
Learning Recurrent Neural Networks with
Hessian-Free Optimization: Supplementary

Materials

Contents
1 Pseudo-code for the damped Gauss-Newton vector product 2

2 Details of the pathological synthetic problems 3
2.1 The addition, multiplication, and XOR problem 3
2.2 The temporal order problem . 4
2.3 The 3-bit temporal order problem . 4
2.4 The random permutation problem 4
2.5 Noiseless memorization . 5

3 Details of the natural problems 5
3.1 The bouncing balls problem . 5
3.2 The MIDI dataset . 6
3.3 The speech dataset . 7

1

1 Pseudo-code for the damped Gauss-Newton vector prod-
uct

Algorithm 1 Computation of the matrix-vector product of the structurally-damped
Gauss-Newton matrix with the vector v, for the case when e is the tanh non-linearity,
g the logistic sigmoid, D and L are the corresponding matching loss functions. The
notation reflects the “convex approximation” interpretation of the GN matrix so that
we are applying the R operator to the forwards-backwards pass through the linearized
and structurally damped objective k̃, and the desired matrix-vector product is given by
Rdk̃

dθ . All derivatives are implicitly evaluated at θ = θn. The previously defined param-
eter symbols Wph, Whx, Whh, bh, bp binit

h will correspond to the parameter vector θn if
they have no super-script and to the input parameter vector v if they have the ‘v’ su-
perscript. The Rz notation follows Pearlmutter [1994], and for the purposes of reading
the pseudo-code can be interpreted as merely defining a new symbol. We assume that
intermediate quantities of the network (e.g. hi) have already been computed (from θn).
The operator � is coordinate-wise multiplication. Line 17 (underlined) is responsible
for structural damping.

1: for i = 1 to T do
2: if i = 1 then
3: Rti ← bvh + binit

h
v +W v

hxxi
4: else
5: Rti ← bvh +W v

hxxi +W v
hhhi−1 +WhhRhi−1

6: end if
7: Rhi ← (1 + hi)� (1− hi)� Rti
8: Rsi ← bvp +W v

phhi +WphRhi
9: Rŷi ← ŷi � (1− ŷi)� Rsi

10: end for
11: Rdk̃

dθ ← 0

12: R dk̃
dtT+1

← 0

13: for i = T down to 1 do
14: R dk̃

dsi
← Rŷi

15: R dk̃
dhi
←W>hhR

dk̃
dti+1

+W>phR
dk̃
dsi

16: R dk̃
dti
← (1 + hi)� (1− hi)� R dk̃

dhi

17: R dk̃
dti
← R dk̃

dti
+ λµ(1 + hi)� (1− hi)� Rti

18: R dk̃
dWph

← R dk̃
dWph

+Rŷih
>
i

19: R dk̃
dWhh

← R dk̃
dWhh

+R dk̃
dti+1

h>i

20: R dk̃
dWhx

← R dk̃
dWhx

+R dk̃
dti
x>i

21: R dk̃
dbh
← R dk̃

dbh
+R dk̃

dti

22: R dk̃
dbp
← R dk̃

dbp
+Rŷi

23: end for
24: R dk̃

dbinit
h

← R dk̃
dt1

2

2 Details of the pathological synthetic problems
We begin by describing the experimental setup that was used in all the pathological
problems. In every experiment, the RNN had 100 hidden units and a little over 10,000
parameters. It was initialized with a sparse initialization [Martens, 2010]: each weight
matrix (Whx, Whh, and Who) is sparsely initialized so that each unit is connected to
15 other units. The nonzero connections of Whh, of Who, and the biases are sam-
pled independently from a Gaussian with mean 0 and variance 1

15 , while the nonzero
connections of Whx are independently sampled from a Gaussian with mean 0 and a
variance of 1. These constants were chosen so that the initial gradient wouldn’t vanish
or explode too strongly for the optimizer to cope with. The occasional failures for some
random seeds of the HF approach on a few of the harder synthetic problems was likely
due to a deficiency in this initialization scheme and we are currently investigating ones
that may be more robust.

The gradient was computed on 10,000 sequences, of which 1,000 were used to
evaluate the curvature matrix-vector products (except for the 5-bit version of problem
7, where there are only 32 possible distinct sequences, so the gradient and the curvature
matrix-vector products were computed using all the data). Every HF iteration used a
fresh set of sequences and the test set also consists of 10,000 sequences. We allowed
for at most 300 steps of CG at each run of HF, but we would stop the CG run sooner
if the magnitude of the reduction in the objective function on the curvature minibatch
is less than 90% of its maximum during the CG run. The damping coefficient λ was
initialized to 0.1 if structural damping was used in which case µ was set to 1/30, and
to 0.3 otherwise.

The criteria for success and failure we used were taken directly from Hochreiter
and Schmidhuber [1997]. In particular, a run is defined to be successful if less than 1%
of the test sequences are misclassified. While the notion of sequence misclassification
is trivially defined for binary or discrete problems, for continuous problems (such as
the addition or the multiplication problem), we say that a sequence is misclassified if
the absolute prediction error exceeds 0.04.

