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A. Appendix

A.1. Proof of Theorem 2.1

Proof. We prove this theorem by way of the following two lem-
mas:

Lemma A.1. Let i ∈ {1, 2, ..., L}. Then for all j ∈ {1, 2, ..., L}
s.t. i 6∈ Aj we have
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Lemma A.2. Let j ∈ {1, 2, ..., L}. Then for all i ∈ {1, 2, ..., L}
s.t. i 6∈ Aj we have
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Taking i = j = 1 in Lemma A.2 gives:
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Proof of Lemma A.1. One method of proof is to use structural in-
duction on the computation graph. Instead, we will assume that if
j ∈ Ai then j < i (which can be done without loss of general-
ity since it it’s always possible to reindex the nodes of the graph
in this way), and proceed by standard induction on j, starting at
j = L and proceeding backwards towards j = 1.

The base case occurs when j = L. Letting i be s.t. i 6∈ Aj it must
be the case that i = L. So we have
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where we used the fact that Jxi
yi

= 0.

For the inductive case suppose that j ∈ {1, ..., L − 1} and that
the claim holds for strictly larger j’s. Then,
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where the last line follows from eqn. 10, and second line fol-

lows from the fact that E[viSxk
(V )⊤] = FiJxi,xk

which can
be proven as follows:
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where the third line follows from the inductive hypothesis (which
applies since k ∈ Cj ⇒ k > j) and we have used the identity
Jxi
xi

= I , and Jxi
yk

= 0 when i = k, and otherwise Jxi
yk
J
yk
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when i 6= k.

Proof of Lemma A.2. As in the previous lemma we proceed by
induction on j, going from j = L down to j = 1.

The base case is trivial since even without taking expectations we

have SyL(V )Syj (V )⊤ = vec(0)Syj (V )⊤ = 0 = HyL
yL,yL =

Hf
yL,yL

(since f = yL).

For the inductive case suppose that j ∈ {1, ..., L − 1} and that
the claim holds for strictly larger j’s. Then noting that if i is k’s
input (i.e., k ∈ Ci), then k > i and k 6∈ Aj (which uses the
additional facts that i 6∈ Aj and the computational graph contains
no dependency cycles), we have
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where the third line follows from eqn. 5, and the second line fol-

lows from the fact that E
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can be proven as follows:
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where the third line follows from Lemma A.1 and the inductive
hypothesis (which applies since k ∈ Cj ⇒ k > j), and the forth
from eqn. 6.

Proof of Theorem 2.2. The proof proceeds along very similar
lines to Theorem 2.1 and is thus omitted.

A.2. Proof of Theorem 4.1 (variance inequality)

Proof. In the general case we have:
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and so in the more specific case that A = B = S̃ we have:
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But if we apply the the Cauchy-Swartz inequality we have:
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A.3. Proof of Theorem 6.1 and Lemma 6.2 (circuit
complexity results)

Proof of Theorem 6.1. Suppose by contradiction that there is a
bounded depth arithmetic circuit family that computes the diag-

onal of f(y) = 1/2y⊤W⊤ZWy with O(n2) edges. If follows
trivially from Lemma 6.2 there must also exist a circuit family of

edge count O(n2) which computes the product of 2 n × n input
matrices, which contradicts a result of Raz and Shpilka (2001)
which says that such a circuit family must have an edge count

which is superlinear in n2.

Proof of Lemma 6.2. This result is similar to one proved by Raz
and Shpilka (2001) which concerned the computation the trace of
the product of 3 arbitrary matrices. We will use adopt their proof
technique here.

Construct W ≡ [P⊤Q]⊤ from the input matrices P and Q
(which can be done with 2n2 edges).

By hypothesis there exists an arithmetic circuit with arbitrary fan-
in gates, which given P , Q and Z as input, will compute the diag-

onal of the Hessian of f , which is W⊤ZW . Append to this circuit
a single sum gate which computes the sum the outputs, thus ob-

taining the trace of W⊤ZW and adding a single layer of depth
and n edges. Then, using a result of Walter and Strassen (1983),
there is also an arithmetic circuit for computing all the derivatives

of the function computed by this circuit (i.e. trace(W⊤ZW ))
w.r.t. Z which has twice the depth and three times the size of the
original circuit (the derivative circuit works by performing what
amounts to automatic-differentiation).

But note that:
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where we have used the well-known facts that
d trace(AB)

dB
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and that trace is invariant under cyclic permutations of matrix
products.

By taking the upper-right corner of this output matrix and discard-
ing the rest, the circuit thus computes the product PQ.

A.4. On the Hessian estimates used in Rifai et al. (2011)

In Rifai et al. (2011) the authors estimate the Frobenius norm
of the Hessian via the 0 variance limit of a stochastic finite-
difference formula:

‖H‖2F = lim
σ→0
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where w ∼ Normal(0, I).

A simpler derivation of this result than that which appears in Rifai
et al. (2011) is:
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= trace(H Ew[ww⊤]H) = trace(HIH) = ‖H‖2F

where we have used the well-known identity for Hessian-vector

products: limσ→0
∇f(y1+σw)−f(y1)

σ
= Hw and the property

that Ew[ww⊤] = I . Moreover, this derivation suggests how
one can forgo the unreliable finite differences approximation in
favor of Hessian-vector products computed efficiently and ex-
actly via automatic differentiation-type methods (e.g. Pearlmutter,
1994). That is, we can sample w (from any distribution satisfying

Ew[ww⊤] = I , we are not restricted to use Normal(0, I)), com-

pute z = Hw, and then obtain our unbiased estimate of ‖H‖2F as

z⊤z.

Note that the estimator ‖Ĥ‖2F , where Ĥ is some unbiased es-
timator of H (e.g. obtained from CP), won’t be unbiased in
general. However, an unbiased estimator can be obtained using
the techniques of CP by sampling an appropriate V , computing

z = S(V ) = S̃v (using the notation of section 2.6), and then

taking z⊤Hz. That this is unbiased can be easily checked:
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