Estimating the Hessian by Back-propagating Curvature

A. Appendix
A.1. Proof of Theorem 2.1

Proof. We prove this theorem by way of the following two lem-
mas:

Lemma A.1. Leti € {1,2,...,L}. Thenforall j € {1,2,....L}
s.t. i & Aj we have

E [fuisyj (V)T] = FJE

Lemma A.2. Letj € {1,2,...,L}. Thenforalli € {1,2,...,L}
s.t. i & Aj we have

E[S i(V)Syj (V)T} = Hf

YiYj
Taking ¢ = 7 = 1 in Lemma A.2 gives:

E[S(V)S(V) 1 =E [(Su(V)S,, (V))T] = Hf,,, = H

- Ty

O

Proof of Lemma A.1. One method of proof is to use structural in-
duction on the computation graph. Instead, we will assume that if
j € A; then j < 4 (which can be done without loss of general-
ity since it it’s always possible to reindex the nodes of the graph
in this way), and proceed by standard induction on j, starting at
7 = L and proceeding backwards towards j = 1.

The base case occurs when j = L. Letting ¢ be s.t. ¢ ¢ A; it must
be the case that ¢ = L. So we have

E [fuLSyL(V)T] =E[vr0] =0 = Fr0 = FLJo%

where we used the fact that J;;7 = 0.

For the inductive case suppose that 7 € {1,...,L — 1} and that
the claim holds for strictly larger j’s. Then,

.
E [visyj (V)T] —E v | 3 RS, (V)
keC;
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where the last line follows from eqn. 10, and second line fol-

lows from the fact that E[v;S,, (V)T} = FiJe, 2, which can
be proven as follows:

082, (1) =B o (BT v+ 278,1) ]

) [viv;} Fj + E[0: Sy, (V)] J2

= (i) Fy + Fidy  J2*

= Fi(0ied + (1 = i) Jz}) = FiJg}
where the third line follows from the inductive hypothesis (which
applies since £ € C; = k > j) and we have used the identity

Jgi = 1I,and J;i = 0 wheni = k, and otherwise J;; JIk = Jgi
when i # k.

Proof of Lemma A.2. As in the previous lemma we proceed by
induction on j, going from j = L downto j = 1.

The base case is trivial since even without taking expectations we
have SyL (V)Syj (V)T = vec(O)Syj(V)T =0= HgLLny =
H{;LM (since f = yL).

For the inductive case suppose that j € {1,...,L — 1} and that
the claim holds for strictly larger j’s. Then noting that if ¢ is k’s
input (i.e., k € C;), then k > ¢ and k ¢ A; (which uses the
additional facts that 7 ¢ A; and the computational graph contains
no dependency cycles), we have

E[$, ()8, (V)] =E | 3 RLSa(V)S,, (V)
keC;

= 3" RLE[S, ()8, ()]

keC;
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where the third line follows from eqn. 5, and the second line fol-

lows from the fact that E [S,, (V)S,, (V)] = Hg{fk,y]. which
can be proven as follows:

E (S0, (V)S,, (V)] = B [(F v+ 7785, (V))S,, (V)]
= FUE [0Sy, (V)| + I8 T E [, (V)5,, (V)]

=F R Jyk + I8 T HY,
= MyJyk +J"HY = H]

YkYj Th,Yj

where the third line follows from Lemma A.1 and the inductive
hypothesis (which applies since k € C; = k > j), and the forth
from eqn. 6. O

Proof of Theorem 2.2. The proof proceeds along very similar
lines to Theorem 2.1 and is thus omitted. O

A.2. Proof of Theorem 4.1 (variance inequality)
Proof. In the general case we have:
varg [H{MP| = (AT A)(B] B.) + H}

and so in the more specific case that A = B = S we have:

Varg [HSS] = (S 8%+ H2 = 2H?

But if we apply the the Cauchy-Swartz inequality we have:
Var |7 | = (AT 40)(B/ B)) + HZ,
2
> (AiT B¢> +H2

= 2H?Z = Varg [Hfg]
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A.3. Proof of Theorem 6.1 and Lemma 6.2 (circuit
complexity results)

Proof of Theorem 6.1. Suppose by contradiction that there is a
bounded depth arithmetic circuit family that computes the diag-
onal of f(y) = 1/2y" W T ZWy with O(n?) edges. If follows
trivially from Lemma 6.2 there must also exist a circuit family of
edge count O(n?) which computes the product of 2 n x n input
matrices, which contradicts a result of Raz and Shpilka (2001)
which says that such a circuit family must have an edge count

which is superlinear in n2. O

Proof of Lemma 6.2. This result is similar to one proved by Raz
and Shpilka (2001) which concerned the computation the trace of
the product of 3 arbitrary matrices. We will use adopt their proof
technique here.

Construct W = [PTQ]" from the input matrices P and Q
(which can be done with 2n? edges).

By hypothesis there exists an arithmetic circuit with arbitrary fan-
in gates, which given P, @) and Z as input, will compute the diag-
onal of the Hessian of f, whichis W T ZW. Append to this circuit
a single sum gate which computes the sum the outputs, thus ob-
taining the trace of W' ZW and adding a single layer of depth
and n edges. Then, using a result of Walter and Strassen (1983),
there is also an arithmetic circuit for computing all the derivatives
of the function computed by this circuit (i.e. trace(W '™ ZW))
w.r.t. Z which has twice the depth and three times the size of the
original circuit (the derivative circuit works by performing what
amounts to automatic-differentiation).

But note that:
dtrace(W ' ZW)  dtrace(WW )T Z)
dz N dz

—WW' =

PPT  PQ
TpT T
QP QQ
where we have used the well-known facts that d“afieig‘m =AT
and that trace is invariant under cyclic permutations of matrix

products.

By taking the upper-right corner of this output matrix and discard-
ing the rest, the circuit thus computes the product PQ. O
A.4. On the Hessian estimates used in Rifai et al. (2011)
In Rifai et al. (2011) the authors estimate the Frobenius norm

of the Hessian via the O variance limit of a stochastic finite-
difference formula:

| = lim = B [V +ow) — F)]

where w ~ Normal(0, I).

A simpler derivation of this result than that which appears in Rifai
.1 2
lim — B [[Vf(y1 +ow) = fly)]7]
_ [ o V1 + ow) = ()

etal. (2011) is:
2
om0 ]
=E, [||Hw|’] = Eu[(Hw) " Hu]
= Euw[w' HHw)] = Ey[trace(Hww " H)]
= trace(H B, [ww " |H) = trace(HIH) = | H||%

where we have used the well-known identity for Hessian-vector
products: lim,_,o LLWLFewI=fW1) — fry and the property

[eg
that B, [ww'] = I. Moreover, this derivation suggests how
one can forgo the unreliable finite differences approximation in
favor of Hessian-vector products computed efficiently and ex-
actly via automatic differentiation-type methods (e.g. Pearlmutter,
1994). That is, we can sample w (from any distribution satisfying

E,[ww'] = I, we are not restricted to use Normal(0, I)), com-
pute z = Huw, and then obtain our unbiased estimate of || H||% as
2" 2.

Note that the estimator ||H||%, where H is some unbiased es-
timator of H (e.g. obtained from CP), won’t be unbiased in

general. However, an unbiased estimator can be obtained using
the techniques of CP by sampling an appropriate V', computing

z = S(V) = Sv (using the notation of section 2.6), and then
taking z ' H z. That this is unbiased can be easily checked:

E. [(S0)TH(Sv)] = B, [wace((50) TH(Sv))]
=E, [trace(vTS’THS'v)] = trace(HS E, [UUT] ST

= trace(HSIS ") = trace(HH) = || H|| %



