
TerpreT: A Probabilistic Programming Language for Program
Induction

Alexander L. Gaunt
Microsoft Research

t-algaun@microsoft.com

Marc Brockschmidt
Microsoft Research

mabrocks@microsoft.com

Rishabh Singh
Microsoft Research

risin@microsoft.com

Nate Kushman
Microsoft Research

nkushman@microsoft.com

Pushmeet Kohli
Microsoft Research

pkohli@microsoft.com

Jonathan Taylor
perceptiveIO∗

jtaylor@perceptiveio.com

Daniel Tarlow
Microsoft Research

dtarlow@microsoft.com

Abstract

We study machine learning formulations of inductive program synthesis; that is, given input-output
examples, we would like to synthesize source code that maps inputs to corresponding outputs. Our
aims in this work are to develop new machine learning approaches to the problem based on neural
networks and graphical models, and to understand the capabilities of machine learning techniques
relative to traditional alternatives, such as those based on constraint solving from the programming
languages community.

Our key contribution is the proposal of TerpreT, a domain-specific language for expressing
program synthesis problems. TerpreT is similar to a probabilistic programming language: a model
is composed of a specification of a program representation (declarations of random variables) and an
interpreter that describes how programs map inputs to outputs (a model connecting unknowns to
observations). The inference task is to observe a set of input-output examples and infer the underlying
program. TerpreT has two main benefits. First, it enables rapid exploration of a range of domains,
program representations, and interpreter models. Second, it separates the model specification from
the inference algorithm, allowing proper like-to-like comparisons between different approaches to
inference. From a single TerpreT specification we can automatically perform inference using four
different back-ends that include machine learning and program synthesis approaches. These are based
on gradient descent (thus each specification can be seen as a differentiable interpreter), linear program
(LP) relaxations for graphical models, discrete satisfiability solving, and the Sketch program synthesis
system.

We illustrate the value of TerpreT by developing several interpreter models and performing an
extensive empirical comparison between alternative inference algorithms on a variety of program
models. Our key, and perhaps surprising, empirical finding is that constraint solvers dominate the
gradient descent and LP-based formulations. We conclude with some suggestions on how the machine
learning community can make progress on program synthesis.

1 Introduction
Learning computer programs from input-output examples, or Inductive Program Synthesis (IPS), is a
fundamental problem in computer science, dating back at least to Summers (1977) and Biermann (1978).
The field has produced many successes, with perhaps the most visible example being the FlashFill system
in Microsoft Excel (Gulwani, 2011; Gulwani et al., 2012).

∗Work done while author was at Microsoft Research.

1

ar
X

iv
:1

60
8.

04
42

8v
1

 [
cs

.L
G

]
 1

5
A

ug
 2

01
6

Learning from examples is also studied extensively in the statistics and machine learning communities.
Trained decision trees and neural networks could be considered to be synthesized computer programs,
but it would be a stretch to label them as such. Relative to traditional computer programs, these models
typically lack several features: (a) key functional properties are missing, like the ability to interact with
external storage, (b) there is no compact, interpretable source code representation of the learned model (in
the case of neural networks), and (c) there is no explicit control flow (e.g. while loops and if statements).
The absence of a precise control flow is a particular hindrance as it can lead to poor generalization.
For example, whereas natural computer programs are often built with the inductive bias to use control
statements ensuring correct execution on inputs of arbitrary size, models like Recurrent Neural Networks
can struggle to generalize from short training instances to instances of arbitrary length.

Several models have already been proposed which start to address the functional differences between
neural networks and computer programs. These include Recurrent Neural Networks (RNNs) augmented
with a stack or queue memory (Giles et al., 1989; Joulin and Mikolov, 2015; Grefenstette et al., 2015), Neu-
ral Turing Machines (Graves et al., 2014), Memory Networks (Weston et al., 2014), Neural GPUs (Kaiser
and Sutskever, 2016), Neural Programmer-Interpreters (Reed and de Freitas, 2016), and Neural Random
Access Machines (Kurach et al., 2015). These models combine deep neural networks with external memory,
external computational primitives, and/or built-in structure that reflects a desired algorithmic structure
in their execution. Furthermore, they have been been shown to be trainable by gradient descent. However,
they do not fix all of the absences noted above. First, none of these models produce programs as output.
That is, the representation of the learned model is not interpretable source code. Instead, the program is
hidden inside “controllers” composed of neural networks that decide which operations to perform, and
the learned “program” can only be understood in terms of the executions that it produces on specific
inputs. Second, there is still no concept of explicit control flow in these models.

These works raise questions of (a) whether new models can be designed specifically to synthesize
interpretable source code that may contain looping and branching structures, and (b) whether searching
over program space using techniques developed for training deep neural networks is a useful alternative
to the combinatorial search methods used in traditional IPS. In this work, we make several contributions
in both of these directions.

To address the first question we develop models inspired by intermediate representations used in
compilers like LLVM (Lattner and Adve, 2004) that can be trained by gradient descent. These models
address all of the deficiencies highlighted at the beginning of this section: they interact with external
storage, handle non-trivial control flow with explicit if statements and loops, and, when appropriately
discretized, a learned model can be expressed as interpretable source code. We note two concurrent works,
Adaptive Neural Compilation (Bunel et al., 2016) and Differentiable Forth (Riedel et al., 2016), which
implement similar ideas. Each design choice when creating differentiable representations of source code
has an effect on the inductive bias of the model and the difficulty of the resulting optimization problem.
Therefore, we seek a way of rapidly experimenting with different formulations to allow us to explore the
full space of modelling variations.

To address the second question, concerning the efficacy of gradient descent, we need a way of specifying
an IPS problem such that the gradient based approach can be compared to a variety of alternative
approaches in a like-for-like manner. These alternative approaches originate from both a rich history
of IPS in the programming languages community and a rich literature of techniques for inference in
discrete graphical models in the machine learning community. To our knowledge, no such comparison has
previously been performed.

These questions demand that we explore both a range of model variants and a range of search
techniques on top of these models. Our answer to both of these issues is the same: TerpreT, a new prob-
abilistic programming language for specifying IPS problems. TerpreT provides a means for describing
an execution model (e.g., a Turing Machine, an assembly language, etc.) by defining a parameterization (a
program representation) and an interpreter that maps inputs to outputs using the parametrized program.
This TerpreT description is independent of any particular inference algorithm. The IPS task is to infer
the execution model parameters (the program) given an execution model and pairs of inputs and outputs.
To perform inference, TerpreT is automatically “compiled” into an intermediate representation which
can be fed to a particular inference algorithm. Interpretable source code can be obtained directly from
the inferred model parameters. The driving design principle for TerpreT is to strike a subtle balance
between the breadth of expression needed to precisely capture a range of execution models, and the

2

Technique name Family Optimizer/Solver Description

FMGD
(Forward marginals,
gradient descent)

Machine
learning

TensorFlow A gradient descent based approach which
generalizes the approach used by Kurach
et al. (2015).

(I)LP
((Integer) linear pro-
gramming)

Machine
learning

Gurobi A novel linear program relaxation approach
based on adapting standard linear program
relaxations to support Gates (Minka and
Winn, 2009).

SMT
(Satisfiability mod-
ulo theories)

Program
synthesis

Z3 Translation of the problem into a first-order
logical formula with existential constraints.

Sketch Program
synthesis

Sketch View the TerpreT model as a partial pro-
gram (the interpreter) containing holes (the
source code) to be inferred according to a
specification (the input-output examples).

Table 1: Overview of considered TerpreT back-end inference algorithms.

restriction of expression needed to ensure that automatic compilation to a range of different back-ends is
tractable.

TerpreT currently has four back-end inference algorithms, which are listed in Table 1: gradient-
descent (thus any TerpreT model can be viewed as a differentiable interpreter), (integer) linear program
(LP) relaxations, SMT, and the Sketch program synthesis system (Solar-Lezama, 2008). To allow all
of these back-ends to be used regardless of the specified execution model requires some generalizations
and extensions of previous work. For the gradient descent case, we generalize the approach taken by
Kurach et al. (2015), lifting discrete operations to operate on discrete distributions, which then leads
to a differentiable system. For the linear program case, we need to extend the standard LP relaxation
for discrete graphical models to support if statements. In Section 4.3, we show how to adapt the ideas
of gates (Minka and Winn, 2009) to the linear program relaxations commonly used in graphical model
inference (Schlesinger, 1976; Werner, 2007; Wainwright and Jordan, 2008). This could serve as a starting
point for further work on LP-based message passing approaches to IPS (e.g., following Sontag et al.
(2008)).

Finally, having built TerpreT, it becomes possible to develop understanding of the strengths and
weaknesses of the alternative approaches to inference. To understand the limitations of using gradient
descent for IPS problems, we first use TerpreT to define a simple example where gradient descent fails,
but which the alternative back-ends solve easily. By studying this example we can better understand the
possible failure modes of gradient descent. We prove that there are exponentially many local optima in the
example and show empirically that they arise often in practice (although they can be mitigated significantly
by using optimization heuristics like adding noise to gradients during training (Neelakantan et al., 2016b)).
We then perform a comprehensive empirical study comparing different inference back-ends and program
representations. We show that some domains are significantly more difficult for gradient descent than others
and show results suggesting that gradient descent performs best when given redundant, overcomplete
parameterizations. However, the overwhelming trend in the experiments is that the techniques from the
programming languages community outperform the machine learning approaches by a significant margin.

In summary, our main contributions are as follows:

• A novel ‘Basic Block’ execution model that enables learning programs with complex control flow
(branching and loops).

• TerpreT, a probabilistic programming language tailored to IPS, with back-end inference algorithms
including techniques based on gradient descent, linear programming, and highly-efficient systems
from the programming languages community (SMT and Sketch). TerpreT also allows “program

3

(= ,)

if > 0

then else

regout instr regin1 regin2

regcond

Current Block

blockthen blockelse

Figure 1: Diagram of the Basic Block program representation. Empty boxes and connections denote
per-block unknown parameters to be filled in by the inference algorithm. The choice of which block to go
to in the then and else conditions are also unknown parameters. The domain of unknown parameters is
described in the small blue text. An assignment to all unknown parameters yields a program.

sketching”, in which a partial solution is provided to the IPS system. For this, some parameters of
an execution model can simply be fixed, e.g. to enforce control flow of a specified shape.

• A novel linear program relaxation to handle the if statement structure that is common in execution
models, and a generalization of the smoothing technique from Kurach et al. (2015) to work on any
execution model expressible in TerpreT.

• Analytic and experimental comparisons of different inference techniques for IPS and experimental
comparisons of different modelling assumptions.

This report is arranged as follows: We briefly introduce the ‘Basic Block’ model in Section 2 to discuss
what features TerpreT needs to support to allow modeling of rich execution models. In Section 3 we
describe the core TerpreT language and illustrate how to use it to explore different modeling assumptions
using several example execution models. These include a Turing Machine, Boolean Circuits, a RISC-like
assembly language, and our Basic Block model. In Section 4 we describe the compilation of TerpreT
models to the four back-end algorithms listed in Table 1. Quantitative experimental results comparing
these back-ends on the aforementioned execution models is presented in Section 6. Finally, related work
is summarized in Section 7 and we discuss conclusions and future work in Section 8.

2 Motivating Example: Differentiable Control Flow Graphs
As an introductory example, we describe a new execution model that we would like to use for IPS. In this
section, we describe the model at a high level. In later sections, we describe how to express the model in
TerpreT and how to perform inference.

Control flow graphs (CFGs) (Allen, 1970) are a representation of programs commonly used for static
analysis and compiler optimizations. They consist of a set of basic blocks, which contain sequences of
instructions with no jumps (i.e., straight-line code) followed by a jump or conditional jump instruction
to transfer control to another block. CFGs are expressive enough to represent all of the constructs used
in modern programming languages like C++. Indeed, the intermediate representation of LLVM is based
on basic blocks.

Our first model is inspired by CFGs but is limited to use a restricted set of instructions and does
not support function calls. We refer to the model as the Basic Block model. An illustration of the model
appears in Fig. 1. In more detail, we specify a fixed number of blocks B, and we let there be R registers
that can take on values 0, . . . ,M − 1. We are given a fixed set of instructions that implement basic

4

Interpreter

Source Code Inputs

Outputs

Execution

(a)

TERPRET interpreter model

Params OBSERVED_INPUTS

OBSERVED_OUTPUTS

Inference

(c)

TERPRET interpreter model

Params OBSERVED_INPUTS

Outputs

(b)

Execution
Observed
element

Unobserved
element

Figure 2: A high level view of the program synthesis task. Forward execution of a traditional program
interpreter is shown in (a) for analogy with the forward mode (b) and reverse mode (c) of a TerpreT
IPS system.

arithmetic operations, like ADD, INCREMENT, and LESS-THAN. An external memory can be written to and
read from using special instructions READ and WRITE. There is an instruction pointer that keeps track
of which block is currently being executed. Each block has a single statement parameterized by two
argument registers, the instruction to be executed, and the register in which to store the output. After
the statement is executed, a condition is checked, and a branch is taken. The condition is parameterized
by a choice of register to check for equality to 0 (C-style interpretation of integers as booleans). Based
upon the result, the instruction pointer is updated to be equal to the then block or the else block. The
identities of these blocks are the parameterization of the branch decision.

The model is set up to always start execution in block 0, and a special end block is used to denote
termination. The program is executed for a fixed maximum number of timesteps T . To represent input-
output examples, we can set an initial state of external memory, and assert that particular elements in
the final memory should have the desired value upon termination.

The job for TerpreT in this case is to precisely describe the execution model—how statements
are executed and the instruction pointer is updated—in a way which can be translated into a fully
differentiable interpreter for the Basic Block language or into an intermediate representation for passing
to other back-ends. In the next sections, we describe in more detail how TerpreT execution models are
specified and how the back-ends work.

3 Front-end: Describing an IPS problem
One of our central aims is to disentangle the description of an execution model from the inference task so
that we can perform like-for-like comparisons between different inference approaches to the same IPS task.
For reference, the key components for solving an IPS problem are illustrated in Fig. 2. In the forward
mode the system is analogous to a traditional interpreter, but in a reverse mode, the system infers a
representation of source code given only observed outputs from a set of inputs. Even before devising an
inference method, we need both a means of parameterizing the source code of the program, and also a
precise description of the interpreter layer’s forward transformation. This section describes how these
modeling tasks are achieved in TerpreT.

3.1 The TerpreT Probabilistic Programming Language
The full grammar for syntactically correct TerpreT programs is shown in Fig. 3, and we describe the key
semantic features of the language in the following sections. For illustration, we use a running example of a
simple automaton shown in Fig. 4. In this example the ‘source code’ is parameterised by a 2× 2 boolean
array, ruleTable, and we take as input the first two values on a binary tape of length T , {tape[0],
tape[1]}. The forward execution of the interpreter could be described by the following simple Python
snippet:

1 for t in range(1, T − 1):
2 tape[t + 1] = ruleTable[tape[t − 1], tape [t]]

5

Const Expr c := n | vc | f(c1, · · · , ck) | c0 opa c1

Arith Expr a := v | c | v[a1, · · · , ak] | a0 opa a1 | f(a0, · · · , ak)

Arith Op opa := + | - | * | / | %

Bool Expr b := a0 opc a1 | not b | b0 and b1 | b0 or b1

Comp Op opc := == | < | > | <= | >=

Stmt s := s0 ; s1 | return a

| a0.set to(a1) | a.set to constant(c) | a0.observe value(a1)

| if b0: s0 else: s1

| for v in range(c1) : s | for v in range(c1, c2) : s

| with a as v : s

Decl Stmt sd := sd0 ; sd1 | vc = c | vc = # HYPERPARAM vc

| v = Var(c) | v = Var(c)[c1, · · · ,ck]

| v = Param(c) | v = Param(c)[c1, · · · ,ck]

| @CompileMe([c1, · · · ,ck],cr); def f(v0, · · · ,vk):s

Input Decl si := # IMPORT OBSERVED INPUTS

Output Decl so := # IMPORT OBSERVED OUTPUTS

Program p := sd; si; s; so

Figure 3: The syntax of TerpreT, using natural numbers n, variable names v, constant names vc and
function names f .

Given an observed output, tape[T − 1], inference of a consistent ruleTable is very easy in this toy
problem, but it is instructive to analyse the TerpreT implementation of this automaton in the following
sections. These sections describe variable declaration, control flow, user defined functions and handling
of observations in TerpreT.

3.1.1 Declarations and Assignments

We allow declarations to give names to “magic” constants, as in line 1 of Fig. 4. Additionally, we allow
the declaration of parameters and variables, ranging over a finite domain 0, 1, . . . N − 1 using Param(N)
and Var(N), where N has to be a compile-time constant (i.e., a natural number or an expression over
constants). Parameters are used to model the source code to be inferred, whereas variables are used to
model the computation (i.e., intermediate values). For convenience, (multi-dimensional) arrays of variables
can be declared using the syntax foo = Var(N)[dim1, dim2, ...], and accessed as foo[idx1, idx2,
...]. Similar syntax is available for Params. These arrays can be unrolled during compilation such that
unique symbols representing each element are passed to an inference algorithm, i.e., they do not require
special support in the inference backend. For this reason, dimensions dimi and indices idxi need to be
compile-time constants. Example variable declarations can be seen in lines 6 and 11 of Fig. 4.