In some of the problems, the inputs or the outputs are symbols. Input symbols are
simply represented with their 1-of-N encoding. To predict a symbol, the RNN uses the
softmax output nonlinearity with the cross entropy loss function, whose composition is
“matching” and therefore the Gauss-Newton matrix can be used.

In the following subsections, we let U [a, b] denote a uniformly random real number
from the interval [a, b] and i[a, b] denote a uniformly random integer from the same in-
terval. The descriptions also assume that a desired problem length T has been selected.

2.1 The addition, multiplication, and XOR problem
The addition problem is described in Figure 2 of the paper. The inputs consist of
sequences of random numbers, and the target output, which is located in the end of the
sequence, is the sum of the two “marked” numbers. The marked numbers are far from
the sequence’s end, their position varies, and they are distant from each other.

To generate a single training sequence for the addition problem, let the length of the
sequence T ′ be a sample from i[T, 11T/10] (so that T ′ > T). Let I and J be the po-

3

sitions of the marked inputs, which are drawn from i[1, T ′/10] and let i[T ′/10, T ′/2].
The input xwill consist of the pairs (u, v) where the ut’s are independently drawn from
U [0, 1] and the “markers” vt will be 0, except at t = I and J , where uI = uJ = 1.
Finally, let the target output at time T ′ be the normalized sum (vI + vJ)/2. Thus the
ut component of the input xt = (ut, vt) is irrelevant when t is not I or J .

The multiplication and the XOR problem are completely analogous.
Note that these problems are challenging for the RNN not only because of their sig-

nificant long term dependencies, but also because the RNN’s hidden state is exposed to
both the relevant and the irrelevant inputs at each timestep and must learn to accurately
remember the former whilst ignoring the latter. This is a difficult problem for the RNN,
which, unlike the LSTM, does not have a built-in means to “protect” its hidden state
from irrelevant inputs in the form of the “gating units”. Yet as we saw, our methods
can solve this and related tasks for T as large as 200.

2.2 The temporal order problem
In this task [task 6a in Hochreiter and Schmidhuber, 1997], the input sequences con-
sist of random symbols in {1, 2, ..., 6} which are represented with 1-of-6 encodings.
All of the inputs are irrelevant and are the encodings of randomly chosen integers in
{3, 4, 5, 6} except for 2 special ones which are encodings of randomly chosen integers
in {1, 2}. The target output is a 1-of-4 encoding of the ordered-pair of the two special
symbols.

Formally, let I and J be the positions of the special inputs which are drawn from
i[T/10, 2T/10] and i[5T/10, 6T/10] respectively. We let z1, . . . , zT be independent
draws from i[3, 6], and let a, b, the special symbols, be independently drawn from
i[1, 2]. Let ej denote the 1-of-6 encoding of j. Then we set the input xt to ezt for t 6= I
or J , and set xI to ea and xJ to eb. The target output at time T is the pair (a, b) which
is represented with a 1-of-4 encoding (because there are four possibilities for (a, b)).

2.3 The 3-bit temporal order problem
This problem is similar to the above, except that there are 3 special symbols in the input
sequence, and thus 8 possible outputs [see Hochreiter and Schmidhuber, 1997, task 6b,
for more details].

The formal setup is nearly identical to the previous one. The positions I , J , and
K of the three special symbols are drawn from i[T/10, 2T/10], i[3T/10, 4T/10], and
i[6T/10, 7T/10], respectively. The values of the special symbols a, b, c are indepen-
dently drawn from i[1, 2]. Finally, xI = ea, xJ = eb, xK = ec, and the target is
(a, b, c) represented with a 1-of-8 encoding.

2.4 The random permutation problem
The inputs consist of sequences of symbols from {1, . . . , 100}. The first and the last
symbol are identical and their value is drawn from i[1, 2], while the rest of the symbols
are independently drawn from i[3, 100]. At each timestep, the target output is equal to
the input symbol of the next timestep, and as a result only the first and the last symbol

4

are predictable. This problem is difficult not only for its long term dependencies, but
also because the loss incurred at the last timestep (the one we use to measure success)
is small compared to the loss associated with the other timesteps, which may cause the
optimizer to focus on an incorrect aspect of the problem.

In this task, we initialized λ to 0.1 · T because there are many more outputs which
make the scale of the objective is considerably larger.

2.5 Noiseless memorization
In this problem, the input sequence starts with a string of 5 bits followed by T occur-
rences of a constant input. The target output is constant up until the last 5 timesteps,
which are the original 5 input bits. There is also a special input in the 5th-last timestep
signaling that the output needs to be presented.

In the following, inputs and the outputs are represented by 1-of-K vector encodings
but for brevity we describe them as symbols. More formally, let x1, . . . , xT+10 be the
input symbols and y1, . . . , yT+10 be the target symbols. The sequence begins with
x1, . . . , x5 which are drawn from i[1, 2] and are thus binary. The subsequent inputs are
constant except at t = T + 5, which is a “trigger” symbol (set to 4) which signals that
the memorized symbols should be produced as output. The target outputs are obtained
by setting yj = 3 for j ≤ T + 5, and yj+T+5 = xj for 1 ≤ j ≤ 5. In particular, most
of the predictions (up to timestep T + 5) are irrelevant.

