
Deep Learning via Hessian-free Optimization

James Martens

University of Toronto

June 29, 2010

UNIVERSITY OF TORONTO

Computer Science

James Martens (U of T) Deep Learning via HF June 29, 2010 1 / 23

Gradient descent is bad at learning deep nets

The common experience:

gradient descent gets much slower as the depth increases

large enough depth → learning to slow to a crawl or even “stops” →
severe under-fitting (poor performance on the training set)

“vanishing-gradients problem”: error signal decays as it is
backpropagated

Output LayerInput Layer

the gradient is tiny for weights in early layers

James Martens (U of T) Deep Learning via HF June 29, 2010 2 / 23

Gradient descent is bad at learning deep nets

The common experience:

gradient descent gets much slower as the depth increases

large enough depth → learning to slow to a crawl or even “stops” →
severe under-fitting (poor performance on the training set)

“vanishing-gradients problem”: error signal decays as it is
backpropagated

Output LayerInput Layer

the gradient is tiny for weights in early layers

James Martens (U of T) Deep Learning via HF June 29, 2010 2 / 23

Gradient descent is bad at learning deep nets

The common experience:

gradient descent gets much slower as the depth increases

large enough depth → learning to slow to a crawl or even “stops” →
severe under-fitting (poor performance on the training set)

“vanishing-gradients problem”: error signal decays as it is
backpropagated

Output LayerInput Layer

the gradient is tiny for weights in early layers

James Martens (U of T) Deep Learning via HF June 29, 2010 2 / 23

Gradient descent is bad at learning deep nets

The common experience:

gradient descent gets much slower as the depth increases

large enough depth → learning to slow to a crawl or even “stops” →
severe under-fitting (poor performance on the training set)

“vanishing-gradients problem”: error signal decays as it is
backpropagated

Output LayerInput Layer

the gradient is tiny for weights in early layers

James Martens (U of T) Deep Learning via HF June 29, 2010 2 / 23

Gradient descent is bad at deep learning (cont.)

Two hypotheses for why gradient descent fails:

increased frequency and severity of bad local
minima:

pathological curvature, like the
type seen in the well-known
Rosenbrock function:

f (x , y) = (1− x)2 + 100(y − x2)2

James Martens (U of T) Deep Learning via HF June 29, 2010 3 / 23

Gradient descent is bad at deep learning (cont.)

Two hypotheses for why gradient descent fails:

increased frequency and severity of bad local
minima:

pathological curvature, like the
type seen in the well-known
Rosenbrock function:

f (x , y) = (1− x)2 + 100(y − x2)2

James Martens (U of T) Deep Learning via HF June 29, 2010 3 / 23

Pre-training for deep auto-encoders

(from Hinton and Salakhutdinov, 2006)
James Martens (U of T) Deep Learning via HF June 29, 2010 4 / 23

Pre-training (cont.)

doesn’t generalize to all the sorts of deep-architectures we might wish
to train

does it get full power out of deep auto-encoders?

(from Hinton and Salakhutdinov, 2006)

James Martens (U of T) Deep Learning via HF June 29, 2010 5 / 23

Our contribution

we develop a very powerful and practical 2nd-order optimization
algorithm based on the “Hessian-free” approach

we show that it can achieve significantly lower test-set reconstruction
errors on the deep auto-encoder problems considered in Hinton and
Salakhutdinov

no pre-training required!

using pre-training still lowers generalization error on 2 of the 3
problems

but critically there isn’t a significant benefit on the training set

our method provides a better solution to the underfitting problem in
deep networks and can be applied to a much larger set of models

James Martens (U of T) Deep Learning via HF June 29, 2010 6 / 23

Our contribution

we develop a very powerful and practical 2nd-order optimization
algorithm based on the “Hessian-free” approach

we show that it can achieve significantly lower test-set reconstruction
errors on the deep auto-encoder problems considered in Hinton and
Salakhutdinov

no pre-training required!

