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Abstract

We address the problem of hand pose estimation, formu-

lated as an inverse problem. Typical approaches optimize

an energy function over pose parameters using a ‘black

box’ image generation procedure. This procedure knows lit-

tle about either the relationships between the parameters or

the form of the energy function. In this paper, we show that

we can significantly improve upon black box optimization

by exploiting high-level knowledge of the parameter struc-

ture and using a local surrogate energy function. Our new

framework, hierarchical sampling optimization, consists of

a sequence of predictors organized into a kinematic hier-

archy. Each predictor is conditioned on its ancestors, and

generates a set of samples over a subset of the pose pa-

rameters. The highly-efficient surrogate energy is used to

select among samples. Having evaluated the full hierar-

chy, the partial pose samples are concatenated to generate a

full-pose hypothesis. Several hypotheses are generated us-

ing the same procedure, and finally the original full energy

function selects the best result. Experimental evaluation on

three publically available datasets show that our method is

particularly impressive in low-compute scenarios where it

significantly outperforms all other state-of-the-art methods.

1. Introduction

Estimating the articulated pose of the human hand

presents unique challenges for computer vision algorithms.

The search space is high-dimensional, the hand can appear

in essentially any 3D global orientation, there are frequent

self-occlusions, and fingers have (locally) similar appear-

ance. Early success [1, 20, 4] has been accelerated by the

arrival of consumer depth cameras [13, 7, 12, 16, 25, 17, 21,

19], but the problem is far from solved.

Modern pose estimation algorithms attack the problem

with a ‘hybrid’ discriminative/generative approach. First,

a learned discriminative component makes a prediction di-
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Figure 1: Opening the black box. A typical black box op-

timization approach (left) will regress candidate full poses

and then iteratively update them based on the evaluation of

the energy function. Our approach (right) instead regresses

partial poses in a layered kinematic hierarchy, using a sur-

rogate energy function to keep only the best partial poses.

Our approach can achieve higher accuracy than black box

optimization, even without iteration.

rectly from the input image about either the pose parameters

themselves [17, 9] or some intermediates such as finger-

tip positions [16], hand joint positions [25], or hand parts

[7, 19]. Second, a generative component combines dis-

criminative and motion-based predictions in an optimiza-

tion over the pose parameters.

Also known as ‘analysis by synthesis’ or ‘inverse graph-

ics’, generative approaches aim to infer the hand pose pa-

rameters that allow one to generate or synthesize the input

image. Given a model of the hand, its pose (and some-

times shape [8]) parameters are optimized to minimize an

energy function. An ideal energy function is the reconstruc-

tion error: the distance between the observed image and a

synthetic rendering of the model. Unfortunately, the recon-
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struction error is hard to differentiate (though see e.g. [11])

and non-convex in the model parameters. One typically

therefore employs ‘black box’ optimization strategies such

as particle swarm optimization [14, 16, 17] that only require

function evaluations, without gradients. While black box

optimization can lead to high-quality results, it typically re-

quires a large number of function evaluations and is there-

fore computationally expensive.

In this paper we propose to open up the black box and

exploit our high-level knowledge about (i) the rendering

process, and (ii) the relationship between the pose param-

eters. Our approach has a tight coupling between the gener-

ative and discriminative aspects, and results in high quality

pose estimates at very high efficiency. Instead of directly

regressing and optimizing the full hand pose (e.g. [17]), our

new framework, termed hierarchical sampling optimiza-

tion, builds up the pose parameters layer by layer, guided

by the kinematic hierarchy. At each layer, a new set of can-

didate sample partial poses is regressed, conditioned on the

result at the previous layer. A surrogate energy function,

based on a high-level view of the rendering process, is in-

troduced to quickly cull the bad samples. This process is

repeated to generate multiple full pose hypotheses. Since

they are rather accurate, instead of using PSO as in [17], we

can simply rank and choose the best one as final output.

To demonstrate the efficacy of our approach, we perform

an exhaustive evaluation of our method on three publicly

available datasets. The experimental results show that our

method outperforms six state-of-the-art methods on these

datasets while considerably improving the efficiency com-

pared to black box approaches.

