
Learning Step Size Controllers for Robust Neural Network Training

Christian Daniel
TU Darmstadt

Hochschulstrasse 10
64285 Darmstadt, Germany

Jonathan Taylor
Microsoft Research

21 Station Road
Cambridge, UK

Sebastian Nowozin
Microsoft Research

21 Station Road
Cambridge, UK

Abstract
This paper investigates algorithms to automatically
adapt the learning rate of neural networks (NNs). Start-
ing with stochastic gradient descent, a large variety of
learning methods has been proposed for the NN setting.
However, these methods are usually sensitive to the ini-
tial learning rate which has to be chosen by the exper-
imenter. We investigate several features and show how
an adaptive controller can adjust the learning rate with-
out prior knowledge of the learning problem at hand.

Introduction
Due to the recent successes of Neural Networks for tasks
such as image classification (Krizhevsky, Sutskever, and
Hinton 2012) and speech recognition (Hinton et al. 2012),
the underlying gradient descent methods used for training
have gained a renewed interest by the research commu-
nity. Adding to the well known stochastic gradient descent
and RMSprop methods (Tieleman and Hinton 2012), sev-
eral new gradient based methods such as Adagrad (Duchi,
Hazan, and Singer 2011) or Adadelta (Zeiler 2012) have
been proposed. However, most of the proposed methods rely
heavily on a good choice of an initial learning rate. Com-
pounding this issue is the fact that the range of good learning
rates for one problem is often small compared to the range
of good learning rates across different problems, i.e., even
an experienced experimenter often has to manually search
for good problem-specific learning rates.

A tempting alternative to manually searching for a good
learning rate would be to learn a control policy that automat-
ically adjusts the learning rate without further intervention
using, for example, reinforcement learning techniques (Sut-
ton and Barto 1998). Unfortunately, the success of learn-
ing such a controller from data is likely to depend heavily
on the features made available to the learning algorithm. A
wide array of reinforcement learning literature has shown
the importance of good features in tasks ranging from Tetris
(Thiery and Scherrer 2009) to haptile object identification
(Kroemer, Lampert, and Peters 2011). Thus, the first step to-
wards applying RL methods to control learning rates is to
find good features. Subsequently, the main contributions of
this paper are

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

• Identifying informative features for the automatic control
of the learning rate.

• Proposing a learning setup for a controller that automati-
cally adapts the step size of NN training algorithms.

• Showing that the resulting controller generalizes across
different tasks and architectures.

Together, these contributions enable robust and efficient
training of NNs without the need of manual step size tun-
ing.

Method
The goal of this paper is to develop an adaptive controller
for the learning rate used in training algorithms such as
Stochastic Gradient Descent (SGD) or RMSprop (Tieleman
and Hinton 2012). We start with a general statement of the
problem we are aiming to solve.

Problem Statement
We are interested in finding the minimizer

ω∗ = arg min
ω

F (X;ω), (1)

where in our case ω represents the weight vector of the NN
and X = {x1, . . . ,xN} is the set of N training examples
(e.g., images and labels). The function F (·) sums over the
function values induced by the individual inputs such that

F (X;ω) =
1

N

N∑
i=1

f(xi;ω). (2)

In order to find ω∗, we have access to an optimization oper-
ator T (·) which yields a weight update vector

∆ω = T (∇F,ρ, ξ). (3)

The optimization operator itself can be any arbitrary train-
ing algorithm, such as SGD or RMSprop. The variable ξ
defines the open parameters of the training algorithm, such
as the learning rate η. The vector ρ is often used to accumu-
late statistics of the training process and serves as a memory.
While most training algorithms are guaranteed to find a lo-
cally optimal value for ω given a sufficiently small value for
η and lower bounds for selecting η exist, these bounds are
often not practical. The goal of this paper, thus, is to learn