using pre-training still lowers generalization error on 2 of the 3
problems

but critically there isn’t a significant benefit on the training set

our method provides a better solution to the underfitting problem in
deep networks and can be applied to a much larger set of models

James Martens (U of T) Deep Learning via HF June 29, 2010 6 / 23

Our contribution

we develop a very powerful and practical 2nd-order optimization
algorithm based on the “Hessian-free” approach

we show that it can achieve significantly lower test-set reconstruction
errors on the deep auto-encoder problems considered in Hinton and
Salakhutdinov

no pre-training required!

using pre-training still lowers generalization error on 2 of the 3
problems

but critically there isn’t a significant benefit on the training set

our method provides a better solution to the underfitting problem in
deep networks and can be applied to a much larger set of models

James Martens (U of T) Deep Learning via HF June 29, 2010 6 / 23

2nd-order optimization

If pathological curvature is the problem, this could be the solution

General framework

model the objective function by the local approximation:

f (θ + p) ≈ qθ(p) ≡ f (θ) +∇f (θ)>p +
1

2
p>Bp

where B is a matrix which quantifies curvature

in Newton’s method, B = H or H + λI

fully optimizing qθ(p) this w.r.t. p gives: p = −B−1∇f (θ)

update is: θ ← θ + αp for some α ≤ 1 determined by a line search

James Martens (U of T) Deep Learning via HF June 29, 2010 7 / 23

2nd-order optimization

If pathological curvature is the problem, this could be the solution

General framework

model the objective function by the local approximation:

f (θ + p) ≈ qθ(p) ≡ f (θ) +∇f (θ)>p +
1

2
p>Bp

where B is a matrix which quantifies curvature

in Newton’s method, B = H or H + λI

fully optimizing qθ(p) this w.r.t. p gives: p = −B−1∇f (θ)

update is: θ ← θ + αp for some α ≤ 1 determined by a line search

James Martens (U of T) Deep Learning via HF June 29, 2010 7 / 23

2nd-order optimization

If pathological curvature is the problem, this could be the solution

General framework

model the objective function by the local approximation:

f (θ + p) ≈ qθ(p) ≡ f (θ) +∇f (θ)>p +
1

2
p>Bp

where B is a matrix which quantifies curvature

in Newton’s method, B = H or H + λI

fully optimizing qθ(p) this w.r.t. p gives: p = −B−1∇f (θ)

update is: θ ← θ + αp for some α ≤ 1 determined by a line search

James Martens (U of T) Deep Learning via HF June 29, 2010 7 / 23

2nd-order optimization

If pathological curvature is the problem, this could be the solution

General framework

model the objective function by the local approximation:

f (θ + p) ≈ qθ(p) ≡ f (θ) +∇f (θ)>p +
1

2
p>Bp

where B is a matrix which quantifies curvature

in Newton’s method, B = H or H + λI

fully optimizing qθ(p) this w.r.t. p gives: p = −B−1∇f (θ)

update is: θ ← θ + αp for some α ≤ 1 determined by a line search

James Martens (U of T) Deep Learning via HF June 29, 2010 7 / 23

Vanishing Curvature

define the direction d by dk = δik

low reduction along d : −∇f >d = −(∇f)i ≈ 0

but also low curvature: d>Hd = −Hii = ∂2f
∂θ2

i
≈ 0

Output LayerInput Layer

Backprop directionweight i

so a 2nd-order optimizer will pursue d at a reasonable rate, an elegant
solution to the vanishing gradient problem of 1st-order optimizers