To the best of our knowledge, this is the first discrimina-

tively trained pipeline for inverting the graphics rendering

procedures that is guided by the relationships between the

arguments of the generative procedure. We expect that our

work can be more broadly applied to other vision tasks that

can be formulated as inverse problems.

Related Work A number of methods have been proposed

in the literature that approach hand pose estimation as an

inverse problem. A popular strategy adopted by such al-

gorithms is to use particle swarm optimization (‘PSO’) for

solving the inverse problem [14]. PSO hypothesizes a

‘swarm’ of particles (pose hypotheses) that are iteratively

perturbed based on their own and the other particles’ ener-

gies. However, the large number of particles required will

easily consume the entire rendering power of a high-end

GPU to achieve interactive frame rates. Sharp et al. [17]

use random forests to produce hand pose hypotheses that

are then refined further using PSO. Similar to other hybrid

approaches proposed in the literature, the work of [17] treats

the mapping from the model parameters to the rendered im-

age as a black box. In doing so, it ignores any available

knowledge about the generation process or the relationship

between different parameters of the model.

Some approaches break the problem into independent

pieces, predicting joint locations using forests [7] or neu-

ral networks [25], and stitching these together using inverse

kinematics. Tang et al. [22] approach the problem as a

coarse-to-fine search, by leveraging the latent relation be-

tween joints. A more explicit way of breaking the problem

is to exploit the kinematic structure, which has been stud-

ied in the field of human pose estimation [2, 6]. Sun et al.

[21] decompose the output using a hierarchical kinematic

structure. However, unlike our proposal, they do not refine

the predictions and also do not reason about the likelihood

of partial hypotheses as they are built. This prevents them

from pruning bad hypotheses quickly.

2. The Pose Estimation Inverse Problem

This section formulates hand pose estimation as an in-

verse problem. We denote the input depth image, viewed as

a function of pixel location u, as Z(u) ∈ [0,∞). Treating

pose estimation as an inverse problem explicitly assumes

that a hand with pose θ gives rise to a rendered depth im-

age Rθ(u) with the same range as Z(u). The goal is to

then invert the process by finding the parameters θ such that

Rθ ≃ Z. As our model of the true process which gave rise

to Z is imperfect, we cannot expect perfect equality, and

instead aim to minimize an energy function, the ‘golden en-

ergy’, that measures the error in reconstructing Z with Rθ.

Before detailing the golden energy, we first describe our

parameterization of the human hand. We will later high-

light the inherent structure in the pose parameters that our

optimization approach exploits. The full pose vector θ is ar-

ranged in a standard kinematic tree defined by the skeletal

structure of the hand (see Fig. 2 top right for an illustra-

tion).1 We use the wrist as the root of the tree, at which

the global translation and rotation of the hand is speci-

fied. The kinematic tree structure then approximates the hu-

man anatomical hand skeleton, with each joint’s parameters

specifying its rotation relative to its parent. As is standard

we assume a fixed hand shape that specifies the translations

of each joint relative to its parent.

2.1. The golden energy

Given a full pose vector θ, how can we evaluate how well

it ‘fits’ an observed test image? We exploit an energy func-

tion dubbed the ‘golden’ energy [17], which uses θ to render

a synthetic depth image of the hand and then compares each

pixel using a robust L1 term:

EAu(θ) =
∑

u

min(|Z(u)−Rθ(u)|, τ) , (1)

1MCP, PIP, and DIP stand for the metacarpophalangeal, proximal

interphalangeal, and distal interphalangeal joints, respectively.
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Figure 2: Layers in the pose hierarchy. Our approach

regresses a full hand pose hypothesis in four layers. At

each layer, we predict particular subsets of pose parame-

ters, conditioned on all the previous layers’ results. The

layers are aligned with the kinematic tree, shown top right:

layers 1 and 2 respectively predict wrist position and rota-

tion; layer 3 contains one forest per finger, each of which

predicts its respective MCP rotations (flexion and abduc-

tion); layer 4 also specializes per finger, and jointly predicts

the (highly correlated) flexions for the PIP and DIP joints.

Finally, we concatenate the partial poses resulting in a hy-

pothesis of the full hand pose.

where τ is a truncation threshold, here set to 100mm.

