Learning the Linear Dynamical System with ASOS ("Approximated Second-Order Statistics")

James Martens
University of Toronto

June 24, 2010

Computer Science
UNIVERSITY OF TORONTO

The Linear Dynamical System model

- model of vector-valued time-series $\left\{y_{t} \in \mathbb{R}^{N_{y}}\right\}_{t=1}^{T}$

The Linear Dynamical System model

- model of vector-valued time-series $\left\{y_{t} \in \mathbb{R}^{N_{y}}\right\}_{t=1}^{T}$
- widely-applied due to predictable behavior, easy inference, etc

The Linear Dynamical System model

- model of vector-valued time-series $\left\{y_{t} \in \mathbb{R}^{N_{y}}\right\}_{t=1}^{T}$
- widely-applied due to predictable behavior, easy inference, etc
- vector-valued hidden states $\left(\left\{x_{t} \in \mathbb{R}^{N_{x}}\right\}_{t=1}^{T}\right)$ evolve via linear dynamics,

$$
x_{t+1}=A x_{t}+\epsilon_{t} \quad A \in \mathbb{R}^{N_{x} \times N_{x}} \quad \epsilon_{t} \sim N(0, Q)
$$

The Linear Dynamical System model

- model of vector-valued time-series $\left\{y_{t} \in \mathbb{R}^{N_{y}}\right\}_{t=1}^{T}$
- widely-applied due to predictable behavior, easy inference, etc
- vector-valued hidden states $\left(\left\{x_{t} \in \mathbb{R}^{N_{x}}\right\}_{t=1}^{T}\right)$ evolve via linear dynamics,

$$
x_{t+1}=A x_{t}+\epsilon_{t} \quad A \in \mathbb{R}^{N_{x} \times N_{x}} \quad \epsilon_{t} \sim N(0, Q)
$$

- linearly generated observations:

$$
y_{t}=C x_{t}+\delta_{t} \quad C \in \mathbb{R}^{N_{y} \times N_{x}} \quad \delta_{t} \sim N(0, R)
$$

Learning the LDS

Expectation Maximization (EM)

- finds local optimum of log-likelihood
- pretty slow - convergence requires lots of iterations and E-step is expensive

Learning the LDS

Expectation Maximization (EM)

- finds local optimum of log-likelihood
- pretty slow - convergence requires lots of iterations and E-step is expensive

Subspace identification

- hidden states estimated directly from the data, and the parameters from these
- asymptotically unbiased / consistent
- non-iterative algorithm, but solution not optimal in any objective
- good way to initialize EM or other iterative optimizers

Our contribution

- accelerate the EM algorithm by reducing its per-iteration cost to be constant time w.r.t. T (length of the time-series)

Our contribution

- accelerate the EM algorithm by reducing its per-iteration cost to be constant time w.r.t. T (length of the time-series)
- key idea: approximate the inference done in the E-step

Our contribution

- accelerate the EM algorithm by reducing its per-iteration cost to be constant time w.r.t. T (length of the time-series)
- key idea: approximate the inference done in the E-step
- E-step approximation is unbiased and asymptotically consistent
- also convergences exponentially with L, where L is a meta-parameter that trades off approximation quality with speed
- (notation change: L is " $k_{\text {lim" }}$ from the paper)

Learning via E.M. the Algorithm

E.M. Objective Function

At each iteration we maximize the following objective where θ_{n} is the current parameter estimate:

$$
\mathcal{Q}_{n}(\theta)=E_{\theta_{n}}[\log p(x, y) \mid y]=\int_{x} p\left(x \mid y, \theta_{n}\right) \log p(x, y \mid \theta)
$$

Learning via E.M. the Algorithm

E.M. Objective Function

At each iteration we maximize the following objective where θ_{n} is the current parameter estimate:

$$
\mathcal{Q}_{n}(\theta)=E_{\theta_{n}}[\log p(x, y) \mid y]=\int_{x} p\left(x \mid y, \theta_{n}\right) \log p(x, y \mid \theta)
$$

E-Step

- E-Step computes expectation of $\log p(x, y \mid \theta)$ under $p\left(x \mid y, \theta_{n}\right)$
- uses the classical Kalman filtering/smoothing algorithm

Learning via E.M. the Algorithm (cont.)