James Martens (U of T) Deep Learning via HF June 29, 2010 8 / 23

Practical Considerations for 2nd-order optimization

Hessian size problem

for machine learning models the number of parameter N can be very
large

we can’t possibly calculate or even store a N × N matrix, let alone
invert one

Quasi-Newton Methods

non-linear conjugate gradient (NCG) - a hacked version of the
quadratic optimizer linear CG

limited-memory BFGS (L-BFGS) - a low rank Hessian approximation

approximate diagonal or block-diagonal Hessian

Unfortunately these don’t seem to resolve the deep-learning problem

James Martens (U of T) Deep Learning via HF June 29, 2010 9 / 23

Practical Considerations for 2nd-order optimization

Hessian size problem

for machine learning models the number of parameter N can be very
large

we can’t possibly calculate or even store a N × N matrix, let alone
invert one

Quasi-Newton Methods

non-linear conjugate gradient (NCG) - a hacked version of the
quadratic optimizer linear CG

limited-memory BFGS (L-BFGS) - a low rank Hessian approximation

approximate diagonal or block-diagonal Hessian

Unfortunately these don’t seem to resolve the deep-learning problem

James Martens (U of T) Deep Learning via HF June 29, 2010 9 / 23

Hessian-free optimization

a quasi-newton method that uses no low-rank approximations

named ’free’ because we never explicitly compute B

First motivating observation

it is relatively easy to compute the matrix-vector product Hv for an
arbitrary vectors v

e.g. use finite differences to approximate the limit:

Hv = lim
ε→0

∇f (θ + εv)−∇f (θ)

ε

Hv is computed for the exact value of H, there is no low-rank or
diagonal approximation here!

James Martens (U of T) Deep Learning via HF June 29, 2010 10 / 23

Hessian-free optimization

a quasi-newton method that uses no low-rank approximations

named ’free’ because we never explicitly compute B

First motivating observation

it is relatively easy to compute the matrix-vector product Hv for an
arbitrary vectors v

e.g. use finite differences to approximate the limit:

Hv = lim
ε→0

∇f (θ + εv)−∇f (θ)

ε

Hv is computed for the exact value of H, there is no low-rank or
diagonal approximation here!

James Martens (U of T) Deep Learning via HF June 29, 2010 10 / 23

Hessian-free optimization

a quasi-newton method that uses no low-rank approximations

named ’free’ because we never explicitly compute B

First motivating observation

it is relatively easy to compute the matrix-vector product Hv for an
arbitrary vectors v

e.g. use finite differences to approximate the limit:

Hv = lim
ε→0

∇f (θ + εv)−∇f (θ)

ε

Hv is computed for the exact value of H, there is no low-rank or
diagonal approximation here!

James Martens (U of T) Deep Learning via HF June 29, 2010 10 / 23

Hessian-free optimization

a quasi-newton method that uses no low-rank approximations

named ’free’ because we never explicitly compute B

First motivating observation

it is relatively easy to compute the matrix-vector product Hv for an
arbitrary vectors v

e.g. use finite differences to approximate the limit:

Hv = lim
ε→0

∇f (θ + εv)−∇f (θ)

ε

Hv is computed for the exact value of H, there is no low-rank or
diagonal approximation here!

James Martens (U of T) Deep Learning via HF June 29, 2010 10 / 23

Hessian-free optimization (cont.)

Second motivating observation

linear conjugate gradient (CG) minimizes positive definite quadratic
cost functions using only matrix-vector products

more often seen in the context of solving large sparse systems

directly minimizes the the quadratic q ≡ p>Bp/2 + g>p and not the
residual ‖Bp + g‖2 → these are related but different!

but we actually care about the quadratic, so this is good

requires N = dim(θ) iterations to converge in general, but makes a lot
of progress in far fewer iterations than that

James Martens (U of T) Deep Learning via HF June 29, 2010 11 / 23

Hessian-free optimization (cont.)

Second motivating observation

linear conjugate gradient (CG) minimizes positive definite quadratic
cost functions using only matrix-vector products

more often seen in the context of solving large sparse systems

directly minimizes the the quadratic q ≡ p>Bp/2 + g>p and not the
residual ‖Bp + g‖2 → these are related but different!

but we actually care about the quadratic, so this is good

requires N = dim(θ) iterations to converge in general, but makes a lot
of progress in far fewer iterations than that

James Martens (U of T) Deep Learning via HF June 29, 2010 11 / 23

Hessian-free optimization (cont.)

