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The Linear Dynamical System model
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@ model of vector-valued time-series {y; € RM}T

@ widely-applied due to predictable behavior, easy inference, etc

e vector-valued hidden states ({x; € RNx}T_,) evolve via linear
dynamics,
Xt4+1 = AXt + € A€ RNxxNX €t ~ N(O, Q)
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The Linear Dynamical System model

AL A
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@ model of vector-valued time-series {y; € RM}T

@ widely-applied due to predictable behavior, easy inference, etc

e vector-valued hidden states ({x; € RNx}T_,) evolve via linear
dynamics,

Xtr1 = Axt + € A € RNoxNx er ~ N(0, Q)

@ linearly generated observations:
Yt = CXt+5t CERNyXNX (5tNN(O,R)
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Learning the LDS

Expectation Maximization (EM)
@ finds local optimum of log-likelihood

@ pretty slow - convergence requires lots of iterations and E-step is
expensive
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|
Learning the LDS

Expectation Maximization (EM)
@ finds local optimum of log-likelihood

@ pretty slow - convergence requires lots of iterations and E-step is
expensive

Subspace identification
@ hidden states estimated directly from the data, and the parameters
from these

e asymptotically unbiased / consistent

@ non-iterative algorithm, but solution not optimal in any objective

@ good way to initialize EM or other iterative optimizers
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e —
Our contribution

@ accelerate the EM algorithm by reducing its per-iteration cost to be
constant time w.r.t. T (length of the time-series)
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e —
Our contribution

@ accelerate the EM algorithm by reducing its per-iteration cost to be
constant time w.r.t. T (length of the time-series)

@ key idea: approximate the inference done in the E-step
@ E-step approximation is unbiased and asymptotically consistent
@ also convergences exponentially with L, where L is a meta-parameter

that trades off approximation quality with speed
o (notation change: L is "kj," from the paper)
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Learning via E.M. the Algorithm

E.M. Objective Function

At each iteration we maximize the following objective where 6, is the
current parameter estimate:

0,(6) = Es,[log p(x. y)Iy] = / p(x]y. 8,) log p(x, ¥16)

X
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Learning via E.M. the Algorithm

E.M. Objective Function

At each iteration we maximize the following objective where 6, is the
current parameter estimate:

0,(6) = Es,[log p(x. y)Iy] = / p(x]y. 8,) log p(x, ¥16)

X

E-Step
e E-Step computes expectation of log p(x, y|0) under p(x|y,6n)
@ uses the classical Kalman filtering/smoothing algorithm
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Learning via E.M. the Algorithm (cont.)

M-Step

@ maximize objective Q,(6) w.r.t. to 6, producing a new estimate 6,11
Opr1 = arg max Qn(0)

@ very easy - similar to linear-regression
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Learning via E.M. the Algorithm (cont.)

M-Step

@ maximize objective Q,(6) w.r.t. to 6, producing a new estimate 6,11
Opr1 = arg max Qn(0)

@ very easy - similar to linear-regression

Problem
@ EM can get very slow for when we have lots of data

@ mainly due to call to expensive Kalman filter/smoother in the E-step

o O(N3T) where T = length of the training time-series, N, = hidden
state dim.
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e the Kalman filter/smoother estimates hidden-state means and

covariances:
Xt = Bg,[ xe | y<i |
Vtk = COVG,,[ Xty Xs |y§k ]

7s_

foreach t ={1,..,T}and s=t,t+ 1.
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e the Kalman filter/smoother estimates hidden-state means and
covariances:

xt = Eg,[ x| y<« ]

th:s = COVgn[ Xty Xs |y§k ]

foreach t ={1,..,T}and s=t,t+ 1.

@ these are summed over time to obtain the statistics required for
M-step, e.g.:

T-1
Eg,[xer1xt | y<ic = (<7 xT )1+ > Vil
t=1

where | (a, b)x = 20  ary kb,
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e the Kalman filter/smoother estimates hidden-state means and
covariances:

xt = Eg,[ x| y<« ]

th:s = COVgn[ Xty Xs |y§k ]

foreach t ={1,..,T}and s=t,t+ 1.

@ these are summed over time to obtain the statistics required for
M-step, e.g.:

T-1
Eg,[xer1xt | y<ic = (<7 xT )1+ > Vil
t=1

where | (a, b)x = 20  ary kb,

@ but we only care about the M-statistics, not the individual inferences
for each time-step — so let's estimate these directly!
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|
Steady-state

o first we need a basic tool from linear systems/control theory:
“steady-state”
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|
Steady-state

o first we need a basic tool from linear systems/control theory:
“steady-state”

@ the covariance terms, and the “filtering and smoothing matrices”
(denoted K; and J;) do not depend on the data y - only the current
parameters

@ and they rapidly converge to “steady-state” values:

Vil Vo1, Je Ke — Mo, A1, J, K as min(t, T —t) — o0
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@ we can approximate the Kalman filter/smoother equations using the
steady-state matrices
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@ we can approximate the Kalman filter/smoother equations using the
steady-state matrices

@ this gives the highly simplified recurrences

x; = Hx{_1 + Ky: x| = JIxliy + Px;

where | xf = x{ = Eg,[x; |y<¢ ]| H=EA—-—KCAand P=1—-JA
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@ we can approximate the Kalman filter/smoother equations using the
steady-state matrices

@ this gives the highly simplified recurrences

x; = Hx{_1 + Ky: x| = JIxliy + Px;

where | xf = x{ = Eg,[x; |y<¢ ]| H=EA—-—KCAand P=1—-JA

@ these don't require any matrix multiplications or inversions
@ we apply the approximate filter/smoother everywhere except first and

last i time-steps
o yields a run-time of O(N2T + N2/).
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|
ASOS: Approximated Second-Order Statistics