Method T (∇F,ρ, ξ) ρ1 ρ2

SGD −η∇F — —

Momentum −ηρ1 ξ1ρ1+∇F —

Adagrad1 −η∇F/√ρ1
∑

(∇F)2 —

RMSprop2 −η∇F/√ρ1 Ê[(∇F)2] —

Adam3 −ηρ2/
√
ρ1 Ê[(∇F)2] Ê[∇F]

Adadelta4 −η∇F
√
ρ2/ρ1 Ê(∇F)2] Ê[(∆ω)2]

Table 1: The most commonly used training methods. The opera-
tor Ê computes the weighted expectation based on discount factors
encoded in ξ. The step size η is also encoded in ξ. Our controller
is compatible with any of the described methods. 1(Duchi, Hazan,
and Singer 2011), 2(Tieleman and Hinton 2012), 3(Kingma and Ba
2014), 4(Zeiler 2012)

a policy π(ξ|φ) which can adapt the open parameters of the
optimization operator T (·) based on features φ. The optimal
policy

π∗(ξ|φ) = arg max
π

∫∫
p(φ)π(ξ|φ)r(ξ,φ) dφ dξ, (4)

maximizes the average reward r(ξ,φ), where p(φ) is the
distribution over features.

The Features
The ability to learn effective policies hinges on the quality
of the features available. We are interested in finding fea-
tures that are informative about the current state of the net-
work while generalizing across different tasks and architec-
tures. At the same time, we are constrained by the limits
on computational complexity commonly placed upon algo-
rithms used for training NNs. Due to the high dimensionality
of the weight space, NNs are most often trained using first
order methods such as SGD. Thus, the computational com-
plexity of generating informative features should not exceed
the complexity of the training algorithm. Furthermore, the
high dimensionality of the weight space also constrains the
memory requirements of the training algorithms. The size
of large scale NNs used today is often constrained by the
amount of physical memory available. Hence, the proposed
features will also need to be conservative in their memory
requirements.

Similarly to the function value itself, the overall gradi-
ent ∇F is composed of the individual gradient values, i.e.,
∇F = 1/N

∑N
i=1∇fi, where

∇fi =
∂f(xi;ω)

∂ω
. (5)

While we expect that following the negative average gradi-
ent −∇F will improve the overall function value F (·), it
will usually not improve all individual function values fi(·)
by the same amount. Indeed, we can easily imagine cases
where individual components will actually deteriorate by
following the average gradient. Thus, evaluating the agree-
ment of the individual gradients is likely to yield informative
features. Furthermore, we can use the individual gradients to
approximate the change in the actual function values. To this

effect, we approximate the functions using first order Taylor
expansions

f̃(xi;ω + ∆ω) = f(xi;ω) +∇fTi ∆ω. (6)

As stated by Equation (3), the update ∆ω only depends on
the average gradient and not the individual gradient. Thus,
Equation (6) yields the approximate function values fi(·)
after following the average gradient ∇F . For the simplest
optimization operator – SGD without momentum – this up-
date evaluates to ∆ω = η∇F . However, most training algo-
rithms do not only rely on the current gradient, but also on
accumulated statistics of previous gradient information. The
predictive function values take include the resulting effects
and, thus, will be more informative than taking only the indi-
vidual gradients into account. Based on the predictive func-
tion values we are now ready to introduce the features which
will allow us to learn an adaptive step size controller.

Predictive change in function value. The first feature
we will consider is based on the predicted change in func-
tion values ∆f̃i = f̃i − fi, where we abbreviated f̃i =
f̃(xi;ω + ∆ω) . We will be interested in the variance of
the improvement of function values, i.e.,

φ1 = log
(

Var(∆f̃i)
)
. (7)

This variance will not only tell us how much the gradients
disagree but, more importantly, how much the individual
function values are expected to change, based on all effects
of the chosen training algorithm.