M-Step

- maximize objective $\mathcal{Q}_{n}(\theta)$ w.r.t. to θ, producing a new estimate θ_{n+1}

$$
\theta_{n+1}=\arg \max _{\theta} \mathcal{Q}_{n}(\theta)
$$

- very easy - similar to linear-regression

Learning via E.M. the Algorithm (cont.)

M-Step

- maximize objective $\mathcal{Q}_{n}(\theta)$ w.r.t. to θ, producing a new estimate θ_{n+1}

$$
\theta_{n+1}=\arg \max _{\theta} \mathcal{Q}_{n}(\theta)
$$

- very easy - similar to linear-regression

Problem

- EM can get very slow for when we have lots of data
- mainly due to call to expensive Kalman filter/smoother in the E-step
- $O\left(N_{x}^{3} T\right)$ where $T=$ length of the training time-series, $N_{x}=$ hidden state dim.
- the Kalman filter/smoother estimates hidden-state means and covariances:

$$
\begin{aligned}
x_{t}^{k} & \equiv \mathrm{E}_{\theta_{n}}\left[x_{t} \mid y_{\leq k}\right] \\
V_{t, s}^{k} & \equiv \operatorname{Cov}_{\theta_{n}}\left[x_{t}, x_{s} \mid y_{\leq k}\right]
\end{aligned}
$$

for each $t=\{1, \ldots, T\}$ and $s=t, t+1$.

- the Kalman filter/smoother estimates hidden-state means and covariances:

$$
\begin{aligned}
x_{t}^{k} & \equiv \mathrm{E}_{\theta_{n}}\left[x_{t} \mid y_{\leq k}\right] \\
V_{t, s}^{k} & \equiv \operatorname{Cov}_{\theta_{n}}\left[x_{t}, x_{s} \mid y_{\leq k}\right]
\end{aligned}
$$

for each $t=\{1, \ldots, T\}$ and $s=t, t+1$.

- these are summed over time to obtain the statistics required for M-step, e.g.:
where $(a, b)_{k} \equiv \sum_{t=1}^{T-k} a_{t+k} b_{t}^{\prime}$
- the Kalman filter/smoother estimates hidden-state means and covariances:

$$
\begin{aligned}
x_{t}^{k} & \equiv \mathrm{E}_{\theta_{n}}\left[x_{t} \mid y_{\leq k}\right] \\
V_{t, s}^{k} & \equiv \operatorname{Cov}_{\theta_{n}}\left[x_{t}, x_{s} \mid y_{\leq k}\right]
\end{aligned}
$$

for each $t=\{1, \ldots, T\}$ and $s=t, t+1$.

- these are summed over time to obtain the statistics required for M-step, e.g.:

$$
\mathrm{E}_{\theta_{n}}\left[x_{t+1} x_{t}^{\prime} \mid y_{\leq k}\right]=\left(x^{T}, x^{T}\right)_{1}+\sum_{t=1}^{T-1} V_{t+1, t}^{T}
$$

where $(a, b)_{k} \equiv \sum_{t=1}^{T-k} a_{t+k} b_{t}^{\prime}$

- but we only care about the M -statistics, not the individual inferences for each time-step \rightarrow so let's estimate these directly!

Steady-state

- first we need a basic tool from linear systems/control theory: "steady-state"

Steady-state

- first we need a basic tool from linear systems/control theory: "steady-state"
- the covariance terms, and the "filtering and smoothing matrices" (denoted K_{t} and J_{t}) do not depend on the data y - only the current parameters

Steady-state

- first we need a basic tool from linear systems/control theory: "steady-state"
- the covariance terms, and the "filtering and smoothing matrices" (denoted K_{t} and J_{t}) do not depend on the data y - only the current parameters
- and they rapidly converge to "steady-state" values:

$$
V_{t, t}^{T}, V_{t, t-1}^{T}, J_{t}, K_{t} \longrightarrow \Lambda_{0}, \Lambda_{1}, J, K \quad \text { as } \quad \min (t, T-t) \rightarrow \infty
$$