We straightforwardly adapt the problem of memorizing 10 symbols from {1, . . . , 5}.

3 Details of the natural problems
In all these problems, the output sequence is equal to the input sequence shifted forward
by one time-step, so the goal of training is to have the model predict the next timestep
by either minimizing the squared error, a KL-divergence, or by maximizing the log
likelihood.

We now describe the details of the natural datasets and the settings of the optimizer
used.

3.1 The bouncing balls problem
This dataset consists of synthetically generated videos of three balls bouncing in a
box. Given that the sequences can be perfectly predicted using only a small number of
previous timesteps, we trained both models on sequences of length 30. The resolution
of the videos is 18×18.

The pixels are real values between 0 and 1, so the RNN and the LSTM are trained to
minimize the per-pixel KL divergence

∑
i qi log qi/pi+(1−qi) log (1− qi)/(1− pi),

where qi is the ith pixel and pi is the ith prediction (which is the output of the sigmoid
function). This also is the per-sequence error measure we reported in Table 1 in the
paper.

For training of the RNN with the HF approach we used 4 · 104 sequences for com-
puting the gradient and 4 · 103 for computing the curvature matrix-vector products. We

5

0 50 100 150

0

20

40

60

80

100

120

Figure 1: An example of a training sequence from the MIDI music dataset. The sequence is
200 timestep long, and each timestep is a 128-dimensional binary vector. Typical sequences
from this dataset exhibit a substantial amount of nontrivial long range temporal dependencies.

stopped training after a total of 100 · 106 sequences (not necessarily distinct) had been
processed. In this experiment, µ was set to 1.0 and λ was initialized to 1.

The LSTM was trained with stochastic gradient descent with a learning rate of
0.001 and a momentum of 0.9 for a total of 105 weight updates, where each gradient
was computed as the average over a minibatch of 50 training sequences. It was initial-
ized with an analogous sparse initialization, where the nonzero entries were sampled
independently from a Gaussian with mean 0 and variance 0.01. We also added 3.0 to
the biases of the “forget gates” which we found was beneficial to the optimization.

3.2 The MIDI dataset
To construct this dataset we downloaded 3364 MIDI files from an online database
and created a training set consisting of 100,000 sequences of length 200, where each
timestep corresponds to the set of tones present in a 0.05-second long interval (repre-
sented as a 128-dimensional binary vector). Thus each sequence corresponds to exactly
10 seconds of music. We increased the size of the dataset by translating the tones in
each sequence by an offset sampled from i[−10, 10]. Figure 1 depicts a typical se-
quence from this dataset.

Due to the binary nature of the data, we trained the RNN and LSTM to maximize
the log probability of the sequences using the cross-entropy objective

∑
i ti log pi +

(1 − ti) log(1 − pi), where ti ranges over the dimensions of the timestep and pi is
the set of predictions. For training of the RNN with the HF approach we used 2 · 104

6

0 20 40 60 80

0
5
10
15
20
25
30
35

Figure 2: An example of a training sequence from the speech dataset. The sequence is 100
timestep long, and each timestep is a 39-dimensional real valued vector.

sequences for computing the gradient and 2 · 103 for computing the curvature matrix-
vector products. We stopped training after a total of 60 · 106 sequences had been
processed. We initialized λ to 100 and set µ to 0.1. The LSTM was trained for 5 ·
104 gradient steps with a learning rate of 0.001, where each gradient minibatch was
computed on 50 sequences, and was otherwise equivalent to the previous LSTM.

3.3 The speech dataset
We used the TIMIT dataset [Garofolo et al., 1993] to construct the speech timeseries.
The training sequences are 100 timesteps long, where each timestep is a 39-dimensional
vector of the Mel-frequency cepstral coefficients (MFCC) representation of the signal
(see fig. 2 for an example sequence). As the data is real-valued, we trained the RNN
and LSTM to minimize the squared error.

For training of the RNN with the HF approach we used 2 · 104 sequences for com-
puting the gradient and 2 · 103 for computing the curvature matrix-vector products. We
stopped training after a total of 3 · 106 had been processed. We initialized λ to 50 and
set µ to 0.1. The LSTM was trained for 105 gradient steps with a learning rate of 0.001,
where each gradient minibatch was computed on 50 sequences, and was initialized as
in the other experiments.

References
J.S. Garofolo, L.F. Lamel, W.M. Fisher, J.G. Fiscus, D.S. Pallett, and N.L. Dahlgren.

Darpa Timit: Acoustic-phonetic Continuous Speech Corps CD-ROM. US Dept. of
Commerce, National Institute of Standards and Technology, 1993.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation,
1997.

7

J. Martens. Deep learning via Hessian-free optimization. In Proceedings of the 27th
International Conference on Machine Learning (ICML), 2010.

B.A. Pearlmutter. Fast exact multiplication by the Hessian. Neural Computation, 1994.

8