Second motivating observation

linear conjugate gradient (CG) minimizes positive definite quadratic
cost functions using only matrix-vector products

more often seen in the context of solving large sparse systems

directly minimizes the the quadratic q ≡ p>Bp/2 + g>p and not the
residual ‖Bp + g‖2 → these are related but different!

but we actually care about the quadratic, so this is good

requires N = dim(θ) iterations to converge in general, but makes a lot
of progress in far fewer iterations than that

James Martens (U of T) Deep Learning via HF June 29, 2010 11 / 23

Hessian-free optimization (cont.)

Second motivating observation

linear conjugate gradient (CG) minimizes positive definite quadratic
cost functions using only matrix-vector products

more often seen in the context of solving large sparse systems

directly minimizes the the quadratic q ≡ p>Bp/2 + g>p and not the
residual ‖Bp + g‖2 → these are related but different!

but we actually care about the quadratic, so this is good

requires N = dim(θ) iterations to converge in general, but makes a lot
of progress in far fewer iterations than that

James Martens (U of T) Deep Learning via HF June 29, 2010 11 / 23

Hessian-free optimization (cont.)

Second motivating observation

linear conjugate gradient (CG) minimizes positive definite quadratic
cost functions using only matrix-vector products

more often seen in the context of solving large sparse systems

directly minimizes the the quadratic q ≡ p>Bp/2 + g>p and not the
residual ‖Bp + g‖2 → these are related but different!

but we actually care about the quadratic, so this is good

requires N = dim(θ) iterations to converge in general, but makes a lot
of progress in far fewer iterations than that

James Martens (U of T) Deep Learning via HF June 29, 2010 11 / 23

Standard Hessian-free Optimization

Pseudo-code for a simple variant of damped Hessian-free optimization:

1: for n = 1 to max-epochs do
2: compute gradient gn = ∇f (θn)
3: choose/adapt λn according to some heuristic
4: define the function Bn(v) = Hv + λnv
5: pn = CGMinimize(Bn,−gn)
6: θn+1 = θn + pn

7: end for

In addition to choosing λn, the stopping criterion for the CG algorithm is a
critical detail.

James Martens (U of T) Deep Learning via HF June 29, 2010 12 / 23

A new variant is required

the bad news: common variants of HF (e.g. Steihaug) don’t work
particular well for neural networks

there are many aspects of the algorithm that are ill-defined in the
basic approach which we need to address:

how can deal with negative curvature?

how should we choose λ?

how can we handle large data-sets

when should we stop the CG iterations?

can CG be accelerated?

James Martens (U of T) Deep Learning via HF June 29, 2010 13 / 23

A new variant is required

the bad news: common variants of HF (e.g. Steihaug) don’t work
particular well for neural networks

there are many aspects of the algorithm that are ill-defined in the
basic approach which we need to address:

how can deal with negative curvature?

how should we choose λ?

how can we handle large data-sets

when should we stop the CG iterations?

can CG be accelerated?

James Martens (U of T) Deep Learning via HF June 29, 2010 13 / 23

Pearlmutter’s R-operator method

finite-difference approximations are undesirable for many reasons

there is a better way to compute Hv due to Pearlmutter (1994)

similar cost to a gradient computation

for neural nets, no extra non-linear functions need to be evaluated

technique generalizes to almost any twice-differentiable function that
is tractable to compute

can be automated (like automatic differentiation)

James Martens (U of T) Deep Learning via HF June 29, 2010 14 / 23

Pearlmutter’s R-operator method

finite-difference approximations are undesirable for many reasons

there is a better way to compute Hv due to Pearlmutter (1994)

similar cost to a gradient computation

for neural nets, no extra non-linear functions need to be evaluated

technique generalizes to almost any twice-differentiable function that
is tractable to compute

can be automated (like automatic differentiation)