The golden energy is effective at penalizing incor-

rect poses, including common problems such as ‘model-

over-background’ and ‘background-over-model’. However,

computing EAu is expensive: due to self-occlusions, a full

rendering must be performed for each candidate value of θ

to obtain Rθ. Black box strategies to optimize EAu there-

fore tend to require high-end GPU compute to render the

possibly thousands of hypothesized poses that are needed

per frame [13, 17].

2.2. The silver energy

One of the main contributions of this paper is to show

that we can achieve state-of-the-art results that optimize the

golden energy Eq. 1, while requiring orders of magnitude

fewer full golden energy evaluations. The key insight is

that by exploiting the special kinematic structure of the pose

parameter vector, we can decompose the problem into sub-

problems which can be tackled independently using an effi-

cient surrogate (or proxy) energy, which we dub the ‘silver’

energy. Our silver energy, EAg, is inspired by [16], but dif-

fers in that it is applied to each joint separately rather than

to a full pose vector.

In our approach, we decompose θ into several partial

poses that follow the four layers specified in Fig. 2. Layers 3

and 4 further decompose θ by finger f , giving the complete

set of partial poses as: Θ = {θ1, θ2} ∪ {θ3f , θ4f : f ∈
{thumb, index,middle, ring, pinky}}.

The representation of partial poses is different for dif-

ferent layers of the framework. For instance, layer 1 pre-

dicts a global translational offset (the vector from the image

centroid to the wrist position), and thus θ1 ∈ R
3 is a 3D

Euclidean vector, while layer 2’s parameter set θ2 encodes

the global (palm) rotation as a unit quaternion [13, 17], and

so θ2 ∈ R
4. For the rest of the bones, Euler angles are

employed to represent bone rotations: the MCP joint has

two DoF (flexion and abduction) so θ3f ∈ R
2, whilst the

PIP and DIP joints have only 1 DoF each but are lumped

together so that θ4f lies in R
2 also. Note that while the

above parameterization has been presented specifically for

the human hand, our approach could straightforwardly be

extended to arbitrary tree structures.

For notational convenience we will use l to uniquely in-

dex any of the 12 partial poses, and ‘layer l’ to refer to the

layer that contains the partial pose with index l. Addition-

ally, we will use θ̄l to denote partial pose θl concatenated

with the partial poses of layer l’s ancestors.

The silver energy EAg(θ̄l) is defined in the following

manner for each partial pose θl. We first use standard for-

ward kinematic transformations (see e.g. [24]) to compute

the set of positions of the children bones Cl of partial pose

θl (the colored circles below each layer in the left column

of Fig. 2). We write ρl(θ̄l) to denote this set of positions.2

The silver energy is then computed given layer l’s predicted

child positions ρl(θ̄l) as

EAg(θ̄l) =
∑

x∈ρl(θ̄l)

[B(x) +D(x)] . (2)

The first term encourages each child to lie inside the ob-

2In more detail: Layer 1 predicts the wrist translation from the image

centroid θ1, which, added to the observed centroid CoM(Z) gives the

singleton set ρ1(θ̄1) = {θ1 + CoM(Z)}. Conditioned on θ̄1, layer 2

predicts the wrist rotation θ2, which uniquely determines the positions of

the five MCP joints as the set ρ2(θ̄2). Layer 3 predicts the MCP rotation

for each finger f , which uniquely determines the position of the PIP joint

as the singleton set ρ3f (θ̄3f ). Finally, layer 4 jointly predicts PIP and DIP

rotations, giving the DIP and fingertip positions as set ρ4f (θ̄4f ).
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Figure 3: Hierarchical sampling optimization. See text for details. Note that for simplicity, we only show the optimization

for the index finger at layer 4, which has parameters θ4i.

served silhouette, and is defined as

B(x) = dist(π(x);Z) , (3)

where π(x) projects a 3D position x into the image, and

dist(u;Z) represents the value of the 2D truncated distance

transform of the silhouette of hand input image Z at pixel

u. The distance values are truncated to 10 pixels (outside),

and then normalized to [0, 1] outside and all 0 inside.