Assignments to declared variables are not allowed via the usual assignment operator (var = expr)
but are instead written as var.set to(expr), to better distinguish them from assignments to constant
variables. Static single assignment (SSA) form is enforced, and it is only legal for a variable to appear
multiple times as the target of set to statements if each assignment appears in different cases of a
conditional block. Because of the SSA restriction, a variable can only be written once. However, note that
programs that perform multiple writes to a given variable can always be translated to their corresponding
SSA forms.

6

1 const T = 5

2

3 ###

4 # Source code parametrisation #

5 ###

6 ruleTable = Param(2)[2, 2]

7

8 ###

9 # Interpreter model #

10 ###

11 tape = Var(2)[const T]

12

13 # IMPORT OBSERVED INPUTS

14 for t in range(1, const T − 1):
15 with tape[t] as x1:

16 with tape[t − 1] as x0:
17 tape[t + 1].set to(ruleTable[x0, x1])

18 # IMPORT OBSERVED OUTPUTS

0

1

0

1
copy

0

1

[0]tape[1]

tape[2]

0

1

0

1

0

1

tape[const_T - 1]

0

1

0

1
copy

0

1

ruleTable

[0,1]

[1,0]

[1,1]

[0,0]

Figure 4: Illustrative example of a TerpreT script and corresponding factor graph which describe a toy
automaton that updates a binary tape according to the previous two entries and a rule (refer to Fig. 7
for definition of graphical symbols).

3.1.2 Control flow

TerpreT supports standard control-flow structures such as if-else (where elif is the usual shorthand
for else if) and for. In addition, TerpreT uses a unique with structure. The need for the latter is
induced by our requirement to only use compile-time constants for accessing arrays. Thus, to set the
2nd element of tape in our toy example (i.e., the first step of the computation), we need code like the
following to access the values of the first two values on the tape:

1 if tape[1] == 0:

2 if tape[0] == 0:

3 tape[2].set to(ruleTable[0,0])

4 elif tape[0] == 1:

5 tape[2].set to(ruleTable[1,0])

6 elif tape[1] == 1:

7 if tape[0] == 0:

8 tape[2].set to(ruleTable[0,1])

9 elif tape[0] == 1:

10 tape[2].set to(ruleTable[1,1])

Intuitively, this snippet simply performs case analyses over all possible values of tape[1] and tape[0].
To simplify this pattern, we introduce the with var as id: stmt control-flow structure, which allows to
automate this unrolling, or avoid it for back-ends that do not require it (such as Sketch). To this end,
all possible possible values 0, . . . , N − 1 of var (known from its declaration) are determined, and the
with-statement is transformed into if id == 0 then: stmt[var/0]; elif id == 1 then: stmt[var/1];
...elif id == n then: stmt[var/(N − 1)];, where stmt[var/n] denotes the statement stmt in which

7

1 const T = 5

2

3 @CompileMe([2, 2], 3)

4 def add(a, b):

5 s = a + b

6 return s

7

8 ###

9 # Source code parametrisation #

10 ###

11 ruleTable = Param(2)[3]

12

13 ###

14 # Interpreter model #

15 ###

16 tape = Var(2)[const T]

17 tmpSum = Var(3)[const T − 1]
18

19 # IMPORT OBSERVED INPUTS

20 for t in range(1, const T − 1):
21 tmpSum[t].set to(add(tape[t − 1], tape[t]))
22 with tmpSum[t] as s:

23 tape[t + 1].set to(ruleTable[s])

24 # IMPORT OBSERVED OUTPUTS

0

1

2

0

1

2

0

1

2

ruleTable

[1]

[2]

[0]

[1]tape[0]

tape[2]

copy
add

add

tape[3]

tape[const_T - 1]

Figure 5: An example TerpreT script and the corresponding factor graph which describe a toy automaton
that updates a binary tape according to the previous two entries and a rule.

all occurrences of the variable var have been replaced by n. Thus, the snippet from above can be written
as follows.

1 with tape[1] as x1:

2 with tape[0] as x0:

3 tape[2].set to(ruleTable[x0,x1])

In TerpreT, for loops may only take the shape for id in range(c1, c2): stmt, where c1 and c2
are compile-time constants. Similar to the with statement, we can unroll such loops explicitly during
compilation, and thus if the values of c1 and c2 are n1 and n2, we generate stmt[id/n1]; stmt[id/(n1 +1)];
...; stmt[id/(n2 − 1)]. Using the with and for statements, we can thus describe the evaluation of our
example automaton for const T timesteps as shown in lines 14-17 of Fig. 4.

3.1.3 Operations

TerpreT supports user-defined functions to facilitate modelling interpreters supporting non-trivial in-
struction sets. For example, bar(arg1,. . .,argM) will apply the function bar to the arguments arg1,. . .,argM .
The function bar: ZM → Z can be defined as a standard Python function with the additional decoration
@CompileMe(in domains, out domain), specifying the domains of the input and output variables.

To illustrate this feature, Fig. 5 shows variation of the running example where the automaton updates
the tape according to a ruleTable which depends only on the sum of the preceding two entries. This is

8

implemented using the function add in lines 3-6. Note that we use standard Python to define this function
and leave it up to the compiler to present the function appropriately to the inference algorithm.

3.1.4 Modelling Inputs and Outputs

Using statements from the preceding sections, an execution model can be fully specified, and we now
connect this model to input/output observations to drive the program induction. To this end, we use
the statements set to constant (resp. observe value) to model program input (resp. program output).
Thus, a single input-output observation for the running example could be written in TerpreT as follows.

1 # input

2 tape[0].set to constant(1)

3 tape[1].set to constant(0)

4

5 # output

6 tape[const T − 1].observe value(1)

To keep the execution model and the observations separate, we store the observation snippets in a
separate file and use preprocessor directives # IMPORT OBSERVED * to pull in the appropriate snippets
before compilation (see lines 13 and 18 of Fig. 4). We also allow any constant literals to be stored
separately from the TerpreT execution model, and we import these values using preprocessor directives
of the form vc = # HYPERPARAM vc .

In general, we want to infer programs from nobs > 1 input-output examples. The simplest implemen-
tation achieves this by augmenting each Var declaration with an additional array dimension of size nobs
and wrapping the execution model in a for loop over the examples. Examples of this are the outermost
loops in the models in Appendix B.

3.2 Example Execution Models
To illustrate the versatility of TerpreT, we use it to describe four example execution models. Broadly
speaking, the examples progress from more abstract execution models towards models which closely
resemble assembly languages for RISC machines.

In each case, we present the basic model and fill in three representative synthesis tasks in Table 2
to investigate. In addition, we provide the metrics for the “difficulty” of each task calculated from the
minimal computational resources required in a solution. Since the difficulty of a synthesis problem generally
depends on the chosen inference algorithm these metrics are primarily intended to give a sense of the scale
of the problem. The first difficulty metric, D, is the number of structurally distinct (but not necessarily
functionally distinct) programs which would have to be enumerated in a worst-case brute-force search,
and the second metric, T , is the unrolled length of all steps in the synthesized program.

3.2.1 Automaton: Turing Machine

A Turing machine consists of an infinite tape of memory cells which each contain one of S symbols, and
a head which moves over the tape in one of H + 1 states (one state is the special halt case). At each
execution step, while the head is in an unhalted state ht, it reads the symbol st at its current position, xt,
on the tape, then it writes the symbol newValue[st,ht] to position xt, moves in the direction specified
by direction[st,ht] (one cell left or right or no move) and adopts a new state newState[st,ht]. The
source code for the Turing machine is the entries of the control tables newValue, direction and newState,
which can be in any of D = [3S(H + 1)]SH configurations.

We modify the canonical Turing machine to have a circular tape of finite length, L, as described in
the TerpreT model in Appendix B.1. For each of our examples, we represent the symbols on the tape
as {0, 1, blank}.

9

TURING MACHINE H L log10 D T Description

Invert 1 5 4 6 Move from left to right along the tape and invert all
the binary symbols, halting at the first blank cell.

Prepend zero 2 5 9 6 Insert a “0” symbol at the start of the tape and shift
all other symbols rightwards one cell. Halt at the
first blank cell.

Binary decrement 2 5 9 9 Given a tape containing a binary encoded number
bin > 0 and all other cells blank, return a tape con-
taining a binary encoding of bin − 1 and all other
cells blank.

BOOLEAN CIRCUITS R log10 D T Description

2-bit controlled shift regis-
ter

4 10 4 Given input registers (r1, r2, r3), output (r1, r2, r3)
if r1 == 0 otherwise output (r1, r3, r2) (i.e. r1 is
a control bit stating whether r2 and r3 should be
swapped).

full adder 4 13 5 Given input registers (cin, a1, b1) representing a carry
bit and two argument bits, output a sum bit and
carry bit (s, cout), where s+ 2cout = cin + a1 + b1.

2-bit adder 5 22 8 Perform binary addition on two-bit numbers: given
registers (a1, a2, b1, b2), output (s1, s2, cout) where
s1 + 2s2 + 4cout = a1 + b1 + 2(a2 + b2).

BASIC BLOCK M R B log10 D T Description

Access 5 2 5 14 5 Access the kth element of a contiguous array. Given
an initial heap heap0[0] = k, heap0[1 : J + 1] =
A[:] and heap0[J + 1] = 0, where A[j] ∈
{1, ...,M − 1} for 0 ≤ j < J , J + 1 < M and
0 ≤ k < J , terminate with heap[0] = A[k].

Decrement 5 2 5 19 18 Decrement all elements in a contiguous array. Given
an initial heap heap0[k] ∈ {2, ...,M − 1} for 0 ≤
k < K < M and heap0[K] = 0, terminate with
heap[k] = heap0[k]− 1.

List-K 8 2 8 33 11 Access the kth element of a linked list. The ini-
tial heap is heap0[0] = k, heap0[1] = p, and
heap0[2:M] = linkList, where linkList is a
linked list represented in the heap as adjacent [next
pointer, value] pairs in random order, and p is a
pointer to the head element of linkList. Terminate
with heap[0] = linkList[k].value.

ASSEMBLY M R B log10 D T Description

Access 5 2 5 13 5

Decrement 5 2 7 20 27 As above.

List-K 8 2 10 29 16

Table 2: Overview of benchmark problems, grouped by execution model. For each benchmark we manually
find the minimal feasible resources (e.g. minimum number of registers, Basic Blocks, timesteps etc.). These
are noted in this table and we try to automatically solve the synthesis task with these minimal settings.

10

3.2.2 Straight-line programs: Boolean Circuits

As a more complex model, we now consider a simple machine capable of performing a sequence of logic
operations (AND, OR, XOR, NOT, COPY) on a set of registers holding boolean values. Each operation takes
two registers as input (the second register is ignored in the NOT and COPY operation), and outputs to one
register, reminiscent of standard three-address code assembly languages. To embed this example in a real-
world application, analogies linking the instruction set to electronic logic gates and linking the registers
to electronic wires can be drawn. This analogy highlights one benefit of interpretability in our model: the
synthesized program describes a digital circuit which could easily be translated to real hardware (see e.g.
Fig. 20). The TerpreT implementation of this execution model is shown in Appendix B.2.

There are D = HTR3T possible programs (circuits) for a model consisting of T sequential instructions
(logic gates) each chosen from the set of H = 5 possible operations acting on R registers (wires).

3.2.3 Loopy programs 1: Basic block model

To build loopy execution models, we take inspiration from compiler intermediate languages (e.g., LLVM
Intermediate Representation), modeling full programs as graphs of “basic blocks”. Such programs operate
on a fixed number of registers, and a byte-addressable heap store accessible through special instructions,
READ and WRITE. Each block has an instructions of the form regout = instr regin1 regin2, followed by a
branch decision if regcond > 0 goto blockthen else goto blockelse (see Fig. 1, and the TerpreT model
in Appendix B.3). This representation can easily be transformed back and forth to higher-level program
source code (by standard compilation/decompilation techniques) as well as into executable machine code.

We use an instruction set containing H = 9 instructions: ZERO, INC, DEC, ADD, SUB, LESSTHAN, READ,
WRITE and NOOP. This gives D = [HR4(B + 1)2]B possible programs for a system with R registers and
(B + 1) basic blocks (including a special stop block which executes NOOP and redirects to itself). We
consider the case where registers and heap memory cells all store a single data type - integers in the
range 0, ..,M − 1, where M is the number of memory cells on the heap. This single data type allows both
intermediate values and pointers into the heap to be represented in the registers and heap cells.

While this model focuses on interpretability, it also builds on an observation from the results of Kurach
et al. (2015). In NRAMs, a RNN-based controller chooses a short sequence of instructions to execute
next based on observations of the current program state. However, the empirical evaluation reports that
correctly trained models usually picked one sequence of instructions in the first step, and then repeated
another sequence over and over until the program terminates. Intuitively, this corresponds to a loop
initialization followed by repeated execution of a loop body, something which can naturally be expressed
in the Basic Block model.

3.2.4 Loopy programs 2: Assembly model

In the basic block model every expression is followed by a conditional branch, giving the model great
freedom to represent rich control flow graphs. However, useful programs often execute a sequence of
several expressions between each branch. Therefore, it may be beneficial to bias the model to create
chains of sequentially ordered basic blocks with only occasional branching where necessary. This is
achieved by replacing the basic blocks with objects which more closely resemble lines of assembly code.
The instruction set is augmented with the jump statements jump-if-zero (JZ(regin1) : branchAddr), and
jump-if-not-zero (JNZ(regin1) : branchAddr), the operation of which are shown in Fig. 6 (and in the
TerpreT code in Appendix B.4). Each line of code acts like a conditional branch only if the assigned
instr ∈ {JZ, JNZ} otherwise it acts like a single expression which executes and passes control to the next
line of code. This assembly model can express the same set of programs as the basic block model, and
serves as an example of how the design of the model affects the success of program inference.

In addition, we remove NOOP from the instruction set (which can be achieved by a jump operation
pointing to the next line) leaving H = 10 instructions, and we always include a special stop line as the
(B + 1)th line of the program. The total size of the search space is then D = [HR3(B + 1)]B .

11

Current Line

Next Line

branchAddr

branchAddr

if is JZ:
regin1instr

if == 0 : goto

elif is JNZ:
regin1instr

if != 0 : goto

else: (= ,)
regout instr regin1 regin2

goto next

Figure 6: Diagram of the assembly program representation. We present the model using the same
graphical style as the Basic Block model in Fig. 1.

4 Back-ends: Solving the IPS problem
TerpreT is designed to be compiled to a variety of intermediate representations for handing to different
inference algorithms. This section outlines the compilation steps for each of the back-end algorithms
listed in Table 1.

For each back-end we present the compiler transfomation of the TerpreT primitives listed in Fig. 7.
For some back-ends, we find it useful to present these transformations via an intermediate graphical
representation resembling a factor graph, or more specifically, a gated factor graph (Minka and Winn,
2009), which visualises the TerpreT program. Below we describe gated factor graphs and provide the
mapping from TerpreT syntax to primitives in these models. Then in Section 4.2 - 4.5 we show how to
compile TerpreT for each back-end solver.

4.1 TerpreT for Gated Factor Graph Description
A factor graph is a means of representing the factorization of a complex function or probability distribution
into a composition of simpler functions or distributions. In these graphs, inputs, outputs and intermediate
results are stored in variable nodes linked by factor nodes describing the functional relationships between
variables. A TerpreT model defines the structure of a factor graph, and an inference algorithm is used
to populate the variable nodes with values consistent with observations.

Particular care is needed to describe factor graphs containing conditional branches since the value of
a variable Xi in conditions of the form Xi == c is not known until inference is complete. This means
that we must explore all branches during inference. Gated factor graphs can be used to handle these if
statements, and we introduce additional terminology to describe these gated models below. Throughout
the next sections we refer to the TerpreT snippet shown in Fig. 8 for illustration.

Local unary marginal. We restrict attention to the case where each variable Xi is discrete, with
finite domain Xi = {0, . . . , Ni − 1}. For each variable we instantiate a local unary marginal µi(x) defined
on the support x ∈ Xi. In an integral configuration, we demand that µi(x) is only non-zero at a particular
value x∗i , allowing us to interpret Xi = x∗i . Some inference techniques relax this constraint and consider a
continuous model µi(x) ∈ R ∀x ∈ Xi. In these relaxed models, we apply continuous optimization schemes
which, if successful, will converge on an interpretable integral solution.

Gates. Following Minka and Winn (2009), we refer to if statements as gates. More precisely, an
if statement consists of a condition (an expression that evaluates to a boolean) and a body (a set of
assignments or factors). We will refer to the condition as the gate condition and the body as the gate body.
In this work, we restrict attention to cases where all gate conditions are of the form Xi == ConstExpr.
In future work we could relax this restriction.

12

Graph element TerpreT representation Graphical representation

Random variable (intermediate) Xi = Var(N)
xi

Random variable (inference target) Xi = Param(N)
xi

Observed variable (input) Xi.set to constant(x∗)
xi

x*

Observed variable (output) Xi.observe value(x∗)

Factor (copy) X0.set to(X1) x1x0
Copy

Factor (general) X0.set to(f(X1,X2,. . .))
x0x2

x1
f

Gates

if C == 0:
stmt0

elif C == 1:
stmt1

elif C == 2:
stmt2

. . .
elif C == n:
stmtn

0

xi
1

xi
c=0

n

c

stmt0 stmt1 stmt2 stmtn

xj

xi
c=1 xi

c=n

xj
c=0 xj

c=1 xj
c=2 xj

c=n

2

Figure 7: The main TerpreT primitives and their corresponding graphical representation.