- we can approximate the Kalman filter/smoother equations using the steady-state matrices
- we can approximate the Kalman filter/smoother equations using the steady-state matrices
- this gives the highly simplified recurrences

$$
x_{t}^{*}=H x_{t-1}^{*}+K y_{t} \quad x_{t}^{T}=J x_{t+1}^{T}+P x_{t}^{*}
$$

where $x_{t}^{*} \equiv x_{t}^{t} \equiv \mathrm{E}_{\theta_{n}}\left[x_{t} \mid y_{\leq t}\right], H \equiv A-K C A$ and $P \equiv I-J A$

- we can approximate the Kalman filter/smoother equations using the steady-state matrices
- this gives the highly simplified recurrences

$$
x_{t}^{*}=H x_{t-1}^{*}+K y_{t} \quad x_{t}^{T}=J x_{t+1}^{T}+P x_{t}^{*}
$$

where $x_{t}^{*} \equiv x_{t}^{t} \equiv \mathrm{E}_{\theta_{n}}\left[x_{t} \mid y_{\leq t}\right], H \equiv A-K C A$ and $P \equiv I-J A$

- these don't require any matrix multiplications or inversions
- we can approximate the Kalman filter/smoother equations using the steady-state matrices
- this gives the highly simplified recurrences

$$
x_{t}^{*}=H x_{t-1}^{*}+K y_{t} \quad x_{t}^{T}=J x_{t+1}^{T}+P x_{t}^{*}
$$

where $x_{t}^{*} \equiv x_{t}^{t} \equiv \mathrm{E}_{\theta_{n}}\left[x_{t} \mid y_{\leq t}\right], H \equiv A-K C A$ and $P \equiv I-J A$

- these don't require any matrix multiplications or inversions
- we apply the approximate filter/smoother everywhere except first and last i time-steps
- yields a run-time of $O\left(N_{x}^{2} T+N_{x}^{3} i\right)$.

ASOS: Approximated Second-Order Statistics

- steady-state makes covariance terms easy to estimate in time independent of T

ASOS: Approximated Second-Order Statistics

- steady-state makes covariance terms easy to estimate in time independent of T
- we want something similar for sum-of-products of means terms like $\left(x^{T}, x^{T}\right)_{0} \equiv \sum_{t} x_{t}^{T}\left(x_{t}^{T}\right)^{\prime}$

ASOS: Approximated Second-Order Statistics

- steady-state makes covariance terms easy to estimate in time independent of T
- we want something similar for sum-of-products of means terms like $\left(x^{T}, x^{T}\right)_{0} \equiv \sum_{t} x_{t}^{T}\left(x_{t}^{T}\right)^{\prime}$
- such sums we will call "2 2 nd -order statistics". The ones-needed for the M-step are the "M-statistics"

ASOS: Approximated Second-Order Statistics

- steady-state makes covariance terms easy to estimate in time independent of T
- we want something similar for sum-of-products of means terms like $\left(x^{T}, x^{T}\right)_{0} \equiv \sum_{t} x_{t}^{T}\left(x_{t}^{T}\right)^{\prime}$
- such sums we will call "2 2 nd -order statistics". The ones-needed for the M -step are the "M-statistics"
- idea $\# 1$: derive recursions and equations that relate the $2^{\text {nd }}$-order statistics of different "time-lags"
- "time-lag" refers to the value of k in $(a, b)_{k} \equiv \sum_{t=1}^{T-k} a_{t+k} b_{t}^{\prime}$

ASOS: Approximated Second-Order Statistics

- steady-state makes covariance terms easy to estimate in time independent of T
- we want something similar for sum-of-products of means terms like $\left(x^{T}, x^{T}\right)_{0} \equiv \sum_{t} x_{t}^{T}\left(x_{t}^{T}\right)^{\prime}$
- such sums we will call "2 2 nd -order statistics". The ones-needed for the M-step are the "M-statistics"
- idea $\# 1$: derive recursions and equations that relate the $2^{\text {nd }}$-order statistics of different "time-lags"
- "time-lag" refers to the value of k in $(a, b)_{k} \equiv \sum_{t=1}^{T-k} a_{t+k} b_{t}^{\prime}$
- idea \#2: evaluate these efficiently using approximations

