ(x) is the sigmoid function. Tak-

ing the derivative with respect to the jth component1 of the
parameter vector θ we get:

∂E(θ)

∂θj
=

n∑
i=1

∂ρ(ei(θ))

∂θj
Vi(θ) +

∂Vi(θ)

∂θj
· [ρ(ei(θ))− τ ] .

(11)
Working on the first term, observe that

∂ρ(ei(θ))

∂θj
=

2ei(θ)η
2

(ei(θ)2 + η2)2
∂ei(θ)

∂θj
. (12)

and

∂ei(θ)

∂θj
=

1

ei(θ)
(M(ui; θ)− xi)>

∂M(ui; θ)

∂θj
. (13)

Further:

∂M(ui; θ)

∂θj
= P

K∑
k=1

αik
∂Tlik(θ)

∂θj
T−1lik

(θ0)pi , (14)

Note that Tlik(θ) is composed only of matrices of the form
T(t), R(q) and S(s), of which only one will depend on
θj . Thus, it is enough to be able to compute derivatives for
these individually. Specifically:

∂T(t)

∂th
=


0 0 0 δh1
0 0 0 δh2
0 0 0 δh3
0 0 0 0

 , (15)

(using the Kronecker δ), and

∂S(s)

∂s
=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 . (16)

For a rotation parameter q, we write the corresponding unit
quaternion as p = ϑ(q) = (x,y,z,w). Using the chain
rule, we obtain the total derivative with respect to each com-
ponent qj of q:

∂R(ϑ(q))

∂qj
=

4∑
m=1

∂R(p)

∂pm

∂ϑm(q)

∂qj
(17)

1Here we use j to indicate a component of parameter vector θ. In the
main paper j refers to a model vertex index.

where the derivative of the normalization terms are given by

∂ϑm(q)

∂qj
=

δmj
||q||2

−
qmqj
||q||32

. (18)

and the other terms are easily calculated from equation
Eq. 3. For example,

∂R(p)

∂x
=


0 2y 2z 0
2y −4x −2w 0
2z 2w −4x 0
0 0 0 0

 . (19)

Figure 3. Samples from our Gaussian pose prior.

Turning to the second term on the right hand side of
Eq. 11 we see

∂Vi(θ)

∂θj
= −σ(−N3(ui; θ))(1−σ(−N3(ui; θ))

∂N3(ui; θ)

∂θj
(20)

where subscript 3s denote the Z component of the nor-
mal vectors, and ∂N3(ui;θ)

∂θj
can be calculated easily from

∂N̂(ui;θ)
∂θj

as it is simply a normalization (similar to ∂ϑ(q)
∂qj



above) and the calculation of ∂N̂(ui;θ)
∂θj

is similar to that of
∂M(ui;θ)

∂θj
above.

The remaining gradients of the full energy in the paper
can be derived analytically in a similar manner using stan-
dard calculus.
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