In the example in Fig. 8, there is a nested gate structure. At the outer-most level, there are two gates
with gate conditions (X0 == 0) (lines 16-20) and (X0 == 1) (lines 21-22). Inside the (X0 == 0) gate,
there are two nested gates (corresponding to (X1 == 0) and (X1 == 1)).

Path conditions. Each gate A has a path condition ψA, which is a list of variables and values they
need to take on in order for the gate body to be executed. For example, in Fig. 8, the path condition
for the innermost gate body on lines 19-20 is (X0 = 0, X1 = 1), where commas denote conjunction. We
will use the convention that the condition in the deepest gate’s if statement is the last entry of the
path condition. Gates belong to a tree structure, and if gate B with gate condition φB is nested inside
gate A with path condition ψA, then we say that A is a parent of B, and the path condition for B is
ψB = (ψA, φB). We can equally speak of the path condition ψj of a factor j, which is the path condition
of the most deeply nested gate that the factor is contained in.

Active variables. Define a variable X to be active in a gate A if both of the following hold:

• X is used in A or one of its descendants, and

• X is declared in A or one of its ancestors.

That is, X is active in A iff A is on the path between X’s declaration and one of its uses.
For each gate A in which a variable is active, we instantiate a separate local marginal annotated with

the path condition of A (ψA). For example, inside the gate corresponding to (X0 == 0) in Fig. 8, the

13

1

2 # X4 = 0 if X0 == 0 and X1 == 0

3 # | X2 + 1 if X0 == 0 and X1 == 1

4 # | 2∗X2 if X0 == 1

5 #

6 # Observe X4 = 5; infer X0, X1, X2

7

8 @CompileMe([2, 10], 10)

9 def Plus(a, b): return (a + b) % 10

10 @CompileMe([10], 10)

11 def MultiplyByTwo(a): return (2 ∗ a) % 10
12

13 X0 = Param(2); X1 = Param(2); X2 = Param(10)

14 X3 = Var(10); X4 = Var(10)

15

16 if X0 == 0:

17 if X1 == 0:

18 X3.set to(0); X4.set to(X3)

19 elif X1 == 1:

20 X3.set to(Plus(X1, X2)); X4.set to(X3)

21 elif X0 == 1:

22 X4.set to(MultiplyByTwo(X2))

23

24 X4.observe value(5)

0

1

0

1

X0

X2

X1
0X1X0=0

X2X0=0

X4X0=0

×2X2X0=1 X4X0=1 X4

X1X0=0,X1=1

X2X0=0,X1=1

X3X0=0,X1=1

+

X4X0=0,X1=1

X3X0=0,X1=0 X4X0=0,X1=0

Figure 8: Interpreting TerpreT as a gated factor graph description. We model the inference task shown
in lines 1-6 using TerpreT and provide the corresponding gated factor graph using symbols from Fig. 7.
The solution to this inference task is X0 = 0, X1 = 1, and X2 = 4).

local marginal for Xi is µX0=0
i (x).1 In the global scope we drop the superscript annotation and just use

µi(x). We can refer to parent-child relationships between different local marginals of the same variable;
the parent (child) of a local marginal µψA

i (·) is the local marginal for Xi in the parent (child) gate of A.

Gate marginals. Let the gate marginal of a gate A be the marginal of the gate’s condition in the
parent gate of A. In Fig. 8, the first outer gate’s gate marginal is µ0(0), and the second outer gate’s is
µ0(1). In the inner gate, the gate marginal for the (X1 == 0) gate is µX0=0

1 (0).

4.2 Forward Marginals Gradient Descent (FMGD) Back-end
The factor graphs discussed above are easily converted into computation graphs representing the execution
of an interpreter by the following operations.

• Annotate the factor graph edges with the direction of traversal during forwards execution of the
TerpreT program.

• Associate executable functions fi with factor i operating on scope Si = {X, Y }. The function
transforms the incoming variables X to the outgoing variable, Y = fi(X).

1Strictly speaking, this notation does not handle the case where there are multiple gates with identical path conditions;
for clearness of notation, assume that all gate path conditions are unique. However, the implementation handles repeated
path conditions (by identifying local marginals according to a unique gate id).

14

xi xi xi
x*

x1x0
Copy

µi(x) ; x ∈ Xi
Param: µi(x) = softmax [mi(x)]

µi(x) = 1{x = x∗} µ1(x) = µ0(x)

yx2

x1
f

0

xi
1

xi
c=0

n

c

stmt0 stmt1 stmt2 stmtn

y

xi
c=1 xi

c=n

yc=0 yc=1 yc=2 yc=n

2

µY (y) =
∑
k 1{y = fi(xk)}w(xk)

where w(xk) =
∏M
i=1 µi ([xk]i)

Enter gate µψ,c=ki (x) = µψi (x)

Leave gate µY (y) =
∑
k µ

c=k
Y (y)µc

Figure 9: Summary of the forward execution of graphical primitives in the FMGD algorithm. See text
for definition of symbols

In the FMGD approach, we initialize the source nodes of this directed graph by instantiating indepen-
dent random variables Xp ∼ µp at each Param node, and variables Xi ∼ onehot(x∗i) at nodes associated
with input observations of the form Xi.set to constant(x∗i). Here onehot(x∗i) is a distribution over Xi
with unit mass at x∗i . We then propagate these distributions through the computation graph using the
FMGD approximation, described below, to obtain distributions µo at the output nodes associated with
an observe value(x∗o) statement. This fuzzy system of distributions is fully differentiable. Therefore
inference becomes an optimization task to maximize the weight µo(x∗o) assigned to the observations by
updating the parameter distributions {µp} by gradient descent.

The key FMGD approximation arises whenever a derived variable, Y depends on several immediate
input variables, X. In an ungated graph, this occurs at factor nodes where Y = fi(X). FMGD operates
under the under the approximation that all X are independent. In this case, we imagine a local joint
distribution µYX constructed according to the definition of fi and the independent unary marginal
distributions for X. From this distribution we marginalize out all of the input variables to obtain the
unary marginal µY (see Section 4.2.1). Only µY is propagated forward out of the factor node and
correlations between Y and X (only captured by the full local joint distribution) are lost. In the next
section we explicitly define these operations and extend the technique to allow for gates in the factor
graph.

It is worth noting that there is a spectrum of approximations in which we form joint distributions for
subgraphs of size ranging from single nodes (FMGD) to the full computation graph (enumerative search)
with only independent marginal distributions propagated between subgraphs. Moving on this spectrum
trades computational efficiency for accuracy as more correlations can be captured in larger subgraphs.
An exploration of this spectrum could be a basis for future work.

4.2.1 Forward Marginals...

Fig. 9 illustrates the transformation of each graphical primitive to allow a differentiable forward propaga-
tion of marginals through a factor graph. Below we describe more details of factor and gate primitives in
this algorithm.

15

Factors. The scope S of a factor function f contains the M immediate input variables Xi and the
immediate output, Y . In this restricted environment, we enumerate the possible outputs Y from all∏M
i=1 |Xi| possible input configurations xk of the form [xk]i ∈ Xi for i ∈ {1, ...,M}. We then marginalise

over the configuration index, k, using weightings µi([xk]i) to produce µY as follows:

µY (y) =
∑
k

1{y = f(xk)}w(xk), (1)

where 1 is an indicator function and the weighting function w is:

w(xk) =
M∏
i=1

µi ([xk]i) . (2)

Note that (1) and (2) can be implemented efficiently as a series of tensor contractions of the Mi + 1
dimensional binary tensor Iyx = 1{y = f(x)} with the Mi vectors [µi]x = µi(x).

Gates. We can include gates in the FMGD formulation as follows. Let B1, . . . , Bk be the set of child
gates of A which are controlled by gate marginal µψA

B (i) ; i ∈ {1, ..., k}. Inside gate Bi, there is a subgraph
Gi described by TerpreT code Ti which references a set of active variables Bi. We divide Bi into Li
containing variables which are written-to during execution of Gi (i.e. appear on the left hand side of
expressions in Ti), and Ri containing variables which are not written-to (i.e. appear only on the right
hand side of expressions in Ti). In addition, we use A to refer to the active variables in A, and B+ ⊂ A
to be variables used in the graph downstream of gates B1, . . . , Bk on paths which terminate at observed
variables.

On entering gate Bi, we import references to variables in the parent scope, A, for all X ∈ Ri ∩ A:

µ
ψBi

X = µψA

X . (3)
We then run Gi, to produce variables Li. Finally, when leaving a gate, we marginalise using the gate

marginal to set variables Y ∈ B+:

µψA

Y (y) =
k∑
i=1

µ
ψBi

Y (y)µψA

B (i). (4)

Restrictions on factor functions. The description above is valid for any f : ×Mi=1Xi → Y, subject
to the condition that Y ⊆ Xout, where Xout is the domain of the variable which is used to store the output
of f . One scenario where this condition could be violated is illustrated below:

1 @CompileMe([4],2)

2 def largeTest(x): return 1 if x >= 2 else 0
3 @CompileMe([4],4)

4 def makeSmall(x): return x − 2
5

6 X = Param(4) ; out = Var(4) ; isLarge = Var(2)

7

8 isLarge.set to(largeTest(X))

9 if isLarge == 0:

10 out.set to(X)

11 elif isLarge == 1:

12 out.set to(makeSmall(X))

The function makeSmall has a range Y = {−2, ..., 1} which contains elements outside Xout = {0, ..., 3}.
However, deterministic execution of this program does not encounter any error because the path condition
isLarge == 1 guarantees that the invalid cases Y \Xout would never be reached. In general, it only makes

16

sense to violate Y ⊆ Xout if we are inside a gate where the path condition ensures that the input values
lie in a restricted domain X̃i ⊆ Xi such that f : ×Mi=1X̃i → Xout. In this case a we can simply enforce the
normalisation of µout to account for any leaked weight on values Y \ Xout.

µY (y) = 1
Z

∑
k

1{y = f(xk)}w(xk), where Z =
∑

k,y∈Xout

1{y = f(xk)}w(xk). (5)

With this additional caveat, there are no further constraints on factor functions f : ZM → Z.

4.2.2 ... Gradient Descent

Given a random initialization of marginals for the the Param variables Xp ∈ P, we use the techniques
above to propagate marginals forwards through the TerpreT model to reach all variables, Xo ∈ O,
associated with an observe value(x∗o) statement. Then we use a cross entropy loss, L, to compare the
computed marginal to the observed value.

L = −
∑
Xo∈O

log [µo(x∗o)] . (6)

L reaches its lower bound L = 0 if each of the marginals µp(x) representing the Params put unit weight on
a single value µp(x∗p) = 1 such that the assignments {Xp = x∗p} describe a valid program which explains
the observations. The synthesis task is therefore an optimisation problem to minimise L, which we try to
solve using backpropagation and gradient descent to reach a zero loss solution.

To preserve the normalisation of the marginals during this optimisation, rather than updating µp(x)
directly, we update the log parameters mp(x) = [mp]x defined by µp(x) = softmax [mp(x)]. These are
initialized according to

exp(mp) ∼ Dirichlet(α), (7)

where α are hyperparameters.

4.2.3 Optimization Heuristics

Using gradient information to search over program space is only guaranteed to succeed if all points with
zero gradient correspond to valid programs which explain the observations. Since many different programs
can be consistent with the observations, there can be many global optima (L = 0) points in the FMGD loss
landscape. However, the FMGD approximation can also lead to local optima which, if encountered, stall
the optimization at an uninterpretable point where µp(x∗p) assigns weight to several distinct parameter
settings. For this reason, we try several different random initializations of mp(x) and record the fraction
of initializations which converge at a global optimum. Specifically, we try two approaches for learning
using this model:

• Vanilla FMGD. Run the algorithm as presented above, with αi = 1 and using the RMSProp
(Tieleman and Hinton, 2012) gradient descent optimization algorithm.

• Optimized FMGD. Add the heuristics below, which are inspired by Kurach et al. (2015) and de-
signed to avoid getting stuck in local minima, and optimize the hyperparameters for these heuristics
by random search. We also include the initialization scale αi = α and the gradient descent optimiza-
tion algorithm in the random search (see Section 5.2 for more details). By setting α = 1, parameters
are initialized uniformly on the simplex. By setting α smaller, we get peakier distributions, and by
setting α larger we get more uniform distributions.

Gradient clipping. The FMGD neural network depth grows linearly with the number of time steps.
We mitigate the “exploding gradient” problem (Bengio et al., 1994) by globally rescaling the whole
gradient vector so that its L2 norm is not bigger than some hyperparameter value C.

17

Noise. We added random Gaussian noise to the computed gradients after the backpropagation step.
Following Neelakantan et al. (2016b), we decay the variance of this noise during the training according
to the following schedule:

σ2
t = η

(1 + t)γ (8)

where the values of η and γ are hyperparameters and t is the epoch counter.

Entropy. Ideally, the algorithm would explore the loss surface to find a global minimum rather than
fixing on some particular configuration early in the training process, causing the network to get stuck in
a local minimum from which it’s unlikely to leave. To bias the network away from committing to any
particular solution during early iterations, we add an entropy bonus to the loss function. Specifically, for
each softmax distribution in the network, we subtract the entropy scaled by a coefficient ρ, which is a
hyperparameter. The coefficient is exponentially decayed with rate r, which is another hyperparameter.

Limiting the values of logarithms. FMGD uses logarithms in computing both the cost function
as well as the entropy. Since the inputs to these logarithms can be very small, this can lead to very big
values for the cost function and floating-point arithmetic overflows. We avoid this problem by replacing
log(x) with log(max[x, ε]) wherever a logarithm is computed, for some small value of ε.

Kurach et al. (2015) considered two additional tricks which we did not implement generally.

Enforcing Distribution Constraints. Because of the depth of the networks, propagation of numerical
errors can result in

∑
x µi(x) 6= 1. Kurach et al. (2015) solve this by adding rescaling operations to ensure

normalization. We find that we can avoid this problem by using 64-bit floating-point precision.

Curriculum learning. Kurach et al. (2015) used a curriculum learning scheme which involved first
training on small instances of a given problem, and only moving to train on larger instances once the
error rate had reduced below a certain value. Our benchmarks contain a small number of short examples
(e.g., 5-10 examples acting on memory arrays of up to 8 elements), so there is less room for curriculum
learning to be helpful. We manually experimented with hand-crafted curricula for two hard problems
(shift and adder), but it did not lead to improvements.

To explore the hyperparameters for these optimization heuristics we ran preliminary experiments to
manually chose a distribution over hyperparameter space for use in random search over hyperparameters.
The aim was to find a distribution that is broad enough to not disallow reasonable settings of hyperpa-
rameters while also being narrow enough so that runs of random search were not wasted on parameter
settings that would never lead to convergence. This distribution over hyperparameters was then fixed for
all random search experiments.

4.3 (Integer) Linear Program Back-end
We now turn attention to the first alternative back-end to be compared with the FMGD. Casting the
TerpreT program as a factor graph allows us to build upon standard practice in constructing LP
relaxations for solving maximum a posteriori (MAP) inference problems in discrete graphical models
(Schlesinger, 1976; Wainwright and Jordan, 2008). In the following sections we describe how to apply
these techniques to the TerpreT models, and in particular, how to extend the methods to handle gates.

4.3.1 LP Relaxation

The inference problem can be phrased as the task of finding the highest scoring configuration of a set
of discrete variables X0, . . . , XD−1. The score is defined as the sum of local factor scores, θj , where
θj : X j → R, and X j = ×i∈SjXi is the joint configuration space of the variables x with indices Sj =
(i0, . . . , iMj

) spanning the scope of factor j. In the simplest case (when we are searching for any valid

18

solution) the factor score at a node representing a function fj will simply measure the consistency of the
inputs (x\0) and output (x0) at that factor:

θj(x) = 1{x0 = fj(x\0)}. (9)
Alongside these scoring functions, we can build a set of linear constraints and an overall linear objective

function which represent the graphical model as an LP. The variables of this LP are the local unary
marginals µi(x) ∈ R as before, and new local factor marginals µSj

(x) ∈ R for x ∈ X j associated with
each factor, j.

In the absence of gates, we can write the LP as:

max
µ

∑
j

∑
x∈X j

µSj
(x)θj(x)

s.t. µi(x) ≥ 0 ; µSj (x) ≥ 0∑
x∈Xi

µi(x) = 1

∑
x∈X j

Xi=x

µSj
(x) = µi(x), (10)

where the final set of constraints say that when Xi is fixed to value x and all other variables are marginalized
out from the local factor marginal, the result is equal to the value that the local marginal for Xi assigns
to value x. This ensures that factors and their neighboring variables have consistent local marginals.