@ steady-state makes covariance terms easy to estimate in time
independent of T
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ASOS: Approximated Second-Order Statistics

@ steady-state makes covariance terms easy to estimate in time
independent of T

@ we want something similar for sum-of-products of means terms like

(xT.xT)o = 320" ()

@ such sums we will call “2™d-order statistics”. The ones-needed for the
M-step are the “M-statistics”

e idea #1: derive recursions and equations that relate the 2"d-order
statistics of different “time-lags”

o “time-lag” refers to the value of k in (a, b)x = Z;}k ar kb
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|
ASOS: Approximated Second-Order Statistics

@ steady-state makes covariance terms easy to estimate in time
independent of T

@ we want something similar for sum-of-products of means terms like
T Ty — T(,T
(x"oxT)o =22 % ()

@ such sums we will call “2™d-order statistics”. The ones-needed for the
M-step are the “M-statistics”

e idea #1: derive recursions and equations that relate the 2"d-order
statistics of different “time-lags”
Gy " . —k
o “time-lag” refers to the value of k in (a, b)x = 2;1 ar kb

@ idea #2: evaluate these efficiently using approximations
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S
Deriving the 2"d-order recursions/equations: An example

@ suppose we wish to find the recursion for (x*, y)x
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S
Deriving the 2"d-order recursions/equations: An example

@ suppose we wish to find the recursion for (x*, y)x
o steady-state Kalman recursion for x, , is: x{,, = Hx[ , | + Kyrik
@ right-multiply both sides by y; and sum over t

T—k T—k
= th:—k)/é = Z(HX:—Q—k—lyé + Kyerkyr)
t=1 t=1
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Deriving the 2"d-order recursions/equations: An example

suppose we wish to find the recursion for (x*, y)x
steady-state Kalman recursion for x/, , is: x7, , = Hx{ 1 + Kyrik
right-multiply both sides by y; and sum over t

factor out matrices H and K

T—k T—k
= ZX:Jrky; = Z(szlk—ﬂ’{ + Kyt ikyt)
t=1 t=1
T—k T—k
=H Z Xfik-1ye + K Z YerkYt
t=1 t=1
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S
Deriving the 2"d-order recursions/equations: An example

suppose we wish to find the recursion for (x*, y)x
steady-state Kalman recursion for x/, , is: x7, , = Hx{ 1 + Kyrik
right-multiply both sides by y; and sum over t

factor out matrices H and K

finally, re-write everything using our special notation for 2°-order
statistics: (a, b)x = ZtT;lk aty by

T—k T—k
= ZX:Jrky; = Z(HX:—&-k—ly; + Kyeikyt)
t=1 t=1
T—k T—k
=HY X+ K veait
t=1 t=1

= H( (x*,¥)k-1 _'X;Y%fk+l)4_f<(Y7Y)k
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|
The complete list (don't bother to memorize this)

The recursions:

(s Xk = (v, X Vs H + (v, )k = yipry ) K + yipeod”
(k= H((X" v k-1 = X7¥Tr_ip1) + K, )k

(XY = (X Vi H () = X)) K+ od”
(x5 x )k = H((x", X k-1 = XTXT—kJrl/) + K(y, x" )k
Ty =IOy kn + PO 9k = X5yr—i') + xFyr -
(T )k = JOT X Vi + P X )k = x5 i)+ x x5y
(XT» ) = ((X X )k 1 —Xk X1 )JI + (X X ) P!

(

. ’
xToxT )= I x T ien + P x T e — xxF_ ) + xFxF

The equations:

(* XY= HOX* XY H 4+ (5, vy — xf i) K — Hxixd_JH + K(y, x*) s H' +X1*+kX1*/
(XT7XT)/< = J(XTvxT)le + P((X*sz)k - Xilk'X';[:—kl) - JXIZ—+1X1T/JI + J(XT7X*)k+1PI +X';[:X;,:—k/
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@ noting that statistics of time-lag T + 1 are 0 by definition we can
start the 2"%-order recursions at t = T

@ but this doesn't get us anywhere - would be even more expensive
than the usual Kalman recursions on the 15t-order terms
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@ noting that statistics of time-lag T + 1 are 0 by definition we can
start the 2"%-order recursions at t = T

@ but this doesn't get us anywhere - would be even more expensive
than the usual Kalman recursions on the 15t-order terms

@ instead, start the recursions at time-lag ~ L with unbiased
approximations (“ASOS approximations”)

(y7X*)L+1 ~ CA ((X*,X*)L_X?X:}ifL/)7 (XT7X*)L%(X*7X*)L7 (XTJ/)L%(X*J’)L
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@ noting that statistics of time-lag T + 1 are 0 by definition we can
start the 2"%-order recursions at t = T

@ but this doesn't get us anywhere - would be even more expensive
than the usual Kalman recursions on the 15t-order terms

@ instead, start the recursions at time-lag ~ L with unbiased
approximations (“ASOS approximations”)

(y7X*)L+1 ~ CA ((X*,X*)L_X?X;fL/)7 (XT7X*)L’QJ"(X*7X*)L7 (XTJ/)L%(X*J’)L

e we also need x,” for t € {1,2, ..., L} U{T—L, T-L+1,..., T} but these
can be approximated by a separate procedure (see paper)
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|
Why might this be reasonable?

o 2"_order statistics with large time lag quantify relationships between
variables that are far apart in time
o weaker and less important than relationships between variables that are
close in time
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|
Why might this be reasonable?

o 2"_order statistics with large time lag quantify relationships between
variables that are far apart in time

o weaker and less important than relationships between variables