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Gradient descent is bad at learning deep nets

The common experience:

gradient descent gets much slower as the depth increases

large enough depth → learning to slow to a crawl or even “stops” →
severe under-fitting (poor performance on the training set)

“vanishing-gradients problem”: error signal decays as it is
backpropagated

Output LayerInput Layer

the gradient is tiny for weights in early layers
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Gradient descent is bad at deep learning (cont.)

Two hypotheses for why gradient descent fails:

increased frequency and severity of bad local
minima:

pathological curvature, like the
type seen in the well-known
Rosenbrock function:

f (x , y) = (1− x)2 + 100(y − x2)2
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Pre-training for deep auto-encoders

(from Hinton and Salakhutdinov, 2006)
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Pre-training (cont.)

doesn’t generalize to all the sorts of deep-architectures we might wish
to train

does it get full power out of deep auto-encoders?

(from Hinton and Salakhutdinov, 2006)
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Our contribution

we develop a very powerful and practical 2nd-order optimization
algorithm based on the “Hessian-free” approach

we show that it can achieve significantly lower test-set reconstruction
errors on the deep auto-encoder problems considered in Hinton and
Salakhutdinov

no pre-training required!

using pre-training still lowers generalization error on 2 of the 3
problems

but critically there isn’t a significant benefit on the training set

our method provides a better solution to the underfitting problem in
deep networks and can be applied to a much larger set of models
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2nd-order optimization

If pathological curvature is the problem, this could be the solution

General framework

model the objective function by the local approximation:

f (θ + p) ≈ qθ(p) ≡ f (θ) +∇f (θ)>p +
1

2
p>Bp

where B is a matrix which quantifies curvature

in Newton’s method, B = H or H + λI

fully optimizing qθ(p) this w.r.t. p gives: p = −B−1∇f (θ)

update is: θ ← θ + αp for some α ≤ 1 determined by a line search
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Vanishing Curvature

define the direction d by dk = δik

low reduction along d : −∇f >d = −(∇f )i ≈ 0

but also low curvature: d>Hd = −Hii = ∂2f
∂θ2

i
≈ 0

Output LayerInput Layer

Backprop directionweight i

so a 2nd-order optimizer will pursue d at a reasonable rate, an elegant
solution to the vanishing gradient problem of 1st-order optimizers

James Martens (U of T) Deep Learning via HF June 29, 2010 8 / 23



Practical Considerations for 2nd-order optimization

Hessian size problem

for machine learning models the number of parameter N can be very
large

we can’t possibly calculate or even store a N × N matrix, let alone
invert one

Quasi-Newton Methods

non-linear conjugate gradient (NCG) - a hacked version of the
quadratic optimizer linear CG

limited-memory BFGS (L-BFGS) - a low rank Hessian approximation

approximate diagonal or block-diagonal Hessian

Unfortunately these don’t seem to resolve the deep-learning problem
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Hessian-free optimization

a quasi-newton method that uses no low-rank approximations

named ’free’ because we never explicitly compute B

First motivating observation

it is relatively easy to compute the matrix-vector product Hv for an
arbitrary vectors v

e.g. use finite differences to approximate the limit:

Hv = lim
ε→0

∇f (θ + εv)−∇f (θ)

ε

Hv is computed for the exact value of H, there is no low-rank or
diagonal approximation here!
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Hessian-free optimization (cont.)

Second motivating observation

linear conjugate gradient (CG) minimizes positive definite quadratic
cost functions using only matrix-vector products

more often seen in the context of solving large sparse systems

directly minimizes the the quadratic q ≡ p>Bp/2 + g>p and not the
residual ‖Bp + g‖2 → these are related but different!

but we actually care about the quadratic, so this is good

requires N = dim(θ) iterations to converge in general, but makes a lot
of progress in far fewer iterations than that
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Standard Hessian-free Optimization

Pseudo-code for a simple variant of damped Hessian-free optimization:

1: for n = 1 to max-epochs do
2: compute gradient gn = ∇f (θn)
3: choose/adapt λn according to some heuristic
4: define the function Bn(v) = Hv + λnv
5: pn = CGMinimize(Bn,−gn)
6: θn+1 = θn + pn

7: end for

In addition to choosing λn, the stopping criterion for the CG algorithm is a
critical detail.
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A new variant is required

the bad news: common variants of HF (e.g. Steihaug) don’t work
particular well for neural networks

there are many aspects of the algorithm that are ill-defined in the
basic approach which we need to address:

how can deal with negative curvature?

how should we choose λ?

how can we handle large data-sets

when should we stop the CG iterations?

can CG be accelerated?
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Pearlmutter’s R-operator method

finite-difference approximations are undesirable for many reasons

there is a better way to compute Hv due to Pearlmutter (1994)

similar cost to a gradient computation

for neural nets, no extra non-linear functions need to be evaluated

technique generalizes to almost any twice-differentiable function that
is tractable to compute

can be automated (like automatic differentiation)

James Martens (U of T) Deep Learning via HF June 29, 2010 14 / 23



Pearlmutter’s R-operator method

finite-difference approximations are undesirable for many reasons

there is a better way to compute Hv due to Pearlmutter (1994)

similar cost to a gradient computation

for neural nets, no extra non-linear functions need to be evaluated

technique generalizes to almost any twice-differentiable function that
is tractable to compute

can be automated (like automatic differentiation)