The second term in the silver energy aims to ensure the

predicted depth at the child position roughly agrees with the

observed depth. It is defined as

D(x) =















0 if B(x) > 0

Ψ(Z(π(x))−xz−τ1
α

) if Z(π(x))− xz > τ1

Ψ(xz−Z(π(x))−τ2
α

) if xz − Z(π(x)) > τ2
0 otherwise

,

(4)

where xz represents the z-coordinate of 3D position x,

Ψ(x) = max(1, x). The thresholds τ1 and τ2 penalize the

child positions living too far in front or behind the observed

depth image. The whole silver energy can be considered as

an efficient approximate of a 3D distance transform, form-

ing a ‘safe zone’ within [τ1, τ2] behind the point cloud. If

a joint is outside this region, a penalty is given. We set τ1
to 15mm for the wrist and 5mm for other joints, whereas

τ2 is simply set to 250mm. α is set to 10mm to allow a

soft penalty around the ‘safe zone’ border. These values are

chosen based on the general size of a human hand.

Note that in contrast to the golden energy, the silver en-

ergy can be computed extremely efficiently and can also be

applied to partial poses θ̄l. In the following sections we de-

scribe our algorithm for using the silver energy to quickly

filter out bad partial pose hypotheses, greatly restricting the

search space when we optimize the golden energy.

3. Hierarchical Sampling Optimization

We now describe our main contribution, hierarchical

sampling optimization (HSO), a strategy for optimizing en-

ergies such as the golden energy. We start by providing a

high-level overview of the method. We then describe how

the method can efficiently sample partial poses using a re-

gression forest, and finally move on to explain how the pre-

dictors used in the hypotheses generation phase are discrim-

inatively trained.

3.1. Overview

The HSO approach is illustrated in Fig. 3. At a high-

level, it looks much like a standard black box inverter: we

generate N full hand pose hypotheses, and then select the

pose θ∗ with the lowest golden energy EAu(θ
∗). However,

unlike a standard approach, each hypothesis is built up by

following the kinematic structure of human hand which was

described in the previous section. Following many other

approaches e.g. [17], we assume that the foreground pixels

are pre-segmented.

Each layer l takes an evaluation position pl and generates

M sample values for the partial pose θl. Concatenating each

partial pose sample with its ancestors’ partial poses gives θ̄l,

allowing us to compute the sample’s child positions ρl(θ̄l)



and thereby the silver energy EAg. The sample with the

minimal silver energy value is selected, giving θ∗l . Temporal

information can optionally be incorporated by additionally

evaluating the best partial pose θ∗l from the previous frame

under EAg. The technique of multiple output with selection

has been proved to be effective for reducing error [5]. In

our method it is embedded into each level of hierarchy in

order to reduce accumulated error, an inherent problem of

all hierarchical methods.

We then proceed to each child l′ at the next layer, condi-

tioning on the result θ∗l just obtained by taking the new eval-

uation position pl′ from the relevant finger’s output child

position in ρl(θ̄
∗
l ). For the first layer, we use the image cen-

troid for the evaluation position, i.e. p1 = CoM(Z). After

layer 4, the full pose vector θ is reconstructed by simply

concatenating each layer’s best result.

3.2. Sampling partial poses

The only remaining question is how to sample the par-

tial poses θl. While in theory any sampling strategy could

be used (e.g. sampling from a learned Gaussian, or from

the prediction made by a convolutional neural network), we

use a discriminatively trained regression forest. A forest

Fl is trained to predict each partial pose θl. The samples

for θl are generated by evaluating the forest at just a sin-

gle pixel: the projection of 3D evaluation position pl into

the image. The forest itself is completely standard and uses

well-known pixel-pair comparison features; see below for

details. At each leaf node of forest Fl we store a learned

Gaussian mixture model over the parameters θl. We can

thus quickly draw M samples from this mixture model to

generate the samples of θl required for the hierarchical sam-

pling optimization. Note that the forest prediction, the mix-

ture model sampling, and the silver energy evaluation are

all extremely efficient.

3.3. Regression forests: testing and training

A regression forest [3] is simply an ensemble of decision

trees, where at test time each internal tree node routes data

to its left or right child-node by applying a threshold to a

(possibly non-linear) projection of the input features. Each

input ultimately ends up in a leaf node, where a distribution

is stored for sampling as described above.

We employ an adaptation of the commonly used two-

pixel difference function [18]:

φ(pl|δ1, δ2) = Z(π(pl) +
δ1

pzl
)− Z(π(pl) +

δ2

pzl
) (5)

where δ1 and δ2 are 2D offsets pointing to two neighbor-

ing pixels centered at the 2D projection π of pl (which has

z-coordinate pzl ), and as previously Z(u) retrieves a depth

value given 2D image position u. Note that unlike [18],

we use the predicted depth value pzl instead of the observed

depth Z(π(pl)) to scale-normalize the offsets, as it is possi-

ble that the observed depth is missing due to sensor noise.

Θρ ρ

ρ

Θ

 
 

Θ

Figure 4: 3 frames from NYU dataset[25]. Due to global

rotation, the same gesture looks rather different across these

frames. Although the 3D location ρ changes, joint angle θ

stays the same (in 3D) and trackable.

When training each tree, unlike previous methods that

are applied to all foreground pixels [7, 23], in theory we

only need 1 training examples corresponding to the evalua-

tion position pl per training image Z, paired with its output

label parameters θl. However in practice, to be more robust

to sensor noise and to minimize error accumulation at test

time, we jitter each pl with random offsets within the range

of ±5 pixels to generate 5 training examples per image.

As noted above, while θ1 is a 3D offset vector (indicat-

ing the translation from the centroid to the wrist location),

all other partial poses θl represent rotation angles. If one

simply labels each training sample with angles and trains

forest Fl accordingly there can be problems because the lo-

cal joint rotations we are trying to estimate do not necessar-

ily correlate with changes in appearance (and thus the fea-

ture responses of Eq. 5). This is illustrated in Fig. 4, where

local appearance varies significantly in these 3 frames due

to global rotation changes, but the index finger’s joint angle

that we are aiming to predict stays the same. Further, gener-

ating an output distribution G involves angle interpolation

on a circular domain, which is known to have artifacts such

as gimbal lock. Using quaternions as in [13, 17] can help

to avoid this problem, but will also introduce new problems

such as sign ambiguities in the interpolation. To avoid this

we apply the following simple fix. In addition to the param-

eter set θl, we also record a 3D offset vector ζl to the chil-

dren positions ρl. In particular, each data point is labeled

with a tuple (ζl, θl), where ζl = vec({x − pl : x ∈ ρl})
indicates a vector of 3D offsets from the current evaluation

point pl to each of its children output positions in ρl.

At training time, the 3D offset vectors are used to mini-

mize the following reduction-in-spatial-variance objective,

Q(Sl) = tr(ΣSl)−

{l,r}
∑

k

|Sk
l |

|Sl|

(

tr
(

ΣSk

l

))

, (6)

where tr(·) is the trace function and Σ is the sample covari-

ance matrix of the offset vectors which is well-correlated

with depth feature in Eq. 5. k ∈ {l, r} indicates the left or

right child node.



Leaf Model Likewise, we then use mean shift mode de-

tection to cluster the 3D offsets (with a bandwidth 0.01m).

After that data points of each cluster should be sufficiently

close to each other so that interpolation on the angles in θl
is not a problem. This allows us to directly fit a GMM Gl to

θl. In the case of a quaternion parameter, the sign of every

θl can be checked against the mean of its cluster, in order to

avoid any sign ambiguities. As these 3D offset vectors were

only used as a proxy for the true rotational parameters of

interest during training, we can directly sample joint angles

from Gl at test time without worrying about them.

4. Experiments

4.1. Dataset

We conduct our experiments on 3 publicly available

datasets: Microsoft Research Synthetic Hand Dataset

(MSHD) [17], ICVL [22] and NYU [25] , for they have

spanned a wide range of perspectives (see Table 1). Note

that the ICVL and NYU datasets only provide 3D joint lo-

cations as label, whereas our method require joint angles for

training. To tackle this, inspired by the inverse kinematic

step in [25], we use PSO to fit their groundtruth joint lo-

cations and recover angles. All experiments are conducted

with Intel i7, 32GB RAM and an Nvidia Quadro K600.