Deriving the $2^{\text {nd }}$-order recursions/equations: An example

- suppose we wish to find the recursion for $\left(x^{*}, y\right)_{k}$

Deriving the $2^{\text {nd }}$-order recursions/equations: An example

- suppose we wish to find the recursion for $\left(x^{*}, y\right)_{k}$
- steady-state Kalman recursion for x_{t+k}^{*} is: $x_{t+k}^{*}=H x_{t+k-1}^{*}+K y_{t+k}$
- right-multiply both sides by y_{t}^{\prime} and sum over t

$$
\left(x^{*}, y\right)_{k} \equiv \sum_{t=1}^{T-k} x_{t+k}^{*} y_{t}^{\prime}=\sum_{t=1}^{T-k}\left(H x_{t+k-1}^{*} y_{t}^{\prime}+K y_{t+k} y_{t}^{\prime}\right)
$$

Deriving the $2^{\text {nd }}$-order recursions/equations: An example

- suppose we wish to find the recursion for $\left(x^{*}, y\right)_{k}$
- steady-state Kalman recursion for x_{t+k}^{*} is: $x_{t+k}^{*}=H x_{t+k-1}^{*}+K y_{t+k}$
- right-multiply both sides by y_{t}^{\prime} and sum over t
- factor out matrices H and K

$$
\begin{array}{r}
\boxed{\left(x^{*}, y\right)_{k} \equiv} \sum_{t=1}^{T-k} x_{t+k}^{*} y_{t}^{\prime}=\sum_{t=1}^{T-k}\left(H x_{t+k-1}^{*} y_{t}^{\prime}+K y_{t+k} y_{t}^{\prime}\right) \\
=H \sum_{t=1}^{T-k} x_{t+k-1}^{*} y_{t}^{\prime}+K \sum_{t=1}^{T-k} y_{t+k} y_{t}^{\prime}
\end{array}
$$

Deriving the $2^{\text {nd }}$-order recursions/equations: An example

- suppose we wish to find the recursion for $\left(x^{*}, y\right)_{k}$
- steady-state Kalman recursion for x_{t+k}^{*} is: $x_{t+k}^{*}=H x_{t+k-1}^{*}+K y_{t+k}$
- right-multiply both sides by y_{t}^{\prime} and sum over t
- factor out matrices H and K
- finally, re-write everything using our special notation for $2^{\text {nd }}$-order statistics: $(a, b)_{k} \equiv \sum_{t=1}^{T-k} a_{t+k} b_{t}^{\prime}$

$$
\begin{gathered}
\boxed{\left(x^{*}, y\right)_{k}} \equiv \sum_{t=1}^{T-k} x_{t+k}^{*} y_{t}^{\prime}=\sum_{t=1}^{T-k}\left(H x_{t+k-1}^{*} y_{t}^{\prime}+K y_{t+k} y_{t}^{\prime}\right) \\
=H \sum_{t=1}^{T-k} x_{t+k-1}^{*} y_{t}^{\prime}+K \sum_{t=1}^{T-k} y_{t+k} y_{t}^{\prime} \\
=H\left(\left(x^{*}, y\right)_{k-1}-x_{T}^{*} y_{T-k+1}^{\prime}\right)+K(y, y)_{k}
\end{gathered}
$$

The complete list (don't bother to memorize this)

The recursions:

$$
\begin{aligned}
& \left(y, x^{*}\right)_{k}=\left(y, x^{*}\right)_{k+1} H^{\prime}+\left((y, y)_{k}-y_{1+k} y_{1}^{\prime}\right) K^{\prime}+y_{1+k} x_{1}^{* \prime} \\
& \left(x^{*}, y\right)_{k}=H\left(\left(x^{*}, y\right)_{k-1}-x_{T}^{*} y_{T-k+1}^{\prime}\right)+K(y, y)_{k} \\
& \left(x^{*}, x^{*}\right)_{k}=\left(x^{*}, x^{*}\right)_{k+1} H^{\prime}+\left(\left(x^{*}, y\right)_{k}-x_{1+k}^{*} y_{1}^{\prime}\right) K^{\prime}+x_{1+k}^{*} x_{1}^{* \prime} \\
& \left(x^{*}, x^{*}\right)_{k}=H\left(\left(x^{*}, x^{*}\right)_{k-1}-x_{T}^{*} x_{T-k+1}^{\prime}\right)+K\left(y, x^{*}\right)_{k} \\
& \left(x^{T}, y\right)_{k}=J\left(x^{T}, y\right)_{k+1}+P\left(\left(x^{*}, y\right)_{k}-x_{T}^{*} y_{T-k}^{\prime}\right)+x_{T}^{T} y_{T-k^{\prime}}^{\prime} \\
& \left(x^{T}, x^{*}\right)_{k}=J\left(x^{T}, x^{*}\right)_{k+1}+P\left(\left(x^{*}, x^{*}\right)_{k}-x_{T}^{*} x_{T-k}^{*}\right)+x_{T}^{T} x_{T-k}^{*} \\
& \left(x^{T}, x^{T}\right)_{k}=\left(\left(x^{T}, x^{T}\right)_{k-1}-x_{k}^{T} x_{1}^{T}\right) J^{\prime}+\left(x^{T}, x^{*}\right)_{k} P^{\prime} \\
& \left(x^{T}, x^{T}\right)_{k}=J\left(x^{T}, x^{T}\right)_{k+1}+P\left(\left(x^{*}, x^{T}\right)_{k}-x_{T}^{*} x_{T-k}^{T}\right)+x_{T}^{T} x_{T-k}^{T}
\end{aligned}
$$

The equations:

$$
\begin{aligned}
& \left(x^{*}, x^{*}\right)_{k}=H\left(x^{*}, x^{*}\right)_{k} H^{\prime}+\left(\left(x^{*}, y\right)_{k}-x_{1+k}^{*} y_{1}^{\prime}\right) K^{\prime}-H x_{T}^{*} x_{T-k}^{*}{ }^{\prime} H^{\prime}+K\left(y, x^{*}\right)_{k+1} H^{\prime}+x_{1+k}^{*} x_{1}^{* \prime} \\
& \left(x^{T}, x^{T}\right)_{k}=J\left(x^{T}, x^{T}\right)_{k} J^{\prime}+P\left(\left(x^{*}, x^{T}\right)_{k}-x_{T}^{*} x_{T-k}^{T}\right)-J x_{k+1}^{T} x_{1}^{T^{\prime}} J^{\prime}+J\left(x^{T}, x^{*}\right)_{k+1} P^{\prime}+x_{T}^{T} x_{T-k}^{T}
\end{aligned}
$$

- noting that statistics of time-lag $T+1$ are 0 by definition we can start the $2^{\text {nd }}-$ order recursions at $t=T$
- but this doesn't get us anywhere - would be even more expensive than the usual Kalman recursions on the $1^{\text {st }}$-order terms
- noting that statistics of time-lag $T+1$ are 0 by definition we can start the $2^{\text {nd }}-$ order recursions at $t=T$
- but this doesn't get us anywhere - would be even more expensive than the usual Kalman recursions on the $1^{\text {st }}$-order terms
- instead, start the recursions at time-lag $\sim L$ with unbiased approximations ("ASOS approximations")
$\left(y, x^{*}\right)_{\llcorner+1} \approx C A\left(\left(x^{*}, x^{*}\right)_{\llcorner }-x_{T}^{*} x_{T-L}^{*}\right), \quad\left(x^{\top}, x^{*}\right)_{\llcorner } \approx\left(x^{*}, x^{*}\right)_{\llcorner }, \quad\left(x^{\top}, y\right)_{\llcorner } \approx\left(x^{*}, y\right)_{\llcorner }$
- noting that statistics of time-lag $T+1$ are 0 by definition we can start the $2^{\text {nd }}-$ order recursions at $t=T$
- but this doesn't get us anywhere - would be even more expensive than the usual Kalman recursions on the $1^{\text {st }}$-order terms
- instead, start the recursions at time-lag $\sim L$ with unbiased approximations ("ASOS approximations")
$\left(y, x^{*}\right)_{\llcorner+1} \approx C A\left(\left(x^{*}, x^{*}\right)_{\llcorner }-x_{T}^{*} x_{T-L}^{*} \iota^{\prime}\right), \quad\left(x^{\top}, x^{*}\right)\left\llcorner\approx\left(x^{*}, x^{*}\right)\left\llcorner, \quad\left(x^{\top}, y\right)_{\llcorner } \approx\left(x^{*}, y\right)_{\llcorner }\right.\right.$
- we also need x_{t}^{T} for $t \in\{1,2, \ldots, L\} \cup\{T-L, T-L+1, \ldots, T\}$ but these can be approximated by a separate procedure (see paper)

Why might this be reasonable?