James Martens (U of T) Deep Learning via HF June 29, 2010 14 / 23



Pearlmutter’s R-operator method

finite-difference approximations are undesirable for many reasons

there is a better way to compute Hv due to Pearlmutter (1994)

similar cost to a gradient computation

for neural nets, no extra non-linear functions need to be evaluated

technique generalizes to almost any twice-differentiable function that
is tractable to compute

can be automated (like automatic differentiation)

James Martens (U of T) Deep Learning via HF June 29, 2010 14 / 23



Pearlmutter’s R-operator method

finite-difference approximations are undesirable for many reasons

there is a better way to compute Hv due to Pearlmutter (1994)

similar cost to a gradient computation

for neural nets, no extra non-linear functions need to be evaluated

technique generalizes to almost any twice-differentiable function that
is tractable to compute

can be automated (like automatic differentiation)

James Martens (U of T) Deep Learning via HF June 29, 2010 14 / 23



Pearlmutter’s R-operator method

finite-difference approximations are undesirable for many reasons

there is a better way to compute Hv due to Pearlmutter (1994)

similar cost to a gradient computation

for neural nets, no extra non-linear functions need to be evaluated

technique generalizes to almost any twice-differentiable function that
is tractable to compute

can be automated (like automatic differentiation)

James Martens (U of T) Deep Learning via HF June 29, 2010 14 / 23



Pearlmutter’s R-operator method

finite-difference approximations are undesirable for many reasons

there is a better way to compute Hv due to Pearlmutter (1994)

similar cost to a gradient computation

for neural nets, no extra non-linear functions need to be evaluated

technique generalizes to almost any twice-differentiable function that
is tractable to compute

can be automated (like automatic differentiation)

James Martens (U of T) Deep Learning via HF June 29, 2010 14 / 23



The Gauss-Newton Matrix (G)

a well-known alternative to the Hessian that is guaranteed to be
positive semi-definite - thus no negative curvature!

usually is applied to non-linear least squares problems

Schraudolph showed in 2002 that it can be generalized beyond just
least squares to neural nets with “matching” loss functions and
output non-linearities

e.g. logistic units with cross-entropy error

works better in practice than Hessian or other curvature matrices
(e.g. empirical Fisher)

and we can compute Gv using an algorithm similar to the one for Hv
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CG stopping conditions

CG is only guaranteed to converge after N (size of parameter space)
iterations −→ we can’t always run it to convergence

the standard stopping criterion used in most versions of HF is

‖r‖ < min(1
2 , ‖g‖

1
2 )‖g‖ where r = Bp + g is the “residual”

strictly speaking ‖r‖ is not the quantity that CG minimizes, nor is it
the one we really care about
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CG stopping conditions (cont.)

we found that terminating CG once the relative per-iteration
reduction rate fell below some tolerance ε worked best

∆q

q
< ε

(∆q is the change in the quadratic model averaged over some window
of the last k iterations of CG)
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Handling large datasets

each iteration of CG requires the evaluation of the product Bv for
some v

naively this requires a pass over the training data-set

but for a sufficiently large subset of the training data - sufficient to
capture enough useful curvature information

size is related to model and qualitative aspects of the dataset, but
critically not its size

for very large datasets, mini-batches might be a tiny fraction of the
whole

gradient and line-searches can be computed using even larger
mini-batches since they are needed much less often
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Other enhancements

using a Levenburg-Marquardt style heuristic for adjusting the
damping parameter λ

using M-preconditioned CG with the diagonal preconditioner:

M =

[
diag

(∑
i

∇fi �∇fi

)
+ λI

]α

initializing each run of the inner CG-loop from the solution found by
the previous run

carefully bounding and “back-tracking” the maximum number of CG
steps to compensate for the effect of using mini-batches to compute
the Bv products

(see the paper for further details)
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Results

Experimental parameters (K = mini-batch size)

Name size K encoder dims
CURVES 20000 5000 784-400-200-100-50-25-6
MNIST 60000 7500 784-1000-500-250-30
FACES 103500 5175 625-2000-1000-500-30

Deep auto-encoder experiments

used precisely the same model architectures and datasets as in Hinton
and Salakhutdinov, 2006

CURVES, MNIST and FACES are all image datasets

trained with cross-entropy but performance measured with squared
error

all methods were run using GPU implementations. H&S’s pre-training
plus NCG fine-tuning method was run for a lot longer
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Results (cont.)

PT + NCG = pre-trained initialization with non-linear CG optimizer
RAND+HF = random initialization with our Hessian-free method
PT + HF = pre-trained initialization with our Hessian-free method
* indicates an `2 prior was used
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PT + NCG RAND+HF PT + HF no early stop
CURVES 0.74, 0.82 0.11, 0.20 0.10, 0.21 0.1
MNIST 2.31, 2.72 1.64, 2.78 1.63, 2.46 1.4
MNIST* 2.07, 2.61 1.75, 2.55 1.60, 2.28
FACES -, 124 55.4, 139 -,- 12.9!
FACES* -,- 60.6, 122 -,-
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Our HF method is practical

error on the CURVES task versus GPU time:
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Thank you for your attention
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