James Martens (U of T) Deep Learning via HF June 29, 2010 14 / 23

Pearlmutter’s R-operator method

finite-difference approximations are undesirable for many reasons

there is a better way to compute Hv due to Pearlmutter (1994)

similar cost to a gradient computation

for neural nets, no extra non-linear functions need to be evaluated

technique generalizes to almost any twice-differentiable function that
is tractable to compute

can be automated (like automatic differentiation)

James Martens (U of T) Deep Learning via HF June 29, 2010 14 / 23

Pearlmutter’s R-operator method

finite-difference approximations are undesirable for many reasons

there is a better way to compute Hv due to Pearlmutter (1994)

similar cost to a gradient computation

for neural nets, no extra non-linear functions need to be evaluated

technique generalizes to almost any twice-differentiable function that
is tractable to compute

can be automated (like automatic differentiation)

James Martens (U of T) Deep Learning via HF June 29, 2010 14 / 23

Pearlmutter’s R-operator method

finite-difference approximations are undesirable for many reasons

there is a better way to compute Hv due to Pearlmutter (1994)

similar cost to a gradient computation

for neural nets, no extra non-linear functions need to be evaluated

technique generalizes to almost any twice-differentiable function that
is tractable to compute

can be automated (like automatic differentiation)

James Martens (U of T) Deep Learning via HF June 29, 2010 14 / 23

Pearlmutter’s R-operator method

finite-difference approximations are undesirable for many reasons

there is a better way to compute Hv due to Pearlmutter (1994)

similar cost to a gradient computation

for neural nets, no extra non-linear functions need to be evaluated

technique generalizes to almost any twice-differentiable function that
is tractable to compute

can be automated (like automatic differentiation)

James Martens (U of T) Deep Learning via HF June 29, 2010 14 / 23

The Gauss-Newton Matrix (G)

a well-known alternative to the Hessian that is guaranteed to be
positive semi-definite - thus no negative curvature!

usually is applied to non-linear least squares problems

Schraudolph showed in 2002 that it can be generalized beyond just
least squares to neural nets with “matching” loss functions and
output non-linearities

e.g. logistic units with cross-entropy error

works better in practice than Hessian or other curvature matrices
(e.g. empirical Fisher)

and we can compute Gv using an algorithm similar to the one for Hv

James Martens (U of T) Deep Learning via HF June 29, 2010 15 / 23

The Gauss-Newton Matrix (G)

a well-known alternative to the Hessian that is guaranteed to be
positive semi-definite - thus no negative curvature!

usually is applied to non-linear least squares problems

Schraudolph showed in 2002 that it can be generalized beyond just
least squares to neural nets with “matching” loss functions and
output non-linearities

e.g. logistic units with cross-entropy error

works better in practice than Hessian or other curvature matrices
(e.g. empirical Fisher)

and we can compute Gv using an algorithm similar to the one for Hv

James Martens (U of T) Deep Learning via HF June 29, 2010 15 / 23

The Gauss-Newton Matrix (G)

a well-known alternative to the Hessian that is guaranteed to be
positive semi-definite - thus no negative curvature!

usually is applied to non-linear least squares problems

Schraudolph showed in 2002 that it can be generalized beyond just
least squares to neural nets with “matching” loss functions and
output non-linearities

e.g. logistic units with cross-entropy error

works better in practice than Hessian or other curvature matrices
(e.g. empirical Fisher)

and we can compute Gv using an algorithm similar to the one for Hv

James Martens (U of T) Deep Learning via HF June 29, 2010 15 / 23

The Gauss-Newton Matrix (G)

a well-known alternative to the Hessian that is guaranteed to be
positive semi-definite - thus no negative curvature!

usually is applied to non-linear least squares problems

Schraudolph showed in 2002 that it can be generalized beyond just
least squares to neural nets with “matching” loss functions and
output non-linearities

e.g. logistic units with cross-entropy error

works better in practice than Hessian or other curvature matrices
(e.g. empirical Fisher)

and we can compute Gv using an algorithm similar to the one for Hv

James Martens (U of T) Deep Learning via HF June 29, 2010 15 / 23

CG stopping conditions

CG is only guaranteed to converge after N (size of parameter space)
iterations −→ we can’t always run it to convergence

the standard stopping criterion used in most versions of HF is

‖r‖ < min(1
2 , ‖g‖

1
2)‖g‖ where r = Bp + g is the “residual”

strictly speaking ‖r‖ is not the quantity that CG minimizes, nor is it
the one we really care about

0 50 100 150 200 250
−2

0

2

4

6
x 10

4

iteration

qθ(p) vs iteration

50 100 150 200 250
0

2

4

6

x 10
10

iteration

|| Bp + g ||2 vs iteration

James Martens (U of T) Deep Learning via HF June 29, 2010 16 / 23

CG stopping conditions

CG is only guaranteed to converge after N (size of parameter space)
iterations −→ we can’t always run it to convergence

the standard stopping criterion used in most versions of HF is

‖r‖ < min(1
2 , ‖g‖

1
2)‖g‖ where r = Bp + g is the “residual”

strictly speaking ‖r‖ is not the quantity that CG minimizes, nor is it
the one we really care about

0 50 100 150 200 250
−2

0

2

4

6
x 10

4

iteration

qθ(p) vs iteration

50 100 150 200 250
0

2

4

6

x 10
10

iteration

|| Bp + g ||2 vs iteration

James Martens (U of T) Deep Learning via HF June 29, 2010 16 / 23

CG stopping conditions

CG is only guaranteed to converge after N (size of parameter space)
iterations −→ we can’t always run it to convergence

the standard stopping criterion used in most versions of HF is

‖r‖ < min(1
2 , ‖g‖

1
2)‖g‖ where r = Bp + g is the “residual”

strictly speaking ‖r‖ is not the quantity that CG minimizes, nor is it
the one we really care about

0 50 100 150 200 250
−2

0

2

4

6
x 10

4

iteration

qθ(p) vs iteration

50 100 150 200 250
0

2

4

6

x 10
10

iteration

|| Bp + g ||2 vs iteration

James Martens (U of T) Deep Learning via HF June 29, 2010 16 / 23

CG stopping conditions (cont.)

we found that terminating CG once the relative per-iteration
reduction rate fell below some tolerance ε worked best

∆q

q
< ε

(∆q is the change in the quadratic model averaged over some window
of the last k iterations of CG)

James Martens (U of T) Deep Learning via HF June 29, 2010 17 / 23

Handling large datasets

each iteration of CG requires the evaluation of the product Bv for
some v

naively this requires a pass over the training data-set

but for a sufficiently large subset of the training data - sufficient to
capture enough useful curvature information

size is related to model and qualitative aspects of the dataset, but
critically not its size

for very large datasets, mini-batches might be a tiny fraction of the
whole

gradient and line-searches can be computed using even larger
mini-batches since they are needed much less often

James Martens (U of T) Deep Learning via HF June 29, 2010 18 / 23

Handling large datasets

each iteration of CG requires the evaluation of the product Bv for
some v

naively this requires a pass over the training data-set

but for a sufficiently large subset of the training data - sufficient to
capture enough useful curvature information

size is related to model and qualitative aspects of the dataset, but
critically not its size

for very large datasets, mini-batches might be a tiny fraction of the
whole

gradient and line-searches can be computed using even larger
mini-batches since they are needed much less often

James Martens (U of T) Deep Learning via HF June 29, 2010 18 / 23

Handling large datasets

each iteration of CG requires the evaluation of the product Bv for
some v

naively this requires a pass over the training data-set

but for a sufficiently large subset of the training data - sufficient to
capture enough useful curvature information

size is related to model and qualitative aspects of the dataset, but
critically not its size

for very large datasets, mini-batches might be a tiny fraction of the
whole

gradient and line-searches can be computed using even larger
mini-batches since they are needed much less often

James Martens (U of T) Deep Learning via HF June 29, 2010 18 / 23

Handling large datasets

each iteration of CG requires the evaluation of the product Bv for
some v

naively this requires a pass over the training data-set

but for a sufficiently large subset of the training data - sufficient to
capture enough useful curvature information

size is related to model and qualitative aspects of the dataset, but
critically not its size

for very large datasets, mini-batches might be a tiny fraction of the
whole

gradient and line-searches can be computed using even larger
mini-batches since they are needed much less often

James Martens (U of T) Deep Learning via HF June 29, 2010 18 / 23

Handling large datasets

each iteration of CG requires the evaluation of the product Bv for
some v

naively this requires a pass over the training data-set

but for a sufficiently large subset of the training data - sufficient to
capture enough useful curvature information

size is related to model and qualitative aspects of the dataset, but
critically not its size

for very large datasets, mini-batches might be a tiny fraction of the
whole

gradient and line-searches can be computed using even larger
mini-batches since they are needed much less often

James Martens (U of T) Deep Learning via HF June 29, 2010 18 / 23

Other enhancements

using a Levenburg-Marquardt style heuristic for adjusting the
damping parameter λ

using M-preconditioned CG with the diagonal preconditioner:

M =

[
diag

(∑
i

∇fi �∇fi

)
+ λI

]α

initializing each run of the inner CG-loop from the solution found by
the previous run

carefully bounding and “back-tracking” the maximum number of CG
steps to compensate for the effect of using mini-batches to compute
the Bv products

(see the paper for further details)

James Martens (U of T) Deep Learning via HF June 29, 2010 19 / 23

Other enhancements

using a Levenburg-Marquardt style heuristic for adjusting the
damping parameter λ

using M-preconditioned CG with the diagonal preconditioner:

M =

[
diag

(∑
i

∇fi �∇fi

)
+ λI

]α

initializing each run of the inner CG-loop from the solution found by
the previous run

carefully bounding and “back-tracking” the maximum number of CG
steps to compensate for the effect of using mini-batches to compute
the Bv products

(see the paper for further details)

James Martens (U of T) Deep Learning via HF June 29, 2010 19 / 23

Other enhancements

using a Levenburg-Marquardt style heuristic for adjusting the
damping parameter λ

using M-preconditioned CG with the diagonal preconditioner:

M =

[
diag

(∑
i

∇fi �∇fi

)
+ λI

]α

initializing each run of the inner CG-loop from the solution found by
the previous run

carefully bounding and “back-tracking” the maximum number of CG
steps to compensate for the effect of using mini-batches to compute
the Bv products

(see the paper for further details)

James Martens (U of T) Deep Learning via HF June 29, 2010 19 / 23

Other enhancements

using a Levenburg-Marquardt style heuristic for adjusting the
damping parameter λ

using M-preconditioned CG with the diagonal preconditioner:

M =

[
diag

(∑
i

∇fi �∇fi

)
+ λI

]α

initializing each run of the inner CG-loop from the solution found by
the previous run

carefully bounding and “back-tracking” the maximum number of CG
steps to compensate for the effect of using mini-batches to compute
the Bv products

(see the paper for further details)

James Martens (U of T) Deep Learning via HF June 29, 2010 19 / 23

Other enhancements

using a Levenburg-Marquardt style heuristic for adjusting the
damping parameter λ

using M-preconditioned CG with the diagonal preconditioner:

M =

[
diag

(∑
i

∇fi �∇fi

)
+ λI

]α

initializing each run of the inner CG-loop from the solution found by
the previous run

carefully bounding and “back-tracking” the maximum number of CG
steps to compensate for the effect of using mini-batches to compute
the Bv products

(see the paper for further details)

James Martens (U of T) Deep Learning via HF June 29, 2010 19 / 23

Results

Experimental parameters (K = mini-batch size)

Name size K encoder dims
CURVES 20000 5000 784-400-200-100-50-25-6
MNIST 60000 7500 784-1000-500-250-30
FACES 103500 5175 625-2000-1000-500-30

Deep auto-encoder experiments

used precisely the same model architectures and datasets as in Hinton
and Salakhutdinov, 2006

CURVES, MNIST and FACES are all image datasets

trained with cross-entropy but performance measured with squared
error

all methods were run using GPU implementations. H&S’s pre-training
plus NCG fine-tuning method was run for a lot longer

James Martens (U of T) Deep Learning via HF June 29, 2010 20 / 23

Results

Experimental parameters (K = mini-batch size)

Name size K encoder dims
CURVES 20000 5000 784-400-200-100-50-25-6
MNIST 60000 7500 784-1000-500-250-30
FACES 103500 5175 625-2000-1000-500-30

Deep auto-encoder experiments

used precisely the same model architectures and datasets as in Hinton
and Salakhutdinov, 2006

CURVES, MNIST and FACES are all image datasets

trained with cross-entropy but performance measured with squared
error

all methods were run using GPU implementations. H&S’s pre-training
plus NCG fine-tuning method was run for a lot longer

James Martens (U of T) Deep Learning via HF June 29, 2010 20 / 23

Results

Experimental parameters (K = mini-batch size)

Name size K encoder dims
CURVES 20000 5000 784-400-200-100-50-25-6
MNIST 60000 7500 784-1000-500-250-30
FACES 103500 5175 625-2000-1000-500-30

Deep auto-encoder experiments

used precisely the same model architectures and datasets as in Hinton
and Salakhutdinov, 2006

CURVES, MNIST and FACES are all image datasets

trained with cross-entropy but performance measured with squared
error

all methods were run using GPU implementations. H&S’s pre-training
plus NCG fine-tuning method was run for a lot longer

James Martens (U of T) Deep Learning via HF June 29, 2010 20 / 23

Results

Experimental parameters (K = mini-batch size)

Name size K encoder dims
CURVES 20000 5000 784-400-200-100-50-25-6
MNIST 60000 7500 784-1000-500-250-30
FACES 103500 5175 625-2000-1000-500-30

Deep auto-encoder experiments

used precisely the same model architectures and datasets as in Hinton
and Salakhutdinov, 2006

CURVES, MNIST and FACES are all image datasets

trained with cross-entropy but performance measured with squared
error

all methods were run using GPU implementations. H&S’s pre-training
plus NCG fine-tuning method was run for a lot longer

James Martens (U of T) Deep Learning via HF June 29, 2010 20 / 23

Results (cont.)

PT + NCG = pre-trained initialization with non-linear CG optimizer
RAND+HF = random initialization with our Hessian-free method
PT + HF = pre-trained initialization with our Hessian-free method
* indicates an `2 prior was used

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

0.5

1

1.5

2

2.5

0

0.5

1

1.5

2

2.5

0

10

20

30

40

50

60

0

10

20

30

40

50

60

70
Training−set errors

FACES FACES*MNIST*MNISTCURVES
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

0.5

1

1.5

2

2.5

3

0

0.5

1

1.5

2

2.5

3

0

20

40

60

80

100

120

140

0

20

40

60

80

100

120

140
Test−set errors

CURVES MNIST MNIST* FACES FACES*

PT + NCG RAND+HF PT + HF no early stop
CURVES 0.74, 0.82 0.11, 0.20 0.10, 0.21 0.1
MNIST 2.31, 2.72 1.64, 2.78 1.63, 2.46 1.4
MNIST* 2.07, 2.61 1.75, 2.55 1.60, 2.28
FACES -, 124 55.4, 139 -,- 12.9!
FACES* -,- 60.6, 122 -,-

James Martens (U of T) Deep Learning via HF June 29, 2010 21 / 23

Our HF method is practical

error on the CURVES task versus GPU time:

10
3

10
4

0

1

2

3

4

time in seconds (log−scale)

er
ro

r

PT+NCG
RAND+HF
PT+HF

James Martens (U of T) Deep Learning via HF June 29, 2010 22 / 23

Thank you for your attention

James Martens (U of T) Deep Learning via HF June 29, 2010 23 / 23

	
	