Table 1: Description of datasets

Dataset Sensor Description

MSHD [17] Kinect2 synthetic data,

full range of views,

individual frames

ICVL [22] Intel real data,

restricted range of views,

fast movement

NYU [25] PrimeSense real data (high noise),

medium range of views,

slow movement

4.2. Self-comparison

To analyze the contributions of our method, a set of

self-comparison experiments are conducted on the ICVL

dataset [22] for its relatively compact size. Each forest is

empirically trained with 3 trees and maximum depth of 15.

We first conduct an experiment to reveal the impact of

of hierarchical optimization, by comparison between these

two baselines: M = 1 (i.e. no per-joint optimization) and

M = 30. To analyze the boost in both accuracy and effi-

ciency, we vary N to obtain a curve showing the trade-off

between them (Fig. 5(a)). For M = 1, N is varied from

100 to 1000, with a step size of 100; for M = 30, N can

be much smaller. So we choose N from 5 to 20 with step

size of 5. As Fig. 5(a) shows, the average error drops more

drastically when M = 30, without increasing too much of

time budget. From the accuracy prospective, to achieve the

same error of 14.5mm, M = 30 only requires 17% time

cost of M = 1.

Our second attempt is to perform a parameter analysis on

M and N . To uniformly sample from all trees, M is always

set to multiple of T = 3. As in Fig. 5(b), the error reduces

2mm and 4mm for the first step of N and M respectively.

However, once they are combined (N = 10,M = 15),

accuracy is improved by 10mm. After N = 40 and M =
30, the error is still decreasing but converged.

4.3. Comparison with Prior Work

We then move on to compare HSO with six state

of the art methods including Sharp et al. [17], Sun et

al. [21], Tompson et al. [25], Latent Regression Forest

(LRF) [22], Keskin et al. [7] and Intel R© Perceptual Com-

puting (PXC) [12]. These methods cover a wide spectrum

of sensors, perspectives of challenges and different meth-

ods from decision forests to deep neural networks. All their

results are either obtained from the authors or implementa-

tions that appear in previous literature. In all cases, each

HSO is trained with 3 trees and maximum depth of 15 em-

pirically. Note that in the experiments of ICVL and NYU,

only one HSO is needed, whereas 128 HSOs are needed

with MSHD dataset for the reason presented below.

The ICVL dataset consists of 2 sequences that with fast

abrupt gestures, which often causes tracking to fail. We

adopt the maximum allowed error as metric ǫ [24]. All

methods except PXC are individual-frame based. PXC is

tracking-based, but with an open hand pose detector as a

reinitializer, which explains why its curve shows it is par-

ticularly good at some poses but performs poorly overall.

Sun et al., due to its hierarchical structure and cascaded re-

gressor, performs well, but HSO is able to further improve

accuracy by about 15% of frames when ǫ = 20mm.

On the NYU dataset we compare HSO with Tompson et

al. [25] that is based on Convolutional Neural Networks.

Following their setting, the evaluation is done in UV space.

Their result contains 14 keypoint locations. To be able to

compare fairly, we find a common subset of 12 joint loca-

tions to compare (remove palm center and the hamate bone

position). The slow hand movements in this dataset favor

tracking-based methods like [25]. Different from their ap-

proach, we incorporate temporal information hierarchically

as described in Section 3.1. As shown in Fig. 7, our method

performs better in most cases, and gives sometimes espe-

cially high accuracy predictions. However, due to the struc-

tured light sensor it uses, the sequences contain relatively

high noise and sometimes significantly portion of missing
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Figure 5: Self comparison on the ICVL dataset [22].
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Figure 6: Comparing on the ICVL

dataset [22].
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Figure 7: Results on NYU dataset [25].
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(a) Comparing the accuracy and efficiency

trade-off with [17]
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(b) Comparing with the discriminative

part of [17]

Figure 8: Results on MSHD dataset [17].

pixels. This makes the silver energy fail and degrades our

accuracy on the difficult cases.

Finally we compare with [17] on their MSHD dataset.

Despite the use of synthetic data, this dataset is particularly

challenging, since it exhibits a full range of global rotations.