If all local marginals µ(·) are integral, i.e., restricted to be 0 or 1, then the LP above becomes an
integer linear program corresponding exactly to the original discrete optimization problem. When the
local marginals are real-valued (as above), the resulting LP is not guaranteed to have equivalent solution
to the original problem, and fractional solutions can appear. More formally, the LP constraints define
what is known as the local polytope ML. which is an outer approximation to the convex hull of all valid
integral configurations of the local marginals (known as the marginal polytopeM). In the case of program
synthesis, fractional solutions are problematic, because they do not correspond to discrete programs and
thus cannot be represented as source code or executed on new instances. When a fractional solution is
found, heuristics such as rounding, cuts, or branch & bound search must be used in order to find an
integral solution.

4.3.2 Linear Constraints in Gated Models

We now extend the LP relaxation above to cater for models with gates. In each gate we instantiate local
unary marginals µψi for each active variable and local factor marginals µψSj

for each factor, where ψ is the
path condition of the parent gate.

The constraints in the LP are then updated to handle these gate specific marginals as follows:

Normalization constraints. The main difference in the Gate LP from the standard LP is how
normalization constraints are handled. The key idea is that each local marginal in gate A is normalized
to sum to A’s gate marginal. Thus the local marginal for Xi in the gate with path condition (ψ, Y = y)
with gate marginal µY is: ∑

x∈Xi

µψ,Y=y
i (x) = µψY (y). (11)

For local marginals in the global scope (not in any gate), the marginals are constrained to sum to 1, as
in the standard LP.

Factor local marginals. The constraint enforcing local consistency between the factor local marginals
and the unary local marginals is augmented with path condition superscripts:∑

x∈X j :Xi=x
µψA

Sj
(x) = µψA

i (x). (12)

19

xi xi x0x2

x1
f

Positivity

µψi (x) ≥ 0 ; x ∈ X

Normalization∑
x µ

ψ,Y=y
i (x) = µψY (y)

Interpretable parameters

µi(x) ∈ {0, 1}

Scope

S = {0, . . . ,M}

Local consistency∑
x∈X :Xi=x µ

ψ
S(x) = µψi (x)

Score function

θj(x) = 1{x0 = fj(x\0)}.

xi
x*

µi(x 6= x∗) = 0

x1x0
Copy

µψ0 (x) = µψ1 (x)

0

xi
1

xi
c=0

n

c

stmt0 stmt1 stmt2 stmtn

xj

xi
c=1 xi

c=n

xj
c=0 xj

c=1 xj
c=2 xj

c=n

2

Parent-child consistency

µψi (x) = µψ,c=∅
i (x) +

∑
k:Xi active µ

ψ,c=k
i (x)

Ghost marginals∑
x µ

ψ,c=∅
i (x) =

∑
k:Xi not active µ

ψ
i (k)

Figure 10: Summary of the construction of a mixed integer linear program from a gated factor graph.
Removing the binary constraint µi(x) ∈ {0, 1} on the parameters produces a continuous LP relaxation.
See main text for definition of symbols.

Parent-child consistency. There needs to be a relationship between different local marginals for
the same variable. We do this by enforcing consistency between parent-child local marginals. Let A be a
parent gate of B, and let Xi be active in both A and B. Then we need to enforce consistency between
µψA

i (x) and µψB

i (x). It is not quite as simple as setting these quantities equal; in general there are multiple
children gates of A, and X may be active in many of them. Let B1, . . . , BK be the set of children gates
of A, and suppose that X is active in all of the children. Then the constraint is

K∑
k=1

µ
ψBk
i (x) = µψA

i (x) ∀x ∈ Xi. (13)

This can be thought of as setting a parent local marginal to be a weighted average of children local
marginals, where the “weights” come from children marginals being capped at their corresponding gate
marginal’s value.

Ghost marginals. A problem arises if a variable is used in some but not all children gates. It may
be tempting in this case to replace the above constraint with one that leaves out the children where the
variable is inactive: ∑

k:Xi is active
µ
ψBk
i (x) = µψA

i (x). (14)

20

This turns out to lead to a contradiction. To see this, consider X3 in Fig. 8. X3 is inactive in the (X0 ==
1) gate, and thus the parent-child consistency constraints would be

µX0=0
3 (x) = µ3(x) ∀x. (15)

However, the normalization constraints for these local marginals are∑
x

µX0=0
3 (x) = µ0(0) (16)∑
x

µ3(x) = 1. (17)

This implies that µ0(0) = 1, which means we must assign zero probability to the case when X3 is not
active. This removes the possibility of X0 = 1 from consideration which is clearly undesirable, and if
there are disjoint sets of variables active in the different children cases, then the result is an infeasible LP.

The solution is to instantiate ghost marginals, which are local marginals for a variable in the case
where it is undefined (hence the term “ghost”). We denote a ghost marginal with a path condition entry
where the value is set to ∅, as in µX0=∅

3 (x). Ghost marginals represent the distribution over values in all
cases where a variable is not defined, so the normalization constraints are defined as follows:∑

x

µX0=∅
i (x) =

∑
k:Xi is not active

µ0(k). (18)

Finally, we can fix the parent-child consistency constraints in the case where a variable is active in
some children. The solution is to consider the ghost marginal as one of the child cases. In the example of
X3, the constraint would be the following:

µ3(x) = µX0=∅
3 (x) +

∑
k:X3 is active

µX0=k
3 (x) for all x ∈ X3. (19)

The full set of constraints for solving TerpreT IPS problems using gated (integer) LPs is summarized
in Fig. 10.

4.4 SMT Back-end
At its core, an IPS problem in TerpreT induces a simple linear integer constraint system. To exploit
mature constraint-solving systems such as Z3 (de Moura and Bjørner, 2008), we have implemented a
satisfiability modulo theories (SMT) back-end. For this, a TerpreT instance is translated into a set of
constraints in the SMT-LIB standard (Barrett et al., 2015), after which any standard SMT solver can be
called.

To this end, we have defined a syntax-guided transformation function J·KE
SMT that translates TerpreT

expressions into SMT-LIB expressions over integer variables, shown in Fig. 11. We make use of the unrolling
techniques discussed earlier to eliminate arrays, for loops and with statements. When encountering a
function call as part of an expression, we use inlining, i.e., replace the call by the function definition
in which formal parameters have been replaced by actual arguments. This means that some TerpreT
statements have to be expressed as SMT-LIB expressions, and also means that the SMT back-end only
supports a small subset of functions, namely those that are using only TerpreT (but not arbitrary
Python) constructs.

Building on J·KE
SMT, we then define the statement translation function J·KSMT shown in Fig. 12. Every

statement is translated into a list of constraints, and a solution to the IPS problem encoded by a TerpreT
program p is a solution to the conjunction of all constraints generated by JpKE

SMT. Together with the
unrolling of loops for a fixed length, this approach is reminiscent of bounded model checking techniques
(e.g. (Clarke et al., 2001)) which for a given program, search for an input that shows some behavior.
Instead, we take the input as given, and search for a program with the desired behavior.

21

JnKE
SMT = n

JvcKE
SMT = vc

Jf(c1, · · · , ck)KE
SMT = Js[v0/c0, · · · , vn/ck]KE

SMT for def f(v0, · · · ,vk):s

Jc0 opa c1KE
SMT = (opa Jc0KE

SMT Jc1KE
SMT)

JvKE
SMT = v

Ja0 opa a1KE
SMT = (opa Ja0KE

SMT Ja1KE
SMT)

Jf(a0, · · · , ak)KE
SMT = Js[v0/a0, · · · , vk/ak]KE

SMT for def f(v0, · · · ,vk):s

Jnot bKE
SMT = (not JbKE

SMT)

Jb0 and b1KE
SMT = (and Jb0KE

SMT Jb1KE
SMT)

Jb0 or b1KE
SMT = (or Jb0KE

SMT Jb1KE
SMT)

Ja0 opc a1KE
SMT = (opc Ja0KE

SMT Ja1KE
SMT)

Jv = a;sKE
SMT = Js[v/a]KE

SMT

Jif b0: s0 else: s1KE
SMT = (ite Jb0KE

SMT Js0KE
SMT Js1KE

SMT)

Jreturn aKE
SMT = JaKE

SMT

Figure 11: A syntax-directed translation J·KE
SMT of TerpreT expressions to SMT-LIB 2. Here, s[var/expr]

replaces all occurrences of var by expr .

Js0 ; s1KSMT = Js0KSMT @ Js1KSMT

Ja0.set to(a1)KSMT = [(= Ja0KE
SMT Ja1KE

SMT)]

Ja.set to constant(c)KSMT = [(= JaKE
SMT JcKE

SMT)]

Ja0.observe value(a1)KSMT = [(= Ja0KE
SMT Ja1KE

SMT)]

Jif b0: s0 else: s1KSMT = [(=> Jb0KE
SMT (and Js0KSMT)),

(=> (not Jb0KE
SMT) (and Js1KSMT))]

Jsd0 ; sd1KSMT = Jsd0KSMT @ Jsd1KSMT

Jv = cKSMT = [(= v JcKE
SMT)]

Jv = Var(c)KSMT = [(>= v 0), (< v JcKE
SMT)]

Jv = Param(c)KSMT = [(>= v 0), (< v JcKE
SMT)]

Figure 12: A syntax-directed translation J·KSMT of TerpreT statements to SMT-LIB 2. Here, [· · ·] are
lists of constraints, and @ concatenates such lists.

22

harness void tripleSketch (int x){
int h = ??; // hole for unknown constant
assert h * x == x + x + x;

}

Figure 13: A simple sketch example.

4.5 Sketch Back-end
The final back-end which we consider is based on the Sketch (Solar-Lezama, 2008) program synthesis
system, which allows programmers to write partial programs called sketches while leaving fragments
unspecified as holes. The goal of the synthesizer is to automatically fill in these holes such that the
completed program conforms to a desired specification. The Sketch system supports multiple forms of
specifications such as input-output examples, assertions, reference implementation, etc.

Background. The syntax for the Sketch language is similar to the C language with only one additional
feature – a symbol ?? that represents an unknown constant integer value. A simple example sketch is
shown in Fig. 13, which represents a partial program with an unknown integer h and a simple assertion.
The harness keyword indicates to the synthesizer that it should compute a value for h such that in
the complete function, all assertions are satisfied for all input values x. For this example, the Sketch
synthesizer computes the value h = 3 as expected.

The unknown integer values can be used to encode a richer hypothesis space of program fragments.
For example, the sketch in Fig. 14 uses an integer hole to describe a space of binary arithmetic operations.
The Sketch language also provides a succinct language construct to specify such expression choices :
lhs {| + | - | * | / | % |} rhs.

int chooseArithBinOp (int lhs , int rhs){
int c = ??; // unknown constant integer value
assert c < 5;
if(c == 0) return lhs + rhs;
if(c == 1) return lhs - rhs;
if(c == 2) return lhs * rhs;
if(c == 3) return lhs / rhs;
if(c == 4) return lhs % rhs;

}

Figure 14: Using unknown integer values to encode a richer set of unknown expressions.

The Sketch synthesizer uses a counter-example guided inductive synthesis algorithm (CEGIS) (Solar-
Lezama et al., 2006) to efficiently solve the second order exists-forall synthesis constraint. The key idea
of the algorithm is to divide the process into phases : i) a synthesis phase that computes the value of
unknowns over a finite set of input-output examples, and ii) a verification phase that checks if the current
solution conforms to the desired specification. If the current completed program satisfies the specification,
it returns the program as the desired solution. Otherwise, it computes a counter-example input that
violates the specification and adds it to the set of input-output examples and continues the synthesis
phase. More details about the CEGIS algorithm in Sketch can be found in Solar-Lezama (2008).

Compiling TerpreT to Sketch. In Fig. 15, we present a syntax-directed translation of the TerpreT
language to Sketch. The key idea of the translation is to model Param variables as unknown integer
constants (and integer arrays with constant values) such that the synthesizer computes the values of
parameters to satisfy the observation constraints. For a Param(N) integer value, the translation creates
corresponding unknown integer value ?? with an additional constraint that the unknown value should
be less than N . Similarly, for the Param(N) array values, the translation creates a Sketch array with
unknown integer values, where each value is constrained to be less than N . The set to statements are

23

translated to assignment statements whereas the observe statements are translated to assert statements
in Sketch. The user-defined functions are translated directly to corresponding functions in sketch, whereas
the with statements are translated to corresponding assignment statements. The sketch translation of
the TerpreT model in Fig. 4(a) is shown in Fig. 16.

5 Analysis
One motivation of this work was to compare the performance of the gradient based FMGD technique for
IPS with other back-ends. Below we present a task which all other back-ends solve easily, but FMGD is
found to fail due to the prevalence of local optima.

5.1 Failure of FMGD
Kurach et al. (2015) and Neelakantan et al. (2016b) mention that many random restarts and a careful
hyperparameter search are needed in order to converge to a correct deterministic solution. Here we develop
an understanding of the loss surface that arises using FMGD in a simpler setting, which we believe sheds
some light on the local optima structure that arises when using FMGD more generally.

Let x0, . . . , xK−1 be binary variables with x0 = 0 and all others unobserved. For each k = 0, . . . ,K−1,
let yk = (xk + x(k+1) mod K) mod 2 be the parity of neighboring x variables connected in a ring shape.
Suppose all yk are observed to be 0 and the goal is to infer the values of each xk. The TerpreT program
is as follows, which we refer to as the Parity Chain model:

1 const K = 5

2 x = Param(2)[const K]

3 y = Var(2)[const K]

4

5 @CompileMe([2,2], 2)

6 def Parity(a,b): return (a + b) % 2

7

8 x[0].set to constant(0)

9

10 for k in range(K):

11 y[k].set to(Parity(x[k], x[(k+1) % K]))

12 y[k].observe value(0)

Clearly, the optimal configuration is to set all xk = 0. Here we show analytically that there are exponen-
tially many suboptimal local optima that FMGD can fall into, and experimentally that the probability
of falling into a suboptimal local optimum grows quickly in K.

To show that there are exponentially many local optima, we give a technique for enumerating them
and show that the gradient is equal to 0 at each. Letting mi(a) for i ∈ {0, . . .K − 1}, a ∈ {0, 1} be the
model parameters and µi = expmi(1)

expmi(0)+expmi(1) , the main observation is that locally, a configuration of
[µi−1, µi, µi+1] = [0, .5, 1] or [µi−1, µi, µi+1] = [1, .5, 0] gives rise to zero gradient on mi−1(·),mi(·),mi+1(·),
as does any configuration of [µi−1, µi, µi+1] = [0, 0, 0] or [µi−1, µi, µi+1] = [1, 1, 1]. This implies that any
configuration of a sequence of µ’s of the form [0, .5, 1, 1, . . . , 1, .5, 0] also gives rise to zero gradients on
all the involved m’s. We then can choose any configuration of alternating µ (so e.g., µ2, µ4, µ6, . . . , µK ∈
{0, 1}K/2), and then fill in the remaining values of µ1, µ3, . . . so as to create a local optimum. The rule is
to set µi = .5 if µi−1 + µi+1 = 1 and µi = µi−1 = µi+1 otherwise. This will create “islands” of 1’s, with
the boundaries of the islands set to be .5. Each configuration of islands is a local optimum, and there are
at least 2(K−1)/2 such configurations. A formal proof appears in Appendix A.

One might wonder if these local optima arise in practice. That is, if we initialize mi(a) randomly, will
we encounter these suboptimal local optima? Experiments in Section 5.2 show that the answer is yes. The
local optima can be avoided in small models by using optimization heuristics such as gradient noise, but

24

JnKSk = n

JvcKSk = vc

Jf(c1, · · · , ck)KSk = f(Jc1KSk, · · · ,JckKSk)

Jc0 opa c1KSk = Jc0KSk opa Jc1KSk

JvKSk = v

Jv[a1, · · · , ak]KSk = v[a1][· · ·][ak]

Ja0 opa a1KSk = Ja0KSk opa Ja1KSk

Jf(a0, · · · , ak)KSk = f(Ja0KSk, · · · ,JakKSk)

Jnot bKSk = !(JbKSk)

Jb0 and b1KSk = Jb0KSk && Jb1KSk

Jb0 or b1KSk = (Jb0KSk || Jb1KSk)

Ja0 opc a1KSk = Ja0KSk opc Ja1KSk

Js0 ; s1KSk = Js0KSk; Js1KSk

Ja0.set to(a1)KSk = Ja0KSk = Ja1KSk;

Ja.set to constant(c)KSk = JaKSk = JcKSk;

Ja0.observe value(a1)KSk = assert Ja0KSk == Ja1KSk;

Jreturn aKSk = return JaKSk;

Jif b0: s0 else: s1KSk = if (Jb0KSk) {Js0KSk} else {Js1KSk}

Jfor v in range(c1) : sKSk = for(int v = 0; v < Jc1KSk; v++) {JsKSk}

Jfor v in range(c1, c2) : sKSk = for(int v = Jc1KSk; v < Jc2KSk; v++) {JsKSk}

Jwith a as v : sKSk = {int v = JaKSk; JsKSk}

Jsd0 ; sd1KSk = Jsd0KSk; Jsd1KSk

Jv = cKSk = int v = JcKSk;

Jv = Var(c)KSk = int v;

Jv = Var(c)[c1, · · · ,ck]KSk = int[Jc1KSk][· · ·][JckKSk] v;

Jv = Param(c)KSk = int v = ??; assert v < JcKSk;

Jv = Param(c)[c1, · · · ,ck]KSk = int[Jc1KSk][· · ·][JckKSk] v;

∀i1 ∈ Jc1KSk, · · · , ik ∈ JckKSk :

v[i1][· · ·][ik] = ??; assert v[i1][· · ·][ik] < JcKSk;

J@CompileMe([c1, · · · ,ck],cr)KSk = ;

Jdef f(v0, · · · ,vk):sKSk = int f(v0, · · · ,vk) {JsKSk}

Figure 15: A syntax-directed translation J·KSk of TerpreT programs to Sketch.

25

int const_n = 5;
int [2][2] ruleTable = (int [2][2]) ??;
for(int i=0; i<2; i++){

for(int j=0; j<2; j++){
assert ruleTable [i][j] < 2;

}
}
int[const_n] tape;

// assignment statements for input initialisations

for(int t=1; t<const_n-1 ; t++){
int x1 = tape[t];
int x0 = tape[t-1];
tape[t+1] = ruleTable [x0 ,x1];

}

// assert statements for corresponding outputs

Figure 16: The sketch translation for the TerpreT model shown in Fig. 4(a) .

as the models grow larger (length 128), we were not able to find any configuration of hyperparameters
that could solve the problem from a random initialization. The other inference algorithms will solve
these problems easily. For example, the LP relaxation from Section 4.3 will lead to integral solutions for
tree-structured graphical models, which is the case here.

5.2 Parity Chain Experiments
Here we provide an empirical counterpart to the theoretical analysis in the previous section. Specifically,
we showed that there are exponentially many local optima for FMGD to fall into in the Parity Chain
model, but this does not necessarily mean that these local optima are encountered in practice. It is
conceivable that there is a large basin of attraction around the global optimum, and smaller, negligible
basins of attraction around the suboptimal local optima.

To answer this question, we run Vanilla FMGD (no optimization heuristics) with random initialization
parameters chosen so that initial parameters are drawn uniformly from the simplex. Measuring the fraction
of runs (from 100 random initializations) that converge to the global optimum then gives an estimate of
the volume of parameter space that falls within the basin of attraction for the global optimum. Results
for chain lengths of K = 4, 8, 16, 32, 64, 128 appear in the Vanilla FMGD row of Table 3. FMGD is able
to solve very small instances reliably, but performance quickly falls off as K grows. This shows that the
basins of attraction for the suboptimal local optima are large.

Next, we try the optimization heuristics discussed in Section 4.2.3. For each chain length K, we draw
100 random hyperparameter settings from the manually chosen hyperparameter distribution. At each
hyperparameter setting, we run 10 runs with different random seeds and measure the fraction of runs
that converge to the global optimum. In the “Best Hypers” row of Table 3, we report the percentage of
successes from the hyperparameter setting that yielded the best results. In the “Average Hypers” row,
we report the percentage of success across all 1000 runs.

Note that the 80% success rate for Best Hypers on K = 64 is an anomaly, as it was able to find a
setting of hyperparameters for which the random initialization had very little effect, and the successful
runs followed nearly identical learning trajectories. See Fig. 17 for a plot of optimization objective versus
epoch. Successful runs are colored blue while unsuccessful ones are in red. The large cluster of successful
runs were all from the same hyperparameter settings.

26

K = 4 K = 8 K = 16 K = 32 K = 64 K = 128

Vanilla FMGD 100% 53% 14% 0% 0% 0%

Best Hypers 100% 100% 100% 70% 80% 0%

Average Hypers 84% 42% 21% 4% 1% 0%

Table 3: Percentage of runs that converge to the global optimum for FMGD on the Parity Chain example.

Figure 17: Loss versus epoch for all runs of the random search on Parity Chain (K = 64).

27

6 Experiments
We now turn attention to experimental results. Our primary aim is to better understand the capabilities
of the different back-ends on a range of problems, and to establish some trends regarding the performance
of the back-ends as problem properties are varied.

6.1 Benchmarks Results
We now present the main results of this investigation: a benchmarking of all four inference techniques
listed in Table 1 on all twelve synthesis tasks listed in Table 2. As described in Section 3.2, the tasks are
split across four execution models of increasing practicality, with each model set three tasks of increasing
difficulty. For any given task we ensure a fair test by presenting all four back-end compilers with the
same TerpreT program (as listed in Appendix B) and the same set of input-output examples. Since
the different back-ends use very different approaches to solve the tasks, the only comparable metric to
record is the wall time to reach a solution.

With the exception of the FMGD algorithm, we set a timeout of 4 hours for each back-end on each
task (excluding any compilation time), give each algorithm a single run to find a solution, and do not
tune the algorithms to each specific task. For the FMGD algorithm we run both the Vanilla and the
Optimized form. In the Vanilla case we report the fraction of 20 different random initializations which
lead to a globally optimal solution and also the wall clock time for 1000 epochs of the gradient descent
algorithm (which is the typical number of iterations required to reach convergence on a successful run).
In the Optimized FMGD case, we follow a similar protocol as in the previous section but allow training
to run for 2000 epochs. We use the same manually chosen distribution over hyperparameters to perform
a random search, drawing 120 random settings of hyperparameters. For each setting we run the learning
with 20 different random initializations. For the ListK tasks, the runtime was very long, so we ran for
fewer settings of hyperparameters (28 for Assembly and 10 for Basic Block). As before, in the Optimized
case we report the success rate for the best hyperparameters found and also for the average across all
runs in the random search.

Our results are compiled in Table 4, from which we can draw two high level conclusions:

Back end algorithm. There is a clear tendency for traditional techniques employing constraint solvers
(SMT and Sketch) to outperform the machine learning methods, with Sketch being the only system
able to solve all of these benchmarks before timeout (see Section 6.3).

Nevertheless, the machine learning methods have qualitatively appealing properties. Firstly, they are
primarily optimizers rather than solvers2, and additional terms could be added to the cost function of
the optimization to find programs with desired properties (e.g. minimal length (Bunel et al., 2016) or
resource usage). Secondly, FMGD makes the synthesis task fully differentiable, allowing its incorporation
into a larger end-to-end differentiable system (Kurach et al., 2015). This encourages us to persevere with
analysis of the FMGD technique, and in particular to study the surprising failure of this method on the
simple boolean circuit benchmarks in Section 6.2.

Interpreter models. Table 4 highlights that the precise formulation of the interpreter model can
affect the speed of synthesis. Both the Basic Block and Assembly models are equally expressive, but
the Assembly model is biased towards producing straight line code with minimal branching. In all cases
where synthesis was successful the Assembly representation is seen to outperform the Basic Block model
in terms of synthesis time. The only anomaly is that the Optimized FMGD algorithm is able to find a
solution in the Decrement task using the Basic Block model, but not the Assembly model. This could
be because the minimal solution to this program is shorter in the Basic Block architecture than in the
Assembly model (T = 18 vs. 27 respectively). We observe in Section 6.2.2 that increasing the size of a
model by adding superfluous resources can help the FMGD algorithm to converge on a global optimum.
However, we generally find that synthesis is difficult if the minimal solution is already large.

2Both Sketch and SMT (in the form of max-SMT) can also be configured to be optimizers

28

FMGD ILP SMT Sketch

log10(D) T N Time Vanilla Best Hypers Average Hypers Time Time Time

TURING MACHINE

Invert 4 6 5 76.5 100% 100% 51% 0.6 0.7 3.1

Prepend zero 9 6 5 98 60% 100% 37% 17.0 0.9 2.6

Binary decrement 9 9 5 163 5% 25% 2% 191.9 1.6 3.3

BOOLEAN CIRCUITS

2-bit controlled shift register 10 4 8 - - - - 2.5 0.7 2.7

Full adder 13 5 8 - - - - 38 1.9 3.5

2-bit adder 22 8 16 - - - - 13076.5 174.4 355.4

BASIC BLOCK

Access 14 5 5 173.8 15% 50% 1.1% 98.0 14.4 4.3

Decrement 19 18 5 811.7 - 5% 0.04% - - 559.1

List-K 33 11 5 - - - - - - 5493.0

ASSEMBLY

Access 13 5 5 134.6 20% 90% 16% 3.6 10.5 3.8

Decrement 20 27 5 - - - - - - 69.4

List-K 29 16 5 - - - - - - 16.8

Table 4: Benchmark results. For FMGD we present the time in seconds for 1000 epochs and the success rate out of {20, 20, 2400} random restarts
in the {Vanilla, Best Hypers and Average Hypers} columns respectively. For other back-ends we present the time in seconds to produce a synthesized
program. The symbol - indicates timeout (> 4h) or failure of any random restart to converge. N is the number of provided input-output examples used
to specify the task in each case.

29

6.2 Zooming in on FMGD Boolean Circuits
There is a stark contrast between the performance of FMGD and the alternatives on the Boolean Circuit
problems. On the Controlled Shift and Full Adder benchmarks, each run of FMGD took 35− 80× as long
as the SMT back-end. On top of this, we ran 120× 20 = 2400 runs during the random search. However,
there were no successful runs.

6.2.1 Slow convergence

While most runs converged to a local optimum during the 2000 epochs they were allocated, some cases
had not. Thus, we decided to allocate the algorithm 5× as many epochs (10,000) and run the random
search over. This did produce some successes, although very few. For the Controlled Shift problem, 1 of
2400 runs converged, and for the Full Adder, 3 of 2400 runs converged. Thus it does appear that results
could be improved somewhat by running FMGD for longer. However, given the long runtimes of FMGD
relative to the SMT and Sketch back-ends, this would not change the qualitative conclusions from the
previous section.

6.2.2 Varying the problem dimension

We take inspiration from neural network literature which approaches the issue of stagnation in local
minima by increasing the dimension of the problem. It has been argued that local optima become
increasingly rare in neural network loss surfaces as the dimension of the hidden layers increase, and
instead saddle points become increasingly common (Dauphin et al., 2014). Exchanging local minima for
saddle points is beneficial because dynamic learning rate schedules such as RMSProp are very effective at
handling saddle points and plateaus in the loss function.

To assess how dimensionality affects FMGD, we first take a minimal example in the boolean circuit
domain: the task of synthesizing a NAND gate. The minimum solution for this task is shown in Fig. 18(a),
along with an example configuration which resides at one local minimum of the FMGD loss surface.
For a synthesis task involving two gates and two wires, there are a total of 14 independent degrees of
freedom to be optimized, and there is only one global optimum. Increasing the available resources to three
gates and three wires, gives an optimization problem over 30 dimensions and several global minima. The
contrast between the learning trajectories in these two cases is shown in Fig. 18. We attempt to infer the
presence of saddle points by exploring the loss surface with vanilla gradient descent and a small learning
rate. Temporary stagnation of the learning is an indication of a saddle-like feature. Such features are
clearly more frequently encountered in the higher dimensional case where we also observe a greater overall
success rate (36% of 100 random initializations converge on a global optimum in the low dimensional
case vs. 60% in the high dimensional case).

These observations are consistent with the intuition from Dauphin et al. (2014), suggesting that we
will have more success in the benchmark tasks if we provide more resources (i.e. a higher dimensional
problem) than required to solve the task. We perform this experiment on the full adder benchmark by
varying the number of wires and gates used in the synthesized solution. The results in Fig. 19 show the
expected trend, with synthesis becoming more successful as the number of redundant resources increases
above the minimal 4 wires and 5 gates. Furthermore, we see no clear increase in the expected time for
FMGD to arrive at a solution as we increase the problem size (calculated as the time for 1000 epochs
divided by the success rate). This is dramatically different to the trend seen when applying constraint
solvers to the synthesis problem, where broadly speaking, increasing the number of constraints in the
problem increases the time to solution (see Fig. 19(c)).

This feature of FMGD is particularly interesting when the minimal resources required to solve a
problem is not known before synthesis. Whereas over-provisioning resources will usually harm the other
back-ends we consider, it can help FMGD. The discovered programs can then be post-processed to recover
some efficiency (see Fig. 20)

6.3 Challenge Benchmark
Before leaving this section, we note that Sketch has so far solved all of the benchmark tasks. To provide
a goal for future work, we introduce a final benchmark which none of the back-ends are currently able to

30

(a) (b)

AND NOT

outa

b

AND NOT

outa

b

NOT

a

b

0.5
0.5

out

0 2000 4000 6000
Epoch

0.0

0.5

1.0

1.5

2.0

Lo
ss

SGD

0 2000 4000 6000
Epoch

0.0

0.5

1.0

1.5

2.0

Lo
ss

SGD

100 200 300 400
Epoch

0.0

0.5

1.0

1.5

2.0

Lo
ss

RMSProp

Figure 18: Comparison of the learning trajectories when we increase the resources available to the
synthesizer. (a) The minimal solution for producing a NAND gate, and a locally optimal configuration
found by FMGD (the marginal for the input to the first gate puts 50% weight on both wires). We plot
the trajectory of 100 random initializations during learning, highlighting the successful runs in blue and
the failures in red. (b) Adding an extra wire and gate changes the learning trajectories significantly,
introducing plateaus indicative of saddle-points in the loss function. We can use RMSProp rather than
SGD (stochastic gradient descent) to navigate these features (note the change in the horizontal scale
when using RMSProp)

5 6 8 10 12 15 20 25 30

4 0 0 5 0 5 0 0 0 0

5 0 0 10 0 5 10 10 0 0

6 0 0 5 5 15 10 10 5 0

8 0 0 5 5 5 10 25 20 45

10 0 0 0 0 10 5 25 25 35

12 0 0 0 0 0 0 5 10 25

15 0 0 0 0 0 0 0 15 25

20 0 0 0 0 0 0 0 5 25

Number of gates

N
u

m
b

er
 o

f
w

ir
es

5 6 8 10 12 15 20 25 30

19 31

11 36 22 27

24 32 13 25 33 80

30 42 51 32 18 24 18

30 81 22 27 26

119 81 42

63 61

270 64

Number of gates

5 6 8 10 12 15 20 25 30

0.06 0.05 0.04 0.05 0.06 0.27 0.30 0.62 0.45

0.06 0.04 0.05 0.07 0.13 0.13 0.12 2.04 8.53

0.04 0.04 0.05 0.07 0.16 0.10 0.50 3.09 19.8

0.04 0.04 0.05 0.05 0.12 0.11 2.47 0.99 1.53

0.04 0.04 0.05 0.05 0.43 0.10 1.35 1.45 2.33

0.05 0.08 0.08 0.07 0.20 0.60 0.51 2.11 2.73

0.35 0.06 0.05 0.14 0.20 0.28 0.35 0.87 0.96

0.31 1.42 0.07 0.05 0.06 0.10 1.65 3.53 6.28

Number of gates

(a) Success rate (b) Expected solution time (c) Sketch solution time

(minutes) (minutes)

Figure 19: The effect of increasing the dimension of the FMGD synthesis problem. We vary the number
of wires and gates used in the synthesis of the full adder citcuit and present both (a) the percentage of
20 random initializations which converge to a global solution and (b) the expected time (in minutes) to
solution (time for 1000 epochs / success rate). The solution time for the Sketch—backend is shown in
(c) for comparison.

31

AND

AND

ORXOR

XOR
c_in

a_1

b_1

s

c_out

XOR

OR

XOR

XOR
XOR

OR OR

OR

AND

AND

c_in

a_1

b_1

s

c_out

Figure 20: Comparison of the minimal Full Adder solution and the synthesized solution when redundant
resources are provided. The gates highlighted in orange can be removed in post-processing without
affecting the output.

solve from 5 input-output examples even after 40 hours:

ASSEMBLY M R B log10 D T Description

Merge 17 6 22 103 69 Merge two contiguous sorted lists into one contigu-
ous sorted list. The first entries in the initial heap are
heap0[0] = p1, heap0[1] = p2, heap0[2] = pout,
where p1 (p2) is a pointer to the first (second) sorted
sublist (terminated with a 0), and pout is a pointer
to the head of the desired output list. All elements of
the sorted sublists are larger than 0 and all unused
cells in heap0 are initialized to 0.

7 Related Work
Probabilistic Programming and Graphical Models There are now many probabilistic program-
ming systems specialized to different use-cases. One dominant axis of variability is in the expressiveness of
the language. Some probabilistic programming languages, exemplified by Church (Goodman et al., 2008),
allow great freedom in the expressibility of the language, including constructs like recursion and higher
order functions. The cost of the expressibility in the language is that the inference techniques cannot
be as specialized, and thus these systems tend to use general Markov Chain Monte Carlo methods for
inference. On the other end of the spectrum are more specialized systems like Infer.NET (Minka et al.,
2014) and Stan (Carpenter, 2015; Stan Development Team, 2015). These systems restrict models to be
constructed of predefined building blocks and do not support arbitrary program constructs like recursion
and higher order functions. They do generally support basic loops and branching structure, however. In
Infer.NET, for example, loops are unrolled, and if statements are handled via special constructs known
as Gates (Minka and Winn, 2009). The result is that the program can be viewed as a finite gated factor
graph, on which message passing inference can be performed.

In these terms, TerpreT is most similar to Infer.NET, and its handling of loops and if statements
are inspired by Infer.NET. Compared to Infer.NET, TerpreT is far more extreme in the restrictions
that it places upon modelling constructs. The benefit is that the restricted language allows us to support
a broader range of back-ends. Looking forward, Infer.NET provides inspiration for how TerpreT might
be extended to handle richer data types like real numbers and strings.

Another related line of work is in casting program synthesis as a problem of inference in probabilistic
models. Gulwani and Jojic (2007) phrase program synthesis as inference in a graphical model and use

32

belief propagation inference. In future work, we would like to create a belief propagation-based back-end
for TerpreT. The problem of inducing samplers for probability distributions has also been cast as
a problem of inference in a probabilistic program (Perov and Wood, 2016). Lake et al. (2015) induce
probabilistic programs by performing inference in a probabilistic model describing how primitives are
composed to form types and instances of types.

Neural Networks with Memory In common neural network architectures handling sequences of
inputs, “memory” only manifests itself as the highly compressed state of the network. This is problematic
when the task at hand requires to relate inputs that are far apart from each other, which more recent
models try to mitigate using tools such as Long Short-Term Memory (Hochreiter and Schmidhuber, 1997;
Graves, 2013) and Gated Recurrent Units (Cho et al., 2014). However, such recurrent units do not entirely
solve the problems with long-range interactions, and a range of additional techniques have been employed
to improve results (e.g., (Mikolov et al., 2015; Koutńık et al., 2014)).

An alternative solution to this problem is to extend networks by providing access to external storage.
Initial extensions provided a stack (Giles et al., 1989) or a scratch pad simplified to a stack (Mozer and
Das, 1992), and the controlling network learned when to push data to and pop (load) data from that
stack.3 Recently, similar ideas have been picked up again, leading to stack and queue-augmented recurrent
nets (Joulin and Mikolov, 2015; Grefenstette et al., 2015), memory networks with freely addressable
storage (Weston et al., 2014; Sukhbaatar et al., 2015), and extensions that additionally use registers for
intermediate results (Kurach et al., 2015).

Neural Networks Learning Algorithms Recurrent neural networks with access to memory are,
essentially, learnable implementations of the Von Neumann architecture. A number of recent advances
build on this observation to learn algorithms from input-output data (Graves et al., 2014; Joulin and
Mikolov, 2015; Neelakantan et al., 2016a; Reed and de Freitas, 2016; Zaremba et al., 2016). While
these approaches differ in (a) the underlying execution models (e.g., Turing Machines, Random Access
Machines, Stack Automata), (b) learning methods (e.g., from input/output samples or action sequences,
supervised or by reinforcement learning), and (c) program domains (arithmetic, simple data structure
manipulation, image manipulation), they share the overall idea of training a deep neural network that
learns to manipulate data by repeatedly calling deterministic “modules” (or “actions” or “interfaces”)
from a predefined set. These models are able to learn and repeat simple algorithmic patterns, but are all
not interpretable; what they have learned only becomes evident through actions on concrete inputs.

Very recent work has improved on this aspect and is closest to our approach. To support adaptive
neural compilation (Bunel et al., 2016), a machine model similar to our assembly model (cf. Section 3.2.4)
was introduced. This allows a user to sketch a (partial) program as input, and then use deep learning
methods to optimise it. The result is again a program in the chosen assembly language, and can be
displayed easily. Differentiable Forth (Riedel et al., 2016) is a similar step in this direction, where the
learning task is to fill in holes in a partial Forth program.

Program Synthesis The area of program synthesis has recently seen a renewed interest in the program-
ming language community (Alur et al., 2015). There have been many synthesis techniques developed for a
wide range of problems including data wrangling (Gulwani et al., 2012; Polozov and Gulwani, 2015), infer-
ence of efficient synchronization in concurrent programs, synthesizing efficient low-level code from partial
programs (Solar-Lezama et al., 2005), compilers for low-power spatial architectures (Phothilimthana et al.,
2014), efficient compilation of declarative specifications (Kuncak et al., 2010), statistical code comple-
tion (Raychev et al., 2016), and automated feedback generation for programming assignments (Singh et al.,
2013). These techniques can be broadly categorized using three dimensions: i) specification mechanism,
ii) complexity of hypothesis space, and iii) search algorithm. The different forms of specifications include
input-output examples, partial programs, reference implementation, program traces etc. The hypothesis
space of possible programs is typically defined using a domain-specific language, which is designed to be
expressive enough to encode majority of desired tasks but at the same time concise enough for efficient

3Interestingly enough, extracting an interpretable deterministic pushdown automaton from a trained stack-using recurrent
network was already proposed in (Das et al., 1992).

33

learning. Finally, some of the common search algorithms include constraint-based symbolic synthesis algo-
rithms (Solar-Lezama, 2008; Reynolds et al., 2015), smart enumerative algorithms with pruning (Udupa
et al., 2013), version-space algebra based search algorithms (Gulwani et al., 2012; Gulwani, 2011), and
stochastic search (Schkufza et al., 2013). There has also been some recent work on learning from inputs
in addition to the input-output examples to guide the synthesis algorithm (Singh, 2016), and synthesizing
programs without any examples by performing a joint inference over the program and the inputs to
recover compressed encodings of the observed data (Ellis et al., 2015).

In this work, we are targeting specifications based on input-output examples as this form of specification
is most natural to the work in the machine learning community. For defining the hypothesis space, we use
our probabilistic programming language TerpreT, and we currently support compilation to intermediate
representations for four inference (search) algorithms. The key difference between our work and most of
the previous work in the program synthesis community is that our language is built to allow compilation
to different inference algorithms (from both the machine learning community and programming languages
community) which enables like-to-like comparison. We note that another recent effort SyGuS (Alur et al.,
2015) aims to unify different program synthesis approaches using a common intermediate format based
on context-free grammars so that different inferences techniques can be compared, but the TerpreT
language allows for encoding richer programming models than SyGuS, and also allows for compilation to
gradient-descent based inference algorithms.

8 Discussion & Future Work
We presented TerpreT, a probabilistic programming language for specifying IPS problems. TerpreT can
be used in combination with the FMGD back-end to produce differentiable interpreters for a wide range
of program representations and languages. TerpreT has several other back-ends including one based on
linear programming and two that are strong alternatives from the programming languages community.

The biggest take-away from the experimental results is that the methods from programming languages
significantly outperform the machine learning approaches. We believe this is an important take-away
for machine learning researchers studying program synthesis. However, we remain optimistic about the
future of machine learning-based approaches to program synthesis, and we do not wish to discourage
work in this area. Quite the opposite; we hope that this work stimulates further research in the area and
helps to clarify how machine learning is likely to be useful. The setting in this work is a minimal version
of the program synthesis problem, in which the main challenge is efficiently searching over program space
for programs that meet a given input-output specification. The conclusion from our experiments is that
gradient descent is inferior to constraint-based discrete search algorithms for this task.

Our results also raise an interesting question when taken in comparison to (Kurach et al., 2015). The
NRAM model is reported to solve problems that our FMGD approach was not able to. We would like to
better understand what the source of this discrepancy is. The two main differences are in the execution
model and in the program parameterization. In the NRAM execution model, all instructions are executed
in all timesteps (possibly multiple times), and it is up to the controller to decide how to wire them up.
This creates additional parallelism and redundancy relative to the Basic Block or Assembly models. We
speculate that this makes it possible in the NRAM model for multiple hypotheses to be developed at once
with little overlap in the memory locations used. This property may make the optimization easier. The
other major difference is in the controller. The NRAM model uses a neural network controller that maps
from the state of registers to the operations that are to be performed. In the Basic Block and Assembly
models, this is done via the instruction pointer that is updated based upon control flow decisions in the
program. We speculate that the neural network controller operates in a less constrained space (since a
different operation may be performed at each timestep if the model pleases), and it offers some bias to
the search. We suspect neural networks may be biased towards repeating circuits in the earlier stages
of training due to their typical behavior of first predicting averages before specializing to make strongly
input-dependent predictions. In future work we would like to explore these questions more rigorously, in
hopes of finding general principles that can be used to develop more robust inference algorithms.

In future work, there are several extensions to TerpreT that we would like to develop. First, we
would like to extend the TerpreT language in several ways. We would like to support non-uniform priors
over program variables (which will require converting the SMT and Sketch back-ends to use max-SMT

34

solvers). There are several data types that we would like to support, including floating point numbers,
strings, and richer data types. Second, we would like to continue to expand the number of back-ends.
Natural next steps are back-ends based on local search or Markov Chain Monte Carlo, and on message
passing inference in graphical models, perhaps taking inspiration from Sontag et al. (2008). Third, we
would like to build higher level languages on top of TerpreT, to support more compact specification of
common TerpreT programming patterns.

More generally, we believe the opportunities for IPS come not from improving discrete search in
this setting, but in re-phrasing the program synthesis problem to be more of a pattern-matching and
big-data problem, and in augmenting the specification beyond just input-output examples (for example,
incorporating natural language). In these cases, the importance of the discrete search component decreases,
and we believe there to be many opportunities for machine learning. As we move forward in these directions,
we believe TerpreT will continue to be valuable, as it makes it easy to build a range of differentiable
interpreters to be used in conjunction with larger learning systems.

Acknowledgements
We thank several people for discussions that helped improve this report: Tom Minka for discussions related
to the Gates LP relaxation; John Winn for several discussions related to probabilistic programming and
gates; Ryota Tomioka for discussions related to the FMGD loss surface; Andy Gordon for pushing us
towards the probabilistic programming formulation of TerpreT; Abdel-rahman Mohamed for discussions
related to neural networks and program synthesis; Jack Feser for being the first non-author TerpreT user;
Aditya Nori for helpful discussions about program synthesis; and Matej Balog for a critical reading of
this manuscript.

A Proof of Lemma 1
Lemma 1. All island structures have zero gradient.

Proof. Notationally, let s = {si(a) | i ∈ {1, . . . ,K}, a ∈ {0, 1}} be the free parameters, where si(a) is the
unnormalized log probability that xi is equal to a. The probability over xi is then given by a softmax;
i.e., p(xi = a) = µi(a) = exp si(a)

exp si(0)+exp si(1) . Let µ be the set {µi(a) | i ∈ {1, . . . ,K}, a ∈ {0, 1}}. Let the
objective o(s) be the log probability of the observations, i.e., o(s) =

∑
i log p(yi = 0 | s) =

∑
i log p(yi =

0 | µ).
The plan is to show that for each island structure described above, the partial derivative ∂o(s)

∂si(a) is 0
for every i and a. This can be done by computing the partial derivatives and showing that they are 0 for
each possible local configuration that arises in an island structure.

First, let us derive the gradient contribution from a single observation yi = 0. By the definition of
parity and the FMGD model,

p(yi = 0 | µ) = p(xi = 0)p(xi+1 = 0) + p(xi = 1)p(xi+1 = 1) (20)
= µi(0)µi+1(0) + µi(1)µi+1(1). (21)

The partial derivative ∂ log p(yi=0)
∂sj(a) can be computed via the chain rule as

∂ log p(yi = 0)
∂sj(a) = ∂ log p(yi = 0)

∂p(yi = 0)
∂p(yi = 0)
∂sj(b)

. (22)

Each of these can be computed straight-forwardly. The partial derivative ∂ log p(yi=0)
∂p(yi=0) is 1

p(yi=0) . The
partial derivative ∂p(yi=0)

∂sj(b) is as follows:

∂p(yi = 0)
∂sj(b)

=


∂µi(0)
∂si(b) µi+1(0) + ∂µi(1)

∂si(b) µi+1(1) if j = i

µi(0)∂µi+1(0)
∂si+1(b) + µi(1)∂µi+1(1)

∂si+1(b) if j = i+ 1

0 otherwise.

(23)

35

Finally, the partial derivative of the softmax is

∂µi(b)
∂si(a) = µi(b)

∂ logµi(b)
∂si(a) (24)

= µi(b)
∂

∂si(a) [si(b)− log (exp si(0) + exp si(1))] (25)

= µi(b) (1{a = b} − µi(a)) . (26)

Putting these together, we get the full partial derivatives:

∂ log p(yi = 0)
∂sj(a)

=
1

p(yi = 0)
·


µi(0)µi+1(0) (1{a = 0} − µi(a)) + µi(1)µi+1(1) (1{a = 1} − µi(a)) if j = i

µi(0)µi+1(0) (1{a = 0} − µi+1(a)) + µi(1)µi+1(1) (1{a = 1} − µi+1(a)) if j = i+ 1

0 otherwise
(27)

Each sj(a) contributes to two terms in the objective: log p(yj−1 = 0) and log p(yj = 0). Thus the gradient
on sj(a) is the sum of gradient contributions from these two terms:

∂o(s)
∂sj(a) = ∂ log p(yj−1 = 0)

∂sj(a) + ∂ log p(yj = 0)
∂sj(a) . (28)

Restricting attention to a = 0 (the case where a = 1 follows similarly and is omitted), we can simplify
further:

∂o(s)
∂sj(0) =∂ log p(yj−1 = 0)

∂sj(0) + ∂ log p(yj = 0)
∂sj(0) (29)

= 1
p(yj−1 = 0) (µj−1(0)µj(0)(1− µj(0)) + µj−1(1)µj(1)(−µj(0))) (30)

+ 1
p(yj = 0) (µj(0)µj+1(0) (1− µj(0)) + µj(1)µj+1(1)(−µj(0))) (31)

= 1
p(yj−1 = 0) (µj−1(0)µj(0)µj(1)− µj−1(1)µj(1)µj(0)) (32)

+ 1
p(yj = 0) (µj(0)µj+1(0)µj(1)− µj(1)µj+1(1)µj(0)) (33)

=µj(0)µj(1)
(
µj−1(0)− µj−1(1)

p(yj−1 = 0) + µj+1(0)− µj+1(1)
p(yj = 0)

)
(34)

The first note is that if µj(0) = 0 or µj(1) = 0, then the gradient for sj(0) is 0. Thus, we only need
to consider triplets (µj−1(·), µj(·), µj+1(·)) where µj(a) = .5. The only two cases that arise in island
structures are (0, .5, 1) and (1, .5, 0). Consider the first case, (0, .5, 1):

= µj(0)µj(1)
(
µj−1(0)− µj−1(1)

p(yj−1 = 0) + µj+1(0)− µj+1(1)
p(yj = 0)

)
(35)

= .5 · .5 ·
(

1− 0
.5 + 0− 1

.5

)
(36)

= .5 · .5 · (2− 2) = 0. (37)

The second case (1, .5, 0) is similar:

= µj(0)µj(1)
(
µj−1(0)− µj−1(1)

p(yj−1 = 0) + µj+1(0)− µj+1(1)
p(yj = 0)

)
(38)

= .5 · .5 ·
(

0− 1
.5 + 1− 0

.5

)
(39)

= .5 · .5 · (−2 + 2) = 0. (40)

36

Thus, the gradients with respect to sj(a) are zero for all j and a when an island-structured configuration is
given. The objective is clearly suboptimal (since some p(yi = 0) are less than 1 at the island boundaries).
Thus, each island structure is a suboptimal local optimum.

37

B Benchmark models
B.1 Turing Machine

1 const nStateMem = # HYPERPARAM const nStateMem

2 const nStateHead = # HYPERPARAM const nStateHead

3 const nTimesteps = # HYPERPARAM const nTimesteps

4 const tapeLength = # HYPERPARAM const tapeLength

5 const nDir = 3

6

7 const nInstances = # HYPERPARAM const nInstances

8

9 @CompileMe([const tapeLength ,const nDir],const tapeLength)

10 def move(pos, direction):

11 if direction == 0: return pos

12 elif direction == 1: return (pos + 1) % const tapeLength

13 elif direction == 2: return (pos − 1) % const tapeLength
14 @CompileMe([const tapeLength , const tapeLength], 2)

15 def equalityTestPos(a,b): return 1 if a == b else 0

16 @CompileMe([const nStateHead , const nStateHead], 2)

17 def equalityTestState(a,b): return 1 if a == b else 0

18

19 ###

20 # Source code parametrisation #

21 ###

22 newValue = Param(const nStateMem)[const nStateHead , const nStateMem]

23 direction = Param(const nDir)[const nStateHead , const nStateMem]

24 newState = Param(const nStateHead)[const nStateHead , const nStateMem]

25

26 ###

27 # Interpreter model #

28 ###

29 # Memory tape

30 tape = Var(const nStateMem)[const nInstances , const nTimesteps , const tapeLength]

31 # Machine head

32 curPos = Var(const tapeLength)[const nInstances , const nTimesteps]

33 curState = Var(const nStateHead)[const nInstances , const nTimesteps]

34 isHalted = Var(2)[const nInstances , const nTimesteps]

35 # Temporary values

36 tmpActiveCell = Var(2)[const nInstances , const nTimesteps − 1, const tapeLength]
37 tmpMemState = Var(const nStateMem)[const nInstances , const nTimesteps − 1]
38

39 # IMPORT OBSERVED INPUTS

40

41 # Initialize machine head

42 for n in range(const nInstances):

43 curPos[n,0].set to constant(0)

44 curState[n,0].set to constant(1)

45 isHalted[n,0].set to constant(0)

46

47 # Run the Turing machine

48 for n in range(const nInstances): # loop over I/O examples

49 for t in range(const nTimesteps − 1): # loop over program timesteps

50

51 # Carry forward unmodified tape and head if halted

38

52 if isHalted[n,t] == 1:

53 for m in range(const tapeLength):

54 tape[n,t+1,m].set to(tape[n,t,m])

55 curState[n,t+1].set to(curState[n,t])

56 curPos[n,t+1].set to(curPos[n,t])

57 isHalted[n,t+1].set to(isHalted[n,t])

58

59 # Perform Turing update if not halted

60 elif isHalted[n,t] == 0:

61 with curState[n,t] as s:

62 with curPos[n,t] as x:

63 with tape[n,t,x] as Tx:

64 tmpMemState[n,t].set to(newValue[s,Tx])

65 curPos[n,t+1].set to(move(x, direction[s,Tx]))

66 curState[n,t+1].set to(newState[s,Tx])

67

68 # Machine halts if head enters state 0

69 isHalted[n,t+1].set to(equalityTestState(0,curState[n,t+1]))

70

71 # Write temporary value to tape

72 for m in range(const tapeLength):

73 tmpActiveCell[n,t,m].set to(equalityTestPos(m, curPos[n,t]))

74 if tmpActiveCell[n,t,m] == 1:

75 tape[n,t+1,m].set to(tmpMemState[n,t])

76 elif tmpActiveCell[n,t,m] == 0:

77 tape[n,t+1,m].set to(tape[n,t,m])

78

79 # Machine must be halted at end of execution

80 for n in range(const nInstances):

81 isHalted[n,const nTimesteps − 1].observe value(1)
82

83 # IMPORT OBSERVED OUTPUTS

B.2 Boolean circuits

1 const nGates = # HYPERPARAM const nGates

2 const nWires = # HYPERPARAM const nWires

3 const nGateTypes = 5

4

5 const nInstances = # HYPERPARAM const nInstances

6

7 @CompileMe([const two ,const two],const two)

8 def AND(a,b): return int(a and b)

9 @CompileMe([const two ,const two],const two)

10 def OR(a,b): return int(a or b)

11 @CompileMe([const two ,const two],const two)

12 def XOR(a,b): return int(a ^ b)

13 @CompileMe([const two],const two)

14 def NOT(a): return int(not a)

15 @CompileMe([const two],const two)

16 def NOOP(a): return a

17 @CompileMe([const nWires ,const nWires],const two)

18 def equalityTest(a,b): return 1 if a == b else 0

19

39

20 ###

21 # Source code parametrisation #

22 ###

23 gate = Param(const nGateTypes)[const nGates]

24 in1 = Param(const nWires)[const nGates]

25 in2 = Param(const nWires)[const nGates]

26 out = Param(const nWires)[const nGates]

27

28 ###

29 # Interpreter model #

30 ###

31 wires = Var(2)[const nInstances , const nGates + 1, const nWires]

32 tmpOutput = Var(2)[const nInstances , const nGates]

33 tmpDoWrite = Var(2)[const nInstances , const nGates , const nWires]

34 tmpArg1 = Var(2)[const nInstances , const nGates]

35 tmpArg2 = Var(2)[const nInstances , const nGates]

36

37 # IMPORT OBSERVED INPUTS

38

39 # Run the circuit

40 for n in range(const nInstances): # loop over I/O examples

41 for g in range(const nGates): # loop over sequential gates

42

43 # Load gate inputs

44 with in1[g] as i1:

45 with in2[g] as i2:

46 tmpArg1[n,g].set to(wires[n,g,i1])

47 tmpArg2[n,g].set to(wires[n,g,i2])

48

49 # Compute gate output

50 if gate[g] == 0:

51 tmpOutput[n,g].set to(AND(tmpArg1[n,g], tmpArg2[n,g]))

52 elif gate[g] == 1:

53 tmpOutput[n,g].set to(OR(tmpArg1[n,g], tmpArg2[n,g]))

54 elif gate[g] == 2:

55 tmpOutput[n,g].set to(XOR(tmpArg1[n,g], tmpArg2[n,g]))

56 elif gate[g] == 3:

57 tmpOutput[n,g].set to(NOT(tmpArg1[n,g]))

58 elif gate[g] == 4:

59 tmpOutput[n,g].set to(NOOP(tmpArg1[n,g]))

60

61 # Write gate output

62 for w in range(const nWires):

63 tmpDoWrite[n,g,w].set to(equalityTest(out[g], w))

64 if tmpDoWrite[n,g,w] == 1:

65 wires[n,g + 1,w].set to(tmpOutput[n,g])

66 elif tmpDoWrite[n,g,w] == 0:

67 wires[n,g + 1,w].set to(wires[n,g,w])

68

69 # IMPORT OBSERVED OUTPUTS

B.3 Basic-block model

1 const nBlocks = # HYPERPARAM const nBlocks

40

2 const nRegisters = # HYPERPARAM const nRegisters

3 const nTimesteps = # HYPERPARAM const nTimesteps

4 const maxInt = # HYPERPARAM const maxInt

5 const nInstructions = 7

6 const nActions = 2

7 const nInstrPlusAct = const nInstructions + const nActions

8 const noopIndex = const nInstructions

9

10 const nInstances = # HYPERPARAM const nInstances

11

12 @CompileMe([const nInstrPlusAct], 2)

13 def isInstruction(a): return 1 if a < const nInstructions else 0

14 @CompileMe([const nInstrPlusAct], const nInstructions)

15 def extractInstruction(a): return a

16 @CompileMe([const nInstrPlusAct], const nActions)

17 def extractAction(a): return a − const nInstructions
18 @CompileMe([const maxInt , const maxInt], 2)

19 def equalityTestValue(a,b): return 1 if a == b else 0

20 @CompileMe([const nRegisters , const nRegisters], 2)

21 def equalityTestReg(a, b): return 1 if a == b else 0

22 @CompileMe([const maxInt], 2)

23 def greaterThanZero(a): return 1 if a > 0 else 0

24

25 @CompileMe([], const maxInt)

26 def ZERO(): return 0

27 @CompileMe([const maxInt], const maxInt)

28 def INC(a): return (a + 1) % const maxInt

29 @CompileMe([const maxInt], const maxInt)

30 def DEC(a): return (a − 1) % const maxInt
31 @CompileMe([const maxInt , const maxInt], const maxInt)

32 def ADD(a, b): return (a + b) % const maxInt

33 @CompileMe([const maxInt , const maxInt], const maxInt)

34 def SUB(a, b): return (a − b) % const maxInt
35 @CompileMe([const maxInt , const maxInt], const maxInt)

36 def LESSTHAN(a, b): return 1 if a < b else 0

37

38 ###

39 # Source code parametrisation #

40 ###

41 instructions = Param(const nInstrPlusAct)[const nBlocks]

42 arg1s = Param(const nRegisters)[const nBlocks]

43 arg2s = Param(const nRegisters)[const nBlocks]

44 rOuts = Param(const nRegisters)[const nBlocks]

45 thenBlocks = Param(const nBlocks)[const nBlocks]

46 elseBlocks = Param(const nBlocks)[const nBlocks]

47 rConds = Param(const nRegisters)[const nBlocks]

48

49 ###

50 # Interpreter model #

51 ###

52 # Program pointer

53 curBlocks = Var(const nBlocks)[const nInstances ,const nTimesteps]

54 # Memory

55 registers = Var(const maxInt)[const nInstances ,const nTimesteps ,const nRegisters]

56 heap = Var(const maxInt)[const nInstances ,const nTimesteps ,const maxInt]

41

57 # Temporary values

58 tmpIsInstr = Var(2)[const nInstances ,const nTimesteps−1]
59 tmpInstr = Var(const nInstructions)[const nInstances ,const nTimesteps−1]
60 tmpAction = Var(const nActions)[const nInstances ,const nTimesteps−1]
61 tmpArg1Val = Var(const maxInt)[const nInstances ,const nTimesteps−1]
62 tmpArg2Val = Var(const maxInt)[const nInstances ,const nTimesteps−1]
63 tmpOutput = Var(const maxInt)[const nInstances ,const nTimesteps−1]
64 tmpDoWrite = Var(2)[const nInstances ,const nTimesteps−1, const nRegisters]
65 tmpCondVal = Var(const maxInt)[const nInstances ,const nTimesteps−1]
66 tmpGotoThen = Var(2)[const nInstances ,const nTimesteps−1]
67 tmpWriteHeap = Var(2)[const nInstances ,const nTimesteps−1,const maxInt]
68

69 # Initialize block 0 to a spining STOP block

70 instructions[0].set to constant(const noopIndex)

71 thenBlocks[0].set to constant(0)

72 elseBlocks[0].set to constant(0)

73

74 # Initialize the program pointer to block 1 and the registers to 0

75 for n in range(const nInstances):

76 curBlocks[n,0].set to constant(1)

77 for r in range(const nRegisters):

78 registers[n,0,r].set to constant(0)

79

80 # IMPORT OBSERVED INPUTS

81

82 # Run the program

83 for n in range(const nInstances): # loop over I/O examples

84 for t in range(const nTimesteps−1): # loop over program timesteps

85 with curBlocks[n,t] as pc:

86

87 # Load block inputs

88 with arg1s[pc] as a1:

89 tmpArg1Val[n,t].set to(registers[n,t,a1])

90 with arg2s[pc] as a2:

91 tmpArg2Val[n,t].set to(registers[n,t,a2])

92

93 # Determine whether block performs a heap ACTION or register INSTRUCTION

94 tmpIsInstr[n,t].set to(isInstruction(instructions[pc]))

95

96 # Handle heap ACTIONS

97 if tmpIsInstr[n,t] == 0:

98 tmpAction[n,t].set to(extractAction(instructions[pc]))

99

100 # Actions affect the heap ...

101 if tmpAction[n,t] == 0: # NOOP

102 for m in range(const maxInt):

103 heap[n,t+1,m].set to(heap[n,t,m])

104 elif tmpAction[n,t] == 1: # WRITE

105 for m in range(const maxInt):

106 tmpWriteHeap[n,t,m].set to(equalityTestValue(tmpArg1Val[n,t], m))

107 if tmpWriteHeap[n,t,m] == 1:

108 heap[n,t+1,m].set to(tmpArg2Val[n,t])

109 elif tmpWriteHeap[n,t,m] == 0:

110 heap[n,t+1,m].set to(heap[n,t,m])

111

42

112 # ... and do not affect registers

113 for r in range(const nRegisters):

114 registers[n,t+1,r].set to(registers[n,t,r])

115

116 # Handle register INSTRUCTIONS

117 elif tmpIsInstr[n,t] == 1:

118 tmpInstr[n,t].set to(extractInstruction(instructions[curBlocks[n,t]]))

119

120 # Instructions affect registers ...

121 if tmpInstr[n,t] == 0:

122 tmpOutput[n,t].set to(ZERO())

123 elif tmpInstr[n,t] == 1:

124 tmpOutput[n,t].set to(INC(tmpArg1Val[n,t]))

125 elif tmpInstr[n,t] == 2:

126 tmpOutput[n,t].set to(DEC(tmpArg1Val[n,t]))

127 elif tmpInstr[n,t] == 3:

128 tmpOutput[n,t].set to(ADD(tmpArg1Val[n,t],tmpArg2Val[n,t]))

129 elif tmpInstr[n,t] == 4:

130 tmpOutput[n,t].set to(SUB(tmpArg1Val[n,t],tmpArg2Val[n,t]))

131 elif tmpInstr[n,t] == 5:

132 tmpOutput[n,t].set to(LESSTHAN(tmpArg1Val[n,t],tmpArg2Val[n,t])

133 elif tmpInstr[n,t] == 6: # READ

134 with tmpArg1Val[n,t] as a1:

135 tmpOutput[n,t].set to(heap[n,t,a1])

136

137 for r in range(const nRegisters):

138 tmpDoWrite[n,t,r].set to(equalityTestReg(rOuts[pc], r))

139 if tmpDoWrite[n,t,r] == 1:

140 registers[n,t+1,r].set to(tmpOutput[n,t])

141 elif tmpDoWrite[n,t,r] == 0:

142 registers[n,t+1,r].set to(registers[n,t,r])

143

144 # ... and do not affect the heap

145 for m in range(const maxInt):

146 heap[n,t+1,m].set to(heap[n,t,m])

147

148 # Perform branching according to condition register

149 with rConds[pc] as rc:

150 tmpCondVal[n,t].set to(registers[n,t+1,rc])

151

152 tmpGotoThen[n,t].set to(greaterThanZero(tmpCondVal[n,t]))

153 if tmpGotoThen[n,t] == 1:

154 curBlocks[n,t+1].set to(thenBlocks[pc])

155 elif tmpGotoThen[n,t] == 0:

156 curBlocks[n,t+1].set to(elseBlocks[pc])

157

158 # Program must terminate in the STOP block

159 for n in range(const nInstances):

160 curBlocks[n,const nTimesteps − 1].observe value(0)
161 # IMPORT OBSERVED OUTPUTS

B.4 Assembly Model

1 const nLines = # HYPERPARAM const nBlocks

43

2 const nRegisters = # HYPERPARAM const nRegisters

3 const nTimesteps = # HYPERPARAM const nTimesteps

4 const maxInt = # HYPERPARAM const maxInt

5 const nInstructions = 7

6 const nActions = 1

7 const nBranches = 2

8 const nInstrActBranch = const nInstructions + const nActions + const nBranches

9

10 const nInstances = # HYPERPARAM const nInstances

11

12 @CompileMe([const nInstrActBranch], 3)

13 def instructionType(a):

14 if a < const nInstructions:

15 return 0

16 elif a < (const nInstructions + const nActions):

17 return 1

18 else:

19 return 2

20 @CompileMe([const nInstrActBranch], const nInstructions)

21 def extractInstruction(a): return a

22 @CompileMe([const nInstrActBranch], const nBranches)

23 def extractBranch(a): return a − const nInstructions − const nActions
24 @CompileMe([const nRegisters , const nRegisters], 2)

25 def equalityTestReg(a,b): return 1 if a == b else 0

26 @CompileMe([const maxInt , const maxInt], 2)

27 def equalityTestValue(a,b): return 1 if a == b else 0

28 @CompileMe([const nLines , const nLines], 2)

29 def equalityTestLine(a,b): return 1 if a == b else 0

30 @CompileMe([const maxInt], 2)

31 def valueEqualsZero(a): return 1 if a == 0 else 0

32 @CompileMe([const nLines], const nLines)

33 def incLine(a): return (a + 1) % const nLines

34

35 @CompileMe([], const maxInt)

36 def ZERO(): return 0

37 @CompileMe([const maxInt], const maxInt)

38 def INC(a): return (a + 1) % const maxInt

39 @CompileMe([const maxInt , const maxInt], const maxInt)

40 def ADD(a, b): return (a + b) % const maxInt

41 @CompileMe([const maxInt , const maxInt], const maxInt)

42 def SUB(a, b): return (a − b) % const maxInt
43 @CompileMe([const maxInt], const maxInt)

44 def DEC(a): return (a − 1) % const maxInt
45 @CompileMe([const maxInt , const maxInt], const maxInt)

46 def LESSTHAN(a,b): return 1 if a < b else 0

47

48 ###

49 # Source code parametrisation #

50 ###

51 instructions = Param(const nInstrActBranch)[const nLines]

52 branchAddr = Param(const nLines)[const nLines]

53 arg1s = Param(const nRegisters)[const nLines]

54 arg2s = Param(const nRegisters)[const nLines]

55 rOuts = Param(const nRegisters)[const nLines]

56

44

57 ###

58 # Interpreter model #

59 ###

60 # Program pointer

61 curLine = Var(const nLines)[const nInstances ,const nTimesteps]

62 # Memory

63 registers = Var(const maxInt)[const nInstances ,const nTimesteps ,const nRegisters]

64 heap = Var(const maxInt)[const nInstances ,const nTimesteps ,const maxInt]

65 # Temporary values

66 tmpInstrActBranch = Var(3)[const nInstances , const nTimesteps−1]
67 tmpInstr = Var(const nInstructions)[const nInstances ,const nTimesteps−1]
68 tmpBranch = Var(const nBranches)[const nInstances ,const nTimesteps−1]
69 tmpArg1Val = Var(const maxInt)[const nInstances ,const nTimesteps−1]
70 tmpArg2Val = Var(const maxInt)[const nInstances ,const nTimesteps−1]
71 tmpOutput = Var(const maxInt)[const nInstances ,const nTimesteps−1]
72 tmpDoWrite = Var(2)[const nInstances ,const nTimesteps−1, const nRegisters]
73 tmpBranchIsZero = Var(2)[const nInstances ,const nTimesteps−1]
74 tmpWriteHeap = Var(2)[const nInstances ,const nTimesteps−1,const maxInt]
75 isHalted = Var(2)[const nInstances , const nTimesteps − 1]
76

77 # Initialize the program pointer to block 1 and the registers to 0

78 for n in range(const nInstances):

79 curLine[n,0].set to constant(1)

80 for r in range(const nRegisters):

81 registers[n,0,r].set to constant(0)

82

83 # IMPORT OBSERVED INPUTS

84

85 # Run the program

86 for n in range(const nInstances): # loop over I/O examples

87 for t in range(const nTimesteps−1): # loop over program timesteps

88 # Halt if we jump to line 0

89 isHalted[n,t].set to(equalityTestLine(curLine[n,t],0))

90

91 # If not halted, execute current line

92 if isHalted[n,t] == 0:

93 with curLine[n,t] as pc:

94 # Load line inputs

95 with arg1s[pc] as a1:

96 tmpArg1Val[n,t].set to(registers[n,t,a1])

97 with arg2s[pc] as a2:

98 tmpArg2Val[n,t].set to(registers[n,t,a2])

99

100 # Determine whether line performs a register INSTRUCTION , a heap ACTION or

101 # a control flow BRANCH

102 tmpInstrActBranch[n,t].set to(instructionType(instructions[pc]))

103

104 # Handle register INSTRUCTIONS

105 if tmpInstrActBranch[n,t] == 0:

106 tmpInstr[n,t].set to(extractInstruction(instructions[pc]))

107

108 # Instructions affect registers ...

109 if tmpInstr[n,t] == 0:

110 tmpOutput[n,t].set to(ZERO())

111 elif tmpInstr[n,t] == 1:

45

112 tmpOutput[n,t].set to(INC(tmpArg1Val[n,t]))

113 elif tmpInstr[n,t] == 2:

114 tmpOutput[n,t].set to(ADD(tmpArg1Val[n,t],tmpArg2Val[n,t]))

115 elif tmpInstr[n,t] == 3:

116 tmpOutput[n,t].set to(SUB(tmpArg1Val[n,t],tmpArg2Val[n,t]))

117 elif tmpInstr[n,t] == 4:

118 tmpOutput[n,t].set to(DEC(tmpArg1Val[n,t]))

119 elif tmpInstr[n,t] == 5:

120 tmpOutput[n,t].set to(LESSTHAN(tmpArg1Val[n,t],tmpArg2Val[n,t]))

121 elif tmpInstr[n,t] == 6:

122 with tmpArg1Val[n,t]:

123 tmpOutput[n,t].set to(heap[n,t,tmpArg1Val[n,t]])

124

125 for r in range(const nRegisters):

126 tmpDoWrite[n,t,r].set to(equalityTestReg(rOuts[pc], r))

127 if tmpDoWrite[n,t,r] == 1:

128 registers[n,t+1,r].set to(tmpOutput[n,t])

129 elif tmpDoWrite[n,t,r] == 0:

130 registers[n,t+1,r].set to(registers[n,t,r])

131

132 # ... and do not affect the heap

133 for m in range(const maxInt):

134 heap[n,t+1,m].set to(heap[n,t,m])

135

136 # Progress to the next line

137 curLine[n,t+1].set to(incLine(pc))

138

139 # Handle heap ACTIONS

140 elif tmpInstrActBranch[n,t] == 1:

141 # The only action is to write to the heap

142 for m in range(const maxInt):

143 tmpWriteHeap[n,t,m].set to(equalityTestValue(tmpArg1Val[n,t],m))

144 if tmpWriteHeap[n,t,m] == 1:

145 heap[n,t+1,m].set to(tmpArg2Val[n,t])

146 elif tmpWriteHeap[n,t,m] == 0:

147 heap[n,t+1,m].set to(heap[n,t,m])

148

149 # Actions do not affect the registers

150 for r in range(const nRegisters):

151 registers[n,t+1,r].set to(registers[n,t,r])

152

153 # Progress to the next line

154 curLine[n,t+1].set to(incLine(pc))

155

156 # Handle control flow BRANCHES

157 elif tmpInstrActBranch[n,t] == 2: # Branch

158 tmpBranch[n,t].set to(extractBranch(instructions[pc]))

159 tmpBranchIsZero[n,t].set to(valueEqualsZero(tmpArg1Val[n,t]))

160

161 # BRANCHES affect the program counter ...

162 if tmpBranch[n,t] == 0: # JZ

163 if tmpBranchIsZero[n,t] == 1:

164 curLine[n,t+1].set to(branchAddr[pc])

165 elif tmpBranchIsZero[n,t] == 0:

166 curLine[n,t+1].set to(incLine(pc))

46

167 elif tmpBranch[n,t] == 1: # JNZ

168 if tmpBranchIsZero[n,t] == 0:

169 curLine[n,t+1].set to(branchAddr[pc])

170 elif tmpBranchIsZero[n,t] == 1:

171 curLine[n,t+1].set to(incLine(pc))

172

173 # ... and do not affect the registers and heap.

174 for r in range(const nRegisters):

175 registers[n,t+1,r].set to(registers[n,t,r])

176 for m in range(const maxInt):

177 heap[n,t+1,m].set to(heap[n,t,m])

178

179 # Carry forward unmodified registers and heap if halted

180 elif isHalted[n,t] == 1:

181 for r in range(const nRegisters):

182 registers[n,t+1,r].set to(registers[n,t,r])

183 for m in range(const maxInt):

184 heap[n,t+1,m].set to(heap[n,t,m])

185 curLine[n,t+1].set to(curLine[n,t])

186

187 # Program must terminate in the STOP line

188 for n in range(const nInstances):

189 curLine[n,const nTimesteps−1].observe value(0)
190 # IMPORT OBSERVED OUTPUTS

References
Frances E Allen. Control flow analysis. In ACM Sigplan Notices, volume 5, pages 1–19. ACM, 1970.

Rajeev Alur, Rastislav Bod́ık, Eric Dallal, Dana Fisman, Pranav Garg, Garvit Juniwal, Hadas Kress-
Gazit, P. Madhusudan, Milo M. K. Martin, Mukund Raghothaman, Shamwaditya Saha, Sanjit A. Seshia,
Rishabh Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa. Syntax-guided synthesis.
In Dependable Software Systems Engineering, pages 1–25. 2015.

Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB standard: Version 2.5. Technical report,
The University of Iowa, 2015. Available at http://smt-lib.org/.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with gradient
descent is difficult. IEEE transactions on neural networks, 5(2):157–166, 1994.

Alan W Biermann. The inference of regular lisp programs from examples. IEEE transactions on Systems,
Man, and Cybernetics, 8(8):585–600, 1978.

Rudy Bunel, Alban Desmaison, Pushmeet Kohli, Philip H. S. Torr, and M. Pawan Kumar. Adaptive
neural compilation. CoRR, abs/1605.07969, 2016. URL http://arxiv.org/abs/1605.07969.

Bob Carpenter. Stan: A probabilistic programming language. Journal of Statistical Software, 2015.

KyungHyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties of
neural machine translation: Encoder-decoder approaches. CoRR, abs/1409.1259, 2014. URL http:
//arxiv.org/abs/1409.1259.

Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. Bounded model checking using satisfia-
bility solving. Formal Methods in System Design, 19(1):7–34, 2001.

47

http://smt-lib.org/
http://arxiv.org/abs/1605.07969
http://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1409.1259

Sreerupa Das, C. Lee Giles, and Guo-Zheng Sun. Using prior knowledge in a {NNPDA} to learn context-
free languages. In Proceedings of the 5th Conference on Advances in Neural Information Processing
Systems, NIPS 1992, pages 65–72, 1992.

Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and Yoshua Bengio.
Identifying and attacking the saddle point problem in high-dimensional non-convex optimization. In
Advances in neural information processing systems, pages 2933–2941, 2014.

Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In 14th Internal
Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2008, pages
337–340, 2008.

Kevin Ellis, Armando Solar-Lezama, and Joshua B. Tenenbaum. Unsupervised learning by program
synthesis. In Advances in Neural Information Processing Systems NIPS, pages 973–981, 2015.

C. Lee Giles, Guo-Zheng Sun, Hsing-Hen Chen, Yee-Chun Lee, and Dong Chen. Higher order recurrent
networks and grammatical inference. In Advances in Neural Information Processing Systems 2, [NIPS
Conference, Denver, Colorado, USA, November 27-30, 1989], pages 380–387, 1989.

Noah D. Goodman, Vikash K. Mansinghka, Daniel M. Roy, Keith Bonawitz, and Joshua B. Tenenbaum.
Church: a language for generative models. In Proc. of Uncertainty in Artificial Intelligence (UAI),
2008.

Alex Graves. Generating sequences with recurrent neural networks. CoRR, abs/1308.0850, 2013. URL
http://arxiv.org/abs/1308.0850.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. CoRR, abs/1410.5401, 2014. URL
http://arxiv.org/abs/1410.5401.

Edward Grefenstette, Karl Moritz Hermann, Mustafa Suleyman, and Phil Blunsom. Learning to transduce
with unbounded memory. In Advances in Neural Information Processing Systems, pages 1828–1836,
2015.

Sumit Gulwani. Automating string processing in spreadsheets using input-output examples. In ACM
SIGPLAN Notices, volume 46, pages 317–330. ACM, 2011.

Sumit Gulwani and Nebojsa Jojic. Program verification as probabilistic inference. In ACM SIGPLAN
Notices, volume 42, pages 277–289. ACM, 2007.

Sumit Gulwani, William Harris, and Rishabh Singh. Spreadsheet data manipulation using examples.
Communications of the ACM, Aug 2012.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–1780,
1997.

Armand Joulin and Tomas Mikolov. Inferring algorithmic patterns with stack-augmented recurrent nets.
In Advances in Neural Information Processing Systems 2, [NIPS Conference, Denver, Colorado, USA,
November 27-30, 1989], pages 190–198, 2015.

 Lukasz Kaiser and Ilya Sutskever. Neural gpus learn algorithms. In Proceedings of the 4th International
Conference on Learning Representations., 2016.

Jan Koutńık, Klaus Greff, Faustino J. Gomez, and Jürgen Schmidhuber. A clockwork RNN. In Proceedings
of the 31th International Conference on Machine Learning, ICML 2014, pages 1863–1871, 2014.

Viktor Kuncak, Mikaël Mayer, Ruzica Piskac, and Philippe Suter. Complete functional synthesis. In
PLDI, pages 316–329, 2010.

Karol Kurach, Marcin Andrychowicz, and Ilya Sutskever. Neural random-access machines. In Proceedings
of the 4th International Conference on Learning Representations 2016, 2015. URL http://arxiv.org/
abs/1511.06392.

48

http://arxiv.org/abs/1308.0850
http://arxiv.org/abs/1410.5401
http://arxiv.org/abs/1511.06392
http://arxiv.org/abs/1511.06392

Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept learning through
probabilistic program induction. Science, 350(6266):1332–1338, 2015.

Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong program analysis &
transformation. In Code Generation and Optimization, 2004. CGO 2004. International Symposium on,
pages 75–86. IEEE, 2004.

Tomas Mikolov, Armand Joulin, Sumit Chopra, Michaël Mathieu, and Marc’Aurelio Ranzato. Learning
longer memory in recurrent neural networks. In Proceedings of the 3rd International Conference on
Learning Representations 2015, 2015.

T. Minka, J.M. Winn, J.P. Guiver, S. Webster, Y. Zaykov, B. Yangel, A. Spengler, and J. Bronskill.
Infer.NET 2.6, 2014. Microsoft Research Cambridge. http://research.microsoft.com/infernet.

Tom Minka and John Winn. Gates. In Advances in Neural Information Processing Systems, pages
1073–1080, 2009.

Michael Mozer and Sreerupa Das. A connectionist symbol manipulator that discovers the structure of
context-free languages. In Advances in Neural Information Processing Systems 5, [NIPS Conference,
Denver, Colorado, USA, November 30 - December 3, 1992], pages 863–870, 1992.

Arvind Neelakantan, Quoc V. Le, and Ilya Sutskever. Neural programmer: Inducing latent programs
with gradient descent. In Proceedings of the 4th International Conference on Learning Representations
2016, 2016a.

Arvind Neelakantan, Luke Vilnis, Quoc V Le, Ilya Sutskever, Lukasz Kaiser, Karol Kurach, and James
Martens. Adding gradient noise improves learning for very deep networks. In Proceedings of the
International Conference on Learning Representations 2015, 2016b.

Yura Perov and Frank Wood. Automatic sampler discovery via probabilistic programming and approx-
imate bayesian computation. In International Conference on Artificial General Intelligence, pages
262–273. Springer, 2016.

Phitchaya Mangpo Phothilimthana, Tikhon Jelvis, Rohin Shah, Nishant Totla, Sarah Chasins, and
Rastislav Bod́ık. Chlorophyll: synthesis-aided compiler for low-power spatial architectures. In PLDI,
page 42, 2014.

Oleksandr Polozov and Sumit Gulwani. Flashmeta: a framework for inductive program synthesis. In
OOPSLA, pages 107–126, 2015.

Veselin Raychev, Pavol Bielik, Martin T. Vechev, and Andreas Krause. Learning programs from noisy
data. In POPL, pages 761–774, 2016.

Scott E. Reed and Nando de Freitas. Neural programmer-interpreters. 2016.

Andrew Reynolds, Morgan Deters, Viktor Kuncak, Cesare Tinelli, and Clark W. Barrett. Counterexample-
guided quantifier instantiation for synthesis in SMT. In CAV, pages 198–216, 2015.

Sebastian Riedel, Matko Bosnjak, and Tim Rocktäschel. Programming with a differentiable forth inter-
preter. CoRR, abs/1605.06640, 2016. URL http://arxiv.org/abs/1605.06640.

Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic superoptimization. In ASPLOS, pages 305–316,
2013.

MI Schlesinger. Syntactic analysis of two-dimensional visual signals in the presence of noise. Cybernetics
and systems analysis, 12(4):612–628, 1976.

Rishabh Singh. Blinkfill: Semi-supervised programming by example for syntactic string transformations.
PVLDB, 9(10):816–827, 2016.

Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. Automated feedback generation for intro-
ductory programming assignments. In PLDI, pages 15–26, 2013.

49

http://arxiv.org/abs/1605.06640

Armando Solar-Lezama. Program Synthesis By Sketching. PhD thesis, EECS Dept., UC Berkeley, 2008.

Armando Solar-Lezama, Rodric Rabbah, Rastislav Bodik, and Kemal Ebcioglu. Programming by sketching
for bit-streaming programs. In PLDI, 2005.

Armando Solar-Lezama, Liviu Tancau, Rastislav Bod́ık, Sanjit A. Seshia, and Vijay A. Saraswat. Com-
binatorial sketching for finite programs. In ASPLOS, pages 404–415, 2006.

David Sontag, Talya Meltzer, Amir Globerson, Tommi S Jaakkola, and Yair Weiss. Tightening lp relax-
ations for map using message passing. In Uncertainty in Artificial Intelligence (UAI), 2008.

Stan Development Team. Stan: A c++ library for probability and sampling, version 2.10.0, 2015. URL
http://mc-stan.org/.

Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and Rob Fergus. End-to-end memory networks. In
Advances in Neural Information Processing Systems 28: Annual Conference on Neural Information
Processing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada, pages 2440–2448, 2015.

Phillip D Summers. A methodology for lisp program construction from examples. Journal of the ACM
(JACM), 24(1):161–175, 1977.

T. Tieleman and G. Hinton. Lecture 6.5—RmsProp: Divide the gradient by a running average of its
recent magnitude. COURSERA: Neural Networks for Machine Learning, 2012.

Abhishek Udupa, Arun Raghavan, Jyotirmoy V. Deshmukh, Sela Mador-Haim, Milo M. K. Martin, and
Rajeev Alur. TRANSIT: specifying protocols with concolic snippets. In PLDI, pages 287–296, 2013.

Martin J Wainwright and Michael I Jordan. Graphical models, exponential families, and variational
inference. Foundations and Trends in Machine Learning, 2008.

Tomas Werner. A linear programming approach to max-sum problem: A review. IEEE transactions on
pattern analysis and machine intelligence, 29(7):1165–1179, 2007.

Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. In Proceedings of the 3rd Interna-
tional Conference on Learning Representations 2015, 2014. URL http://arxiv.org/abs/1410.3916.

Wojciech Zaremba, Tomas Mikolov, Armand Joulin, and Rob Fergus. Learning simple algorithms from
examples. In Proceedings of the 33nd International Conference on Machine Learning, ICML 2016,
pages 421–429, 2016.

50

http://mc-stan.org/
http://arxiv.org/abs/1410.3916

	1 Introduction
	2 Motivating Example: Differentiable Control Flow Graphs
	3 Front-end: Describing an IPS problem
	3.1 The TerpreT Probabilistic Programming Language
	3.1.1 Declarations and Assignments
	3.1.2 Control flow
	3.1.3 Operations
	3.1.4 Modelling Inputs and Outputs

	3.2 Example Execution Models
	3.2.1 Automaton: Turing Machine
	3.2.2 Straight-line programs: Boolean Circuits
	3.2.3 Loopy programs 1: Basic block model
	3.2.4 Loopy programs 2: Assembly model

	4 Back-ends: Solving the IPS problem
	4.1 TerpreT for Gated Factor Graph Description
	4.2 Forward Marginals Gradient Descent (FMGD) Back-end
	4.2.1 Forward Marginals...
	4.2.2 ... Gradient Descent
	4.2.3 Optimization Heuristics

	4.3 (Integer) Linear Program Back-end
	4.3.1 LP Relaxation
	4.3.2 Linear Constraints in Gated Models

	4.4 SMT Back-end
	4.5 Sketch Back-end

	5 Analysis
	5.1 Failure of FMGD
	5.2 Parity Chain Experiments

	6 Experiments
	6.1 Benchmarks Results
	6.2 Zooming in on FMGD Boolean Circuits
	6.2.1 Slow convergence
	6.2.2 Varying the problem dimension

	6.3 Challenge Benchmark

	7 Related Work
	8 Discussion & Future Work
	A Proof of Lemma 1
	B Benchmark models
	B.1 Turing Machine
	B.2 Boolean circuits
	B.3 Basic-block model
	B.4 Assembly Model