- $2^{\text {nd }}$-order statistics with large time lag quantify relationships between variables that are far apart in time
- weaker and less important than relationships between variables that are close in time

Why might this be reasonable?

- $2^{\text {nd }}$-order statistics with large time lag quantify relationships between variables that are far apart in time
- weaker and less important than relationships between variables that are close in time
- in steady-state Kalman recursions, information is propagated via multiplication by H and J :

$$
x_{t}^{*}=H x_{t-1}^{*}+K y_{t} \quad x_{t}^{T}=J x_{t+1}^{T}+P x_{t}^{*}
$$

- both of these have spectral radius (denoted $\sigma(\cdot)$) less than 1 , and so they decay the signal exponentially

Procedure for estimating the M -statistics

- how do we compute an estimate of the M -statistics consistent with the 2 nd-order recursions/equations and the approximations?

Procedure for estimating the M -statistics

- how do we compute an estimate of the M -statistics consistent with the 2 nd-order recursions/equations and the approximations?
- essentially it is just a large linear system of dimension $O\left(N_{x}^{2} L\right)$

Procedure for estimating the M -statistics

- how do we compute an estimate of the M -statistics consistent with the 2 nd-order recursions/equations and the approximations?
- essentially it is just a large linear system of dimension $O\left(N_{x}^{2} L\right)$
- but using a general solver would be far too expensive: $O\left(N_{x}^{6} L^{3}\right)$

Procedure for estimating the M -statistics

- how do we compute an estimate of the M -statistics consistent with the 2 nd-order recursions/equations and the approximations?
- essentially it is just a large linear system of dimension $O\left(N_{x}^{2} L\right)$
- but using a general solver would be far too expensive: $O\left(N_{x}^{6} L^{3}\right)$
- fortunately, using the special structure of this system, we have developed a (non-trivial) algorithm which is much more efficient
- equations can be solved using an efficient iterative algorithm we developed for a generalization of the Sylvester equation
- evaluating recursions is then straightforward

Procedure for estimating the M -statistics

- how do we compute an estimate of the M -statistics consistent with the 2 nd-order recursions/equations and the approximations?
- essentially it is just a large linear system of dimension $O\left(N_{x}^{2} L\right)$
- but using a general solver would be far too expensive: $O\left(N_{x}^{6} L^{3}\right)$
- fortunately, using the special structure of this system, we have developed a (non-trivial) algorithm which is much more efficient
- equations can be solved using an efficient iterative algorithm we developed for a generalization of the Sylvester equation
- evaluating recursions is then straightforward
- the cost is then just $O\left(N_{x}^{3} L\right)$ after $(y, y)_{k} \equiv \sum_{t} y_{t+k} y_{t}^{\prime}$ has been pre-computed for $k=0, \ldots, L$

First convergence result: our intuition confirmed

- First result: For a fixed θ the ℓ_{2}-error in the M -statistics is bounded by a quantity proportional to $L^{2} \lambda^{L-1}$, where $\lambda=\sigma(H)=\sigma(J)<1$
- ($\sigma(\cdot)$ denotes the spectral radius)

First convergence result: our intuition confirmed

- First result: For a fixed θ the ℓ_{2}-error in the M -statistics is bounded by a quantity proportional to $L^{2} \lambda^{L-1}$, where $\lambda=\sigma(H)=\sigma(J)<1$
- ($\sigma(\cdot)$ denotes the spectral radius)
- so as L grows, the estimation error for the M-statistics will decay exponentially

First convergence result: our intuition confirmed

- First result: For a fixed θ the ℓ_{2}-error in the M -statistics is bounded by a quantity proportional to $L^{2} \lambda^{L-1}$, where $\lambda=\sigma(H)=\sigma(J)<1$
- ($\sigma(\cdot)$ denotes the spectral radius)
- so as L grows, the estimation error for the M-statistics will decay exponentially
- but, λ might be close enough to 1 so that we need to make L too big

First convergence result: our intuition confirmed

- First result: For a fixed θ the ℓ_{2}-error in the M -statistics is bounded by a quantity proportional to $L^{2} \lambda^{L-1}$, where $\lambda=\sigma(H)=\sigma(J)<1$
- ($\sigma(\cdot)$ denotes the spectral radius)
- so as L grows, the estimation error for the M-statistics will decay exponentially
- but, λ might be close enough to 1 so that we need to make L too big
- fortunately we have a 2 nd result which provides a very different type of guarantee

Second convergence result

- Second result: updates produced by ASOS procedure are asymptotically consistent with the usual EM updates in the limit as $T \rightarrow \infty$
- assumes data is generated from the model

Second convergence result

- Second result: updates produced by ASOS procedure are asymptotically consistent with the usual EM updates in the limit as $T \rightarrow \infty$
- assumes data is generated from the model
- first result didn't make strong use any property of the approx.
- (could use 0 for each and result would still hold)

Second convergence result

- Second result: updates produced by ASOS procedure are asymptotically consistent with the usual EM updates in the limit as $T \rightarrow \infty$
- assumes data is generated from the model
- first result didn't make strong use any property of the approx.
- (could use 0 for each and result would still hold)
- this second one is justified in the opposite way
- strong use of the approximation
- follows from convergence of $\frac{1}{T}$-scaled expected ℓ_{2} error of approx. towards zero
- result holds for any value of L value

Experiments

- we considered 3 real datasets of varying sizes and dimensionality
- each algorithm initialized from same random parameters
- latent dimension N_{x} determined by trial-and-error

Experimental parameters

Name	length (T)	N_{y}	N_{x}
evaporator	6305	3	15
motion capture	15300	10	40
warship sounds	750000	1	20

Experimental results (cont.)

Name	length (T)	N_{y}	N_{x}
evaporator	6305	3	15
motion capture	15300	10	40
warship sounds	750000	1	20

Experimental results (cont.)

Name	length (T)	N_{y}	N_{x}
evaporator	6305	3	15
motion capture	15300	10	40
warship sounds	750000	1	20

Experimental results (cont.)

Name	length (T)	N_{y}	N_{x}
evaporator	6305	3	15
motion capture	15300	10	40
warship sounds	750000	1	20

Conclusion

- we applied steady-state approximations to derive a set of "2nd-order recursions and equations"

Conclusion

- we applied steady-state approximations to derive a set of "2nd-order recursions and equations"
- approximated statistics of time-lag L

Conclusion

- we applied steady-state approximations to derive a set of "2nd-order recursions and equations"
- approximated statistics of time-lag L
- produced an efficient algorithm for solving the resulting system Per-iteration run-times: \quad EM | ES-EM | ASOS-EM | |
| ---: | ---: | ---: |
| | $O\left(N_{x}^{3} T\right)$ | $O\left(N_{x}^{2} T+N_{x}^{3} i\right)$ |
| | $O\left(N_{x}^{3} k_{l i m}\right)$ | |

Conclusion

- we applied steady-state approximations to derive a set of "2nd-order recursions and equations"
- approximated statistics of time-lag L
- produced an efficient algorithm for solving the resulting system

Per-iteration run-times:	EM	SS-EM	ASOS-EM
	$O\left(N_{x}^{3} T\right)$	$O\left(N_{x}^{2} T+N_{x}^{3} i\right)$	$O\left(N_{x}^{3} k_{l i m}\right)$

- gave 2 formal convergence results

Conclusion

- we applied steady-state approximations to derive a set of "2nd-order recursions and equations"
- approximated statistics of time-lag L
- produced an efficient algorithm for solving the resulting system

Per-iteration run-times:	EM	SS-EM	ASOS-EM
	$O\left(N_{x}^{3} T\right)$	$O\left(N_{x}^{2} T+N_{x}^{3} i\right)$	$O\left(N_{x}^{3} k_{l i m}\right)$

- gave 2 formal convergence results
- demonstrated significant performance benefits for learning with long time-series

Thank you for your attention