As described in [17], such a diverse data distribution re-

quires very deep decision trees to have satisfying accuracy,

which leads to considerable memory consumption. Follow-

ing their solution, we utilize the same rotation space clas-

sifier (obtained from the authors) to quantize the space into

128 clusters, and train an HSO for each. Moreover, on some

global rotations, for instance, egocentric view, the hand can

be occluded by the forearm. Thus we use an extra step to

randomize forearm positions and use the golden energy to

choose the best one.

Firstly, conditioned on ground-truth global rotation re-

sults, we compare HSO and Sharp et al. [17]. In order to

vary time cost, we change N of HSO, and the number of

PSO generations in [17]. Note that to compare fairly, the

starting pose in [17] is discarded, so that both methods do

not utilize any temporal information. As a result, PSO finds

it very difficult to converge just with particles from their

discriminative part. HSO outperforms in both accuracy and

efficiency, as shown in Fig. 8(a).

We next replace the PSO part in [17] with the same

golden energy selector as in our case, just to compare the

discriminative parts. Here we consider two cases: using

the groundtruth global rotation cluster, or being probabilis-

tically conditioned on the results of the global rotation clas-

sifier, as in [17]. In both cases HSO substantially outper-

forms [17], as shown in Fig. 8(b). Furthermore, the fact

that the curves using the groundtruth global rotation cluster

is much better, indicates that their global rotation classifier

(random ferns in this case), has hindered the accuracy of the

whole pipeline.

In terms of efficiency, from Fig. 5(a) and Fig. 8(a) we

can gather that HSO can achieve a satisfying accuracy while

running at a speed of 50fps.

Qualitative results are demonstrated in Fig. 9. Despite

the quantitative proof of reduction in error accumulation,

the 5th row of MSHD results gives an example of failed

palm orientation estimation (groundtruth is facing up whilst

prediction is facing down), and inevitably all the rest of

the joint predictions are wrong. Also, failed cases with the

NYU dataset shows how missing pixels affects the predic-

tions.
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Figure 9: Example successes and failures (due to difficult angle, unclean segmentation and noise, etc.) across three datasets.

5. Conclusion

The golden energy, as introduced by [17], is in many

senses the ideal energy to evaluate the fit of a model to in-

put depth data. The idea is simple: just render and compare.

Unfortunately, this energy is notoriously hard to optimize,

with elusive gradients and many local minima, making tra-

ditional black-box optimization techniques extremely brit-

tle and inefficient. Indeed, Sharp et al. go to considerable

lengths engineering a system at a very low level in order to

make the black-box optimization work at real-time, albeit at

the expense of complete saturation of a top of the line GPU.

In contrast, our work recognizes the fact that we are solv-

ing similar instances of the same problem repeatedly, and

thus some knowledge of the problem domain can, and al-

most surely should be applied to the optimization proce-

dure. In particular, we exploit the fact that subsets of the pa-

rameters have subtle relations that can be tested for, via our

silver energy, and exploited to drastically reduce the number

of hypotheses tested by the more expensive golden energy.

This allows us to achieve state of the art results on markedly

reduced computational budgets.

Regardless, we recognize the fact that there is more work

to be done, and are optimistic by the fact that this method

can be so easily modified by replacing the energies and re-

gressors used. For example, although the golden energy

is extremely well motivated from a modelling perspective,

there continues to be a model mismatch due to inaccuracies

in our hand model and non-gaussian sensor noise. As we

ultimately want to minimize the prediction of joint angles,

which we might call the platinum energy, while being robust

to these model defects we might consider actually learning

a mapping from the depth image, rendered image pair to the

platinum energy value.

In addition, there are many complimentary and promis-

ing future directions. From a graphical model point of

view, our algorithm utilizes only one kinematic structure,

going from the wrist to finger tips, which was decided in-

tuitively. This could be combined with other structures to

have more robust results. Also considering contextual infor-

mation from already predicted joints would encode an im-

plicit collision term, which is absent in the current Markov

structure. Moreover, when training the forest, we could try

to explicitly encourage the samples from each layer to be

diverse, as is done in [5, 10, 15], in order to increase the

chances of finding a good sample. Additionally the cas-

caded regressors in Sun et al. [21] can be naturally incorpo-

rated into our hierarchical framework and thus might further

improve the accuracy.
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