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Gradient descent is bad at learning deep nets

The common experience:

o gradient descent gets much slower as the depth increases
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Gradient descent is bad at learning deep nets

The common experience:

o gradient descent gets much slower as the depth increases

o large enough depth — learning to slow to a crawl or even “stops’ —
severe under-fitting (poor performance on the training set)

@ ‘vanishing-gradients problem™ :

backpropagated
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error signal decays as it is
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@ the gradient is tiny for weights in early layers
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Gradient descent is bad at deep learning (cont.)

Two hypotheses for why gradient descent fails:

@ increased frequency and severity of bad local
minima:
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Gradient descent is bad at deep learning (cont.)
Two hypotheses for why gradient descent fails:

@ increased frequency and severity of bad local
minima:

@ pathological curvature, like the

type seen in the well-known .
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Pre-training for deep auto-encoders
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|
Pre-training (cont.)

@ doesn’t generalize to all the sorts of deep-architectures we might wish
to train

@ does it get full power out of deep auto-encoders?
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(from Hinton and Salakhutdinov, 2006)
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Our contribution

@ we develop a very powerful and practical 2nd-order optimization
algorithm based on the "Hessian-free” approach
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e —
Our contribution

@ we develop a very powerful and practical 2nd-order optimization
algorithm based on the "Hessian-free” approach

@ we show that it can achieve significantly lower test-set reconstruction
errors on the deep auto-encoder problems considered in Hinton and
Salakhutdinov

@ no pre-training required!

@ using pre-training still lowers generalization error on 2 of the 3
problems

e but critically there isn't a significant benefit on the training set
@ our method provides a better solution to the underfitting problem in

deep networks and can be applied to a much larger set of models
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2nd-order optimization

If pathological curvature is the problem, this could be the solution

General framework

@ model the objective function by the local approximation:

1
F(0+p) ~ ao(p) = f(0) + VF(0) 'p+ 5p Bp
where B is a matrix which quantifies curvature

@ in Newton's method, B=H or H 4+ \/

e fully optimizing go(p) this w.r.t. p gives: p = —B~1Vf(0)

@ update is: € «— 0 + ap for some o < 1 determined by a line search

v
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|
Vanishing Curvature

@ define the direction d by dy = §;x
o low reduction along d: —VfTd = —(Vf); =0

@ but also low curvature: d "Hd = —Hj; =
weight i <
Input Layer

Pf
02

Backprop direction

alle|

Output Layer

@ so a 2nd-order optimizer will pursue d at a reasonable rate, an elegant
solution to the vanishing gradient problem of 1st-order optimizers
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Practical Considerations for 2nd-order optimization

Hessian size problem

@ for machine learning models the number of parameter N can be very
large

@ we can't possibly calculate or even store a N x N matrix, let alone
invert one
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Practical Considerations for 2nd-order optimization

Hessian size problem

@ for machine learning models the number of parameter N can be very
large

@ we can't possibly calculate or even store a N x N matrix, let alone
invert one

Quasi-Newton Methods

@ non-linear conjugate gradient (NCG) - a hacked version of the
quadratic optimizer linear CG

o limited-memory BFGS (L-BFGS) - a low rank Hessian approximation

@ approximate diagonal or block-diagonal Hessian

Unfortunately these don't seem to resolve the deep-learning problem
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S
Hessian-free optimization

@ a quasi-newton method that uses no low-rank approximations

@ named 'free’ because we never explicitly compute B

First motivating observation

@ it is relatively easy to compute the matrix-vector product Hv for an
arbitrary vectors v

@ e.g. use finite differences to approximate the limit:

Hy — lim VIO +ev)—VIi(0)

e—0 €

@ Hv is computed for the exact value of H, there is no low-rank or
diagonal approximation here!
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Hessian-free optimization (cont.)

Second motivating observation

@ linear conjugate gradient (CG) minimizes positive definite quadratic
cost functions using only matrix-vector products
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Hessian-free optimization (cont.)

Second motivating observation

@ linear conjugate gradient (CG) minimizes positive definite quadratic
cost functions using only matrix-vector products

@ more often seen in the context of solving large sparse systems
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residual ||Bp + g||> — these are related but different!
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Hessian-free optimization (cont.)

Second motivating observation

linear conjugate gradient (CG) minimizes positive definite quadratic
cost functions using only matrix-vector products

more often seen in the context of solving large sparse systems

directly minimizes the the quadratic g = p' Bp/2 + g ' p and not the
residual ||Bp + g||> — these are related but different!

but we actually care about the quadratic, so this is good

requires N = dim(6) iterations to converge in general, but makes a lot
of progress in far fewer iterations than that
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S
Standard Hessian-free Optimization

Pseudo-code for a simple variant of damped Hessian-free optimization:

1: for n =1 to max-epochs do

2. compute gradient g, = V£(0,)

3 choose/adapt A, according to some heuristic
4:  define the function B,(v) = Hv + A\,v

5 pn = CGMinimize(B,, —gn)

6 9n+1 = 9,1 + Pn

7: end for

In addition to choosing A, the stopping criterion for the CG algorithm is a
critical detail.
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A new variant is required

e the bad news: common variants of HF (e.g. Steihaug) don't work
particular well for neural networks
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S
A new variant is required

e the bad news: common variants of HF (e.g. Steihaug) don't work
particular well for neural networks

@ there are many aspects of the algorithm that are ill-defined in the
basic approach which we need to address:

e how can deal with negative curvature?
o how should we choose \?

e how can we handle large data-sets
when should we stop the CG iterations?

can CG be accelerated?
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Pearlmutter’'s R-operator method

o finite-difference approximations are undesirable for many reasons
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S
Pearlmutter’'s R-operator method

o finite-difference approximations are undesirable for many reasons
@ there is a better way to compute Hv due to Pearlmutter (1994)

@ similar cost to a gradient computation

@ for neural nets, no extra non-linear functions need to be evaluated

@ technique generalizes to almost any twice-differentiable function that
is tractable to compute

@ can be automated (like automatic differentiation)
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The Gauss-Newton Matrix (G)

@ a well-known alternative to the Hessian that is guaranteed to be
positive semi-definite - thus no negative curvature!
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-
The Gauss-Newton Matrix (G)

@ a well-known alternative to the Hessian that is guaranteed to be
positive semi-definite - thus no negative curvature!

@ usually is applied to non-linear least squares problems

@ Schraudolph showed in 2002 that it can be generalized beyond just
least squares to neural nets with “matching” loss functions and
output non-linearities

e e.g. logistic units with cross-entropy error

@ works better in practice than Hessian or other curvature matrices
(e.g. empirical Fisher)

@ and we can compute Gv using an algorithm similar to the one for Hv
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CG stopping conditions

e CG is only guaranteed to converge after N (size of parameter space)
iterations — we can't always run it to convergence
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S
CG stopping conditions

e CG is only guaranteed to converge after N (size of parameter space)
iterations — we can't always run it to convergence

@ the standard stopping criterion used in most versions of HF is
1
|r| < min(3, llg]|2)|/g|| where r = Bp + g is the “residual”

o strictly speaking ||r|| is not the quantity that CG minimizes, nor is it
the one we really care about

x 10 qe(p) vs iteration

x10™° IBp+g ||2 vs iteration

0 50 100 150 200 250 50 100 150 200 250
iteration iteration
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|
CG stopping conditions (cont.)

@ we found that terminating CG once the relative per-iteration
reduction rate fell below some tolerance € worked best
Aq

— <€
q

(Agq is the change in the quadratic model averaged over some window
of the last k iterations of CG)
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Handling large datasets

@ each iteration of CG requires the evaluation of the product Bv for
some v
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|
Handling large datasets

@ each iteration of CG requires the evaluation of the product Bv for
some v

@ naively this requires a pass over the training data-set

@ but for a sufficiently large subset of the training data - sufficient to
capture enough useful curvature information

@ size is related to model and qualitative aspects of the dataset, but
critically not its size

o for very large datasets, mini-batches might be a tiny fraction of the
whole

@ gradient and line-searches can be computed using even larger
mini-batches since they are needed much less often
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Other enhancements

@ using a Levenburg-Marquardt style heuristic for adjusting the
damping parameter A
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@ using M-preconditioned CG with the diagonal preconditioner:

M = [diag (Z Vi ® w,-) + A
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@ initializing each run of the inner CG-loop from the solution found by
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o carefully bounding and “back-tracking” the maximum number of CG
steps to compensate for the effect of using mini-batches to compute
the Bv products
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Other enhancements

@ using a Levenburg-Marquardt style heuristic for adjusting the
damping parameter A

@ using M-preconditioned CG with the diagonal preconditioner:

M = [diag (Z Vi ® w,-) + A

«

@ initializing each run of the inner CG-loop from the solution found by
the previous run

o carefully bounding and “back-tracking” the maximum number of CG
steps to compensate for the effect of using mini-batches to compute
the Bv products

@ (see the paper for further details)
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e —
Results

Experimental parameters (K = mini-batch size)

Name size K encoder dims
CURVES 20000 | 5000 | 784-400-200-100-50-25-6
MNIST 60000 | 7500 784-1000-500-250-30
FACES 103500 | 5175 625-2000-1000-500-30

Deep auto-encoder experiments

@ used precisely the same model architectures and datasets as in Hinton
and Salakhutdinov, 2006

v

James Martens (U of T) Deep Learning via HF June 29, 2010 20 /23




Results

Experimental parameters (K = mini-batch size)

Name size K encoder dims
CURVES 20000 | 5000 | 784-400-200-100-50-25-6
MNIST 60000 | 7500 784-1000-500-250-30
FACES 103500 | 5175 625-2000-1000-500-30

Deep auto-encoder experiments

@ used precisely the same model architectures and datasets as in Hinton
and Salakhutdinov, 2006

@ CURVES, MNIST and FACES are all image datasets

v

James Martens (U of T)

Deep Learning via HF June 29, 2010 20 /23



e —
Results

Experimental parameters (K = mini-batch size)

Name size K encoder dims
CURVES 20000 | 5000 | 784-400-200-100-50-25-6
MNIST 60000 | 7500 784-1000-500-250-30
FACES 103500 | 5175 625-2000-1000-500-30

Deep auto-encoder experiments

@ used precisely the same model architectures and datasets as in Hinton
and Salakhutdinov, 2006

@ CURVES, MNIST and FACES are all image datasets

@ trained with cross-entropy but performance measured with squared
error

v

James Martens (U of T) Deep Learning via HF June 29, 2010 20 /23




e —
Results

Experimental parameters (K = mini-batch size)

Name size K encoder dims
CURVES 20000 | 5000 | 784-400-200-100-50-25-6
MNIST 60000 | 7500 784-1000-500-250-30
FACES 103500 | 5175 625-2000-1000-500-30

Deep auto-encoder experiments

@ used precisely the same model architectures and datasets as in Hinton
and Salakhutdinov, 2006

@ CURVES, MNIST and FACES are all image datasets

@ trained with cross-entropy but performance measured with squared
error

@ all methods were run using GPU implementations. H&S's pre-training
plus NCG fine-tuning method was run for a /ot longer

v
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|
Results (cont.)

PT 4+ NCG = pre-trained initialization with non-linear CG optimizer
= random initialization with our Hessian-free method

PT 4+ HF = pre-trained initialization with our Hessian-free method

* indicates an { prior was used

0.8

05

JI,

CURVES MNIST MNIST*

2 50

15

N
S

05

0

Training-set errors
5 25 60 70

0
FACES FACES*

Test—set errors
3 140

HI 05
0

120

CURVES MNIST MNIST*

140

120

100

0
FACES FACES*

PT + NCG PT + HF | NO EARLY STOP
CURVES 0.74, 0.82 0.11, 0.20 | 0.10, 0.21 0.1
MNIST 2.31, 2.72 1.64, 2.78 1.63, 2.46 1.4
MNIST* 2.07, 2.61 1.75, 2.55 | 1.60, 2.28
FACES - 124 55.4, 139 12.9!
FACES* 60.6, 122
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Our HF method is practical

@ error on the CURVES task versus GPU time:

- — —PT+NCG |
RAND+HF
----- PT+HF

error

time in seconds (log-scale)
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Thank you for your attention

James Martens (U of T) Deep Learning via HF June 29, 2010 23 /23



	
	