Disagreement of function values. The variance of pre-
dicted changes in function values Var(∆f̃i) can be related
to the variance of the current function values Var(fi), i.e.,

φ2 = log
(

Var (f(xi;ω))
)

(8)

In general we expect that in the early stages of learning the
variance of function values will be high and, thus, the change
in function values will be equally large. As the training of
the NN progresses, the individual function values will be
funnelled to become more similar.

Mini Batch Setting
The features described above work well in the case of batch
training. However, large scale systems are most often trained
using mini batches. Mini batch training works by break-
ing up the training set X into subsets X̃b ⊂ X , such that
∪Bb=1X̃b = X . While mini batch training increases the ef-
ficiency, it also introduces additional noise in the training
process. To counter this additional noise, we propose two
measures.

Discounted Average. For every feature, we keep a run-
ning average of the observed feature value, i.e.,

φ̂i ← γφ̂i + (1− γ)φi, (9)

with a discount factor γ < 1. Relying on averaged fea-
ture values is beneficial in two ways. First, the averaging
smoothes over outliers in the feature values, which might
otherwise lead to a destabilization of the system due to an
overly large reaction of the controller. Furthermore, the av-
eraged feature serves as a form of memory, similar to the
momentum term in SGD with momentum. Thus, features
observed in the current mini batch will influence the learn-
ing process for multiple iterations.

Uncertainty Estimate. While averaging feature values
over optimization steps is beneficial due to a reduction of
noise, it is often desirable to have an explicit estimate of the
noise in the system. Intuitively, we would expect larger step
sizes to lead to an ever more unstable, and thus noisy, sys-
tem. We estimate this noise level for every feature by cal-
culating the variance of the centred feature values. To this
effect, we deduct our estimate of the mean feature value φ̂i
from the observed feature value φi, i.e.,

φ̂K+i ← γφ̂K+i + (1− γ)(φi − φ̂i)2, (10)

where K is the number of ‘base’ features.

Computational Complexity & Memory Requirements.
As stated above, computational and memory requirements
are often hard constraints for large scale learning systems.
The proposed features are, thus, designed to have a mini-
mal footprint and their memory requirements are constant
in the size of the network. In the naive implementation, the
memory requirements for computing the predictive function
values f̃i are linear in the number of inputs N . However, ef-
ficient implementations of the back-prop algorithm usually
compute all gradients∇fi for one layer in the network first,
before computing the gradients for the next layer. Thus, we
can simply compute the partial predictive change in func-
tion value on a per-layer basis and do not need to store all
individual gradients for all layers. Computing the feature re-
quires only a matrix vector multiplication, which introduces
minimal overhead.

Learning a Controller
Given access to a set of informative features, we now de-
scribe the proposed setting to learn a policy which max-
imizes the average reward as given in Equation (4). The
most general solution to the problem stated above is to solve
the delayed reward problem using infinite horizon RL tech-
niques. Unfortunately, this approach poses two problems in
the proposed setting. First, the system we are aiming to con-
trol will be very noisy, mostly due to the mini batch setting.
Second, the problem we are aiming to solve is not Marko-
vian in nature. This means that we cannot hope to have ac-
cess to features which fully describe the state of the system.
At the same time training of NNs exhibits many long-term
effects, such that changes in the step size may have large ef-
fects later on. Thus, we propose to learn the parameters θ
of a controller ξ = g(φ;θ), such that the described effects

are abstracted and the policy π(θ) will only have to decide
on a parametrization of the controller in the beginning of a
training run.

To this effect, we aim to find a distribution π(θ), such that
the resulting controllers are optimal, i.e,

π∗(θ) = arg max
π

∫
p(φ)π(θ)r(g(φ;θ),φ) dφ dθ. (11)

In particular, due to the continuous nature of the parame-
ter space, we choose a RL method from the robot learn-
ing literature. Relative Entropy Policy Search (REPS) (Pe-
ters, Mülling, and Altun 2010) has been shown to work well
on high dimensional control tasks of real robots (Daniel et
al. 2013) and works well in combination with parametrized
controllers. The main insight used in REPS is that consec-
utive policy updates should remain ‘close’ to each other.
Constraining these updates is realized through a bound on
the Kullback-Leibler (KL) divergence of subsequent poli-
cies, i.e.,

DKL (π(θ)||q(θ)) ≤ ε, (12)
where q(θ) is the previous policy and ε is the user-defined
bound on the KL. The update rule for the policy π(θ) can be
obtained by first forming the Lagrangian and then its dual
formulation of the optimization problem defined by REPS.
The update is given as

π(θ) ∝ q(θ) exp(r(θ)/η), (13)

where η is found through the optimization of the dual repre-
sentation. Given an initial distribution, REPS will iteratively
restrict the search space and converge to a locally optimal
solution for π(θ).

Related Work
The NN community has proposed multiple training meth-
ods based on statistics similar in spirit to the features we
propose. In Table 1, we give an overview of the most com-
monly used methods. One of the first method to make
use of additional statistics was SGD with momentum (Ja-
cobs 1988), which keeps a discounted history of past gra-
dients. RMSprop (Tieleman and Hinton 2012) is inspired
by RPROP (Riedmiller and Braun 1993), which adapts a
learning rate per weight based on the observed sign changes
in the gradients. RMSprop uses a discounted history of the
squared gradients as a form of preconditioner. It has been ar-
gued that this form of preconditioning approximates the di-
agonal of the Hessian if the changes ∆ω are close to being
Gaussian distributed (Dauphin et al. 2015). Adagrad (Duchi,
Hazan, and Singer 2011) replaces the discounted history
over squared gradients with the sum over squared gradi-
ents. Using the sum instead of the gradient can be prob-
lematic since it may decrease the effective step sizes too
fast if the gradients remain large over multiple iterations.
Adam (Kingma and Ba 2014) follows RMSprop in dis-
counting the preconditioner and additionally averages over
the discounted average of the gradients ∇F . The discount-
ing scheme in Adam is more complex than in the other
methods as the discount factor itself is decayed over time.
Adadelta (Zeiler 2012) also follows RMSprop in the use of

100 101 102 103

10−2

100

Fu
ll

Tr
ai

ni
ng

E
rr

or

MNIST RMSprop

Ours
RMS η = 5e-05
RMS η = 1e-04
RMS η = 5e-04
RMS η = 1e-03
RMS η = 5e-03

(a) Sensitivity analysis of static step sizes on MNIST.

100 101 102 103

10−2

100

MNIST Controlled RMSprop Sensitivity to η0

Ours η0 = 5e-05
Ours η0 = 1e-04
Ours η0 = 5e-04
Ours η0 = 5e-03
Ours η0 = 1e-03
RMS best η

(b) Sensitivity analysis of the proposed approach on MNIST.

100 101 102 103
10−1

100

Optimization Steps

Fu
ll

Tr
ai

ni
ng

E
rr

or

CIFAR RMSprop

Ours
RMS η = 5e-05
RMS η = 1e-04
RMS η = 5e-04
RMS η = 1e-03
RMS η = 5e-03

(c) Sensitivity analysis of static step sizes on CIFAR.

100 101 102 103
10−1

100

Optimization Steps

CIFAR Controlled RMSprop Sensitivity to η0

Ours η0 = 5e-05
Ours η0 = 1e-04
Ours η0 = 5e-04
Ours η0 = 1e-03
Ours η0 = 5e-03
RMS best η

(d) Sensitivity analysis of the proposed approach on CIFAR.

Figure 1: Evaluation of the proposed approach in combination with the RMSprop training algorithm. (a) The RMSprop algorithm is sensitive
to the choice of the step size. The proposed approach of controlling step size outperforms the best static step size. (b) The proposed approach
is not sensitive to the choice of initial step size. Asympotic performance of the proposed approach is better than the best static step size in
all cases. In early iterations a poor choice of η0 decreases performace while the controller is adapting the step size. (c,d) The results on the
CIFAR data set confirm the results of the experiments on the MNIST data set.

the preconditioner but introduces an additional statistic, i.e.,
the expected squared change of weights Ê[∆ω2]. This statis-
tic rescales the effective step size proportionally to the his-
tory of effective step sizes.

Since setting a static learning rate for a whole train-
ing run is often insufficient, popular approaches usually
start by finding a good initial learning rate either manually,
or, for example, through Bayesian Optimization (Snoek,
Larochelle, and Adams 2012). Subsequently, the learn-
ing rate is decreased following a predefined scheme (Se-
nior et al. 2013). Possible schemes include the ‘waterfall’
scheme (Senior et al. 2013), which keeps η constant for mul-
tiple steps and then reduces it by large amounts, as well as
the exponential scheme (Sutton 1992) and power schedul-
ing (Darken and Moody 1990). However, all of these meth-
ods require the practitioner to define additional open param-
eters. Schaul et al. (Schaul, Zhang, and LeCun 2013) showed
how for the SGD method good learning rates can be cho-
sen under the assumption that the optimal weights ωi for
the instances xi are normal distributed and access to the
second order derivative is available. Using these assump-
tions they show how learning rates can be set either globally
or on a per-weight basis. While our proposed approach is
based on global learning rates, we are not restricted to spe-

cific methods. TONGA (Le Roux, Bengio, and Fitzgibbon
2012) models the uncertainty in the weight update by build-
ing a model of the gradients. This approach is closely re-
lated to the idea of the natural gradient (Amari 1998), which
has also been applied to neural networks (Bastian, Gunther,
and Moon 2011). However, these methods are expensive in
terms of computational requirements. Finally, the proposed
method is compatible with distributed approaches (Zhang,
Duchi, and Wainwright 2012).

Experiments

We evaluated the proposed features and the learning ap-
proach on two settings, the MNIST hand written digit clas-
sification task and the CIFAR-10 image classification task.
Furthermore, we evaluated the proposed features across two
learning algorithms, SGD and RMSprop. We aim to show
that both the features and the controller generalize across
problems. Thus, instead of learning the best possible con-
troller for a given setup, we learned the parameters of the
controller on small convolutional networks using only a sub-
set of the MNIST data set. We called this smaller data set
MNIST-Small, which contained half the MNIST data set.

100 101 102 103
10−3

10−2

10−1

100

Fu
ll

Tr
ai

ni
ng

E
rr

or
MNIST SGD

Ours
SGD η = 5e-05
SGD η = 1e-04
SGD η = 5e-04
SGD η = 1e-03
SGD η = 5e-03
SGD η = 1e-02

(a) Sensitivity analysis of static step sizes on MNIST.

100 101 102 103
10−3

10−2

10−1

100

MNIST Controlled SGD Sensitivity to η0

Ours η0 = 5e-05
Ours η0 = 1e-04
Ours η0 = 5e-04
Ours η0 = 1e-03
Ours η0 = 5e-03
Ours η0 = 1e-02
SGD best η

(b) Sensitivity analysis of the proposed approach on MNIST.

100 101 102 103 104
10−3

10−2

10−1

100

Optimization Steps

Fu
ll

Tr
ai

ni
ng

E
rr

or

CIFAR SGD

Ours
SGD η = 5e-05
SGD η = 1e-04
SGD η = 5e-04
SGD η = 1e-03
SGD η = 5e-03
SGD η = 1e-02

(c) Sensitivity analysis of static step sizes on CIFAR.

100 101 102 103 104
10−3

10−2

10−1

100

Optimization Steps

CIFAR Controlled SGD Sensitivity to η0

Ours η0 = 5e-05
Ours η0 = 1e-04
Ours η0 = 5e-04
Ours η0 = 1e-03
Ours η0 = 5e-03
Ours η0 = 1e-02
SGD best η

(d) Sensitivity analysis of the proposed approach on CIFAR.
Figure 2: Evaluation of the proposed approach in combination with the SGD training algorithm with momentum. (a,b) The results show
that while choosing a static step size has a large influence on the training performance, the learned controller has very similar asymptotic
performance for all choices of η0. (c,d) The results on the CIFAR data set confirm the results of the MNIST experiment. The proposed
approach in not sensitive to the choice of η0 and outperforms the static step size.

The Training Network. To learn a controller that gener-
alizes, we randomly sampled networks and data sets during
learning. Specifically, we fixed the architecture to a convolu-
tional neural network of the structure c-p-c-p-c-r-c-s, where
{c, p, r, s} represented convolutional, pooling, rectified lin-
ear and softmax layers, respectively. Within this structure
we randomly sampled the number of convolutional filters
between [2 5 50] and [10 25 250] per layer. Similarly, we
randomly sampled the ratio of the MNIST-Small data set we
were training on between 0.1 and 0.5 of the full MNIST data
set, where we always sampled from only one half of the full
data set, such that during training the algorithms never saw
the second half. We trained the controller exclusively on this
smaller network and the MNIST-Small data set. Finally, we
randomly sampled the number of optimization steps the NN
was trained for between 300 steps and 1000 steps.

In this work we considered two widely used training al-
gorithms: SGD with momentum and RMSprop and set the
remaining open parameters to the values recommended in
the respective literature. For SGD, the momentum was set
to 0.9. For RMSprop, the discount factor was set to 0.9 and
ε = 10−6. The setup was robust to restarts with different ran-
dom seeds. For example, Fig. 1d shows that even with dif-
ferent initial values for η0, the performance of the proposed
approach was close to identical. Thus, for the presented ex-

periments, we only performed a single run per setting.

The Controller. To learn the controller, we initialized the
policy π(θ) to a Gaussian with isotropic covariance. In each
iteration of learning, we randomly sampled a parameter vec-
tor from π(θ) as well as a network and a training set. Each
iteration of learning was based on 20 samples. The open pa-
rameter in REPS was set to ε = 1. The parametrized con-
troller was given as g(φ̂;θ) = exp(θT φ̂). The reward func-
tion used for learning the controller was given as

r = − 1

S − 1

S∑
s=2

(
log(Es)− log(Es−1)

)
, (14)

where S was the total number of optimization steps for a
given run. For all experiments we set the discount factor in
Equation (10) to γ = 0.9. Changing this value did not have a
large effect in our experiments within a range of [0.5, 0.99].

Results. We evaluated the proposed methods, controlled
SGD-Momentum and controlled RMSprop, on the MNIST
and CIFAR data sets. The results show that the proposed
controller generalized over different data sets and network
architectures. As could be expected, the same controller pa-
rameters did, however, not generalize over different training

100 200 300 400 500

10−1

100

101

Wall Clock Time [s]

V
al

id
at

io
n

E
rr

or
Validation Error vs. Wall Clock

Ours
SGD η = 5e-05
SGD η = 1e-04
SGD η = 5e-04
SGD η = 1e-03
SGD η = 5e-03

Figure 3: Evaluation of the validation error, adjusted for the com-
putational overhead. Results show the RMSprop training method
on the MNIST data set.

methods. The respective architectures were given as c-p-c-
p-c-r-c-s, with [20 50 500] filters per convolutional layer for
MNIST and c-p-r-c-r-p-c-r-p-c-r-c-s with [32, 32, 64, 64] for
CIFAR. We based our implementation on the MatConvNet
toolbox (Vedaldi and Lenc 2014). We evaluated the meth-
ods up to the point where the validation error increased.
Evaluating the proposed method for even more steps would
have lead to bigger advantages for our methods, however,
at that point the networks were usually over-fitting to the
training data. In our experiments, we observed a computa-
tional overhead of 36%, mostly due to the computation of
f̃(xi;ω + ∆ω) in Eq. (6). However, our implementation
was not fully optimized and could be improved. This over-
head did not include the initial training time of the RL algo-
rithm, which took about six hours. However, as the exper-
iments show, this initial training has to be performed only
once and the resulting controller can be re-used for different
problems.

Controlled RMSprop. We started by evaluating the con-
trolled RMSprop training method to a range of manually
chosen static step sizes. The learned controller balanced
the variance in predicted change in function value with the
variance of observed function values. The controller also
learned to decrease the step size proportionally to the un-
certainty estimate in Equation (10). The learned parameters
are given as θ = [1.62,−0.35, 0.3,−0.33,−0.03]T ∗ 10−2,
with φ = [1, φ1, . . . , φ4]T . The results in Fig. 1a show that
the best static step size seemed to be η = 10−4 and that the
static method was sensitive to this choice. Furthermore, the
results show that the proposed controller outperformed the
best static step size.

After observing that RMSprop is sensitive to the choice of
η, we evaluated the sensitivity of the controlled RMSprop to
the best choice of a static step size. The results in Fig. 1b
show that the proposed method was less sensitive to the
choice of initial step size. The results also show that the pro-
posed method had better asymptotic performance than the
best static step size in all settings.

We repeated the same evaluation with the same controller
on the CIFAR data set. The results show an advantage for the
proposed method similar to the results reported above. The
results in Fig. 1c show that the static method was sensitive

100 101 102 103
10−3

10−2

10−1

100

Optimization Steps

Fu
ll

Tr
ai

ni
ng

E
rr

or

Perturbations of Controller Parameters

Variations of parameter vector θ
Mean θ

Figure 4: Evaluation of the robustness of the controller parameters
on the MNIST data set.

to the choice of a step size, while the results in Fig. 1d show
that the proposed method was robust to the choice of initial
step size.

To evaluate the robustness of the learned controller to its
parameter values, we varied all parameters within 20% of
the parameters, i.e., we tried all parameters in a 3x3x3 cube
around the learned values. The results in Fig. 4 show that the
controller is robust to these small changes in the parameters.
Finally, in Fig. 3 we evaluated the validation error, taking
into account the computational overhead of our method. The
results show that while the total runtime for our method is
longer, it yields the best validation error in most time steps.

Controlled SGD-Momentum. The controllers learned for
RMSprop largely followed our intuition in that they bal-
anced the predictive change in function value in Equation (7)
with the variance of observed function values in Equa-
tion (8). Furthermore, the learned controllers decreased η
proportionally to the noise levels estimated by the uncer-
tainty estimates in Equation (10). Thus, we could reduce
the search space for the SGD experiments by combining the
respective features. In particular, the feature vector became
φ = [1, φ̂1− φ̂2, φ̂3 + φ̂4]T and the learned parameters were
θ = [−4.55− 2.87− 2.52] ∗ 10−2. The results in Figures 2a
to 2d are similar to the results reported for RMSprop. In all
experiments the static step size approach seems to be sen-
sitive to the choice of η, while the proposed approach out-
performs the best static step size and is less sensitive to the
initial choice of η0.

Discussion & Conclusion
We presented a set of features suitable to learn a controller
for the step size of NN training algorithms. The results show
that the learned controller generalized to larger networks
and the full MNIST data set, as well as to a different ar-
chitecture and the CIFAR data set. The learned controller
is also robust to initial values of the learning rate. How-
ever, the learned controller does not generalize over differ-
ent training algorithms. Using the presented methodology,
it is straight-forward to generalize commonly used methods
by treating their specific accumulated statistics as features.
Given enough computational resources, future work should
investigate learning a controller on this accumulated feature
set and possibly combine the best of all worlds.

References
Amari, S. 1998. Natural gradient works efficiently in learn-
ing. Neural computation.
Bastian, M.; Gunther, J.; and Moon, T. 2011. A simplified
natural gradient learning algorithm. Advances in Artificial
Neural Systems.
Daniel, C.; Neumann, G.; Kroemer, O.; and Peters, J. 2013.
Learning sequential motor tasks. In Proceedings of the
IEEE International Conference on Robotics and Automation
(ICRA).
Darken, C., and Moody, J. 1990. Fast adaptive k-means
clustering: some empirical results. International Joint Con-
ference on Neural Networks (IJCNN).
Dauphin, Y. N.; de Vries, H.; Chung, J.; and Bengio, Y.
2015. RMSProp and equilibrated adaptive learning rates for
non-convex optimization. arXiv preprint arXiv:1502.04390.
Duchi, J.; Hazan, E.; and Singer, Y. 2011. Adaptive subgra-
dient methods for online learning and stochastic optimiza-
tion. The Journal of Machine Learning Research (JMLR)
12:2121–2159.
Hinton, G.; Deng, L.; Yu, D.; Dahl, G. E.; Mohamed, A.-r.;
Jaitly, N.; Senior, A.; Vanhoucke, V.; Nguyen, P.; Sainath,
T. N.; and Others. 2012. Deep neural networks for acoustic
modeling in speech recognition: The shared views of four re-
search groups. IEEE Signal Processing Magazine 29(6):82–
97.
Jacobs, R. 1988. Increased rates of convergence through
learning rate adaptation. Neural networks.
Kingma, D., and Ba, J. 2014. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Im-
ageNet Classification with Deep Convolutional Neural Net-
works. Advances In Neural Information Processing Systems
(NIPS).
Kroemer, O.; Lampert, C.; and Peters, J. 2011. Learning
Dynamic Tactile Sensing with Robust Vision-based Train-
ing. IEEE Transactions on Robotics (T-Ro) (3):545–557.
Le Roux, N.; Bengio, Y.; and Fitzgibbon, A. 2012. Improv-
ing First and Second-Order Methods by Modeling Uncer-
tainty. Optimization for Machine Learning 403.
Peters, J.; Mülling, K.; and Altun, Y. 2010. Relative Entropy
Policy Search. In Proceedings of the National Conference
on Artificial Intelligence (AAAI).
Riedmiller, M., and Braun, H. 1993. A direct adaptive
method for faster backpropagation learning: The RPROP al-
gorithm. Neural Networks.
Schaul, T.; Zhang, S.; and LeCun, Y. 2013. No More
Pesky Learning Rates. International Conference on Ma-
chine Learning (ICML).
Senior, A.; Heigold, G.; Ranzato, M.; and Yang, K. 2013. An
empirical study of learning rates in deep neural networks for
speech recognition. In 2013 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP).
Snoek, J.; Larochelle, H.; and Adams, R. P. 2012. Practical

bayesian optimization of machine learning algorithms. In
Advances in Neural Information Processing Systems (NIPS).
Sutton, R., and Barto, A. 1998. Reinforcement learning: An
introduction. MIT press Cambridge.
Sutton, R. 1992. Adapting bias by gradient descent: An
incremental version of delta-bar-delta. Proceedings of the
National Conference on Artificial Intelligence (AAAI).
Thiery, C., and Scherrer, B. 2009. Building controllers for
Tetris. International Computer Games Association Journal.
Tieleman, T., and Hinton, G. 2012. Lecture 6.5 RMSprop:
Divide the Gradient by The Running Average of its recent
magnitude. In COURSERA: Neural Networks for Machine
Learning.
Vedaldi, A., and Lenc, K. 2014. MatConvNet – Convolu-
tional Neural Networks for MATLAB. CoRR abs/1412.4.
Zeiler, M. D. 2012. ADADELTA: An adaptive learning rate
method. arXiv preprint arXiv:1212.5701.
Zhang, Y.; Duchi, J. C.; and Wainwright, M. J. 2012.
Communication-efficient algorithms for statistical optimiza-
tion. In Advances in Neural Information Processing Systems
(NIPS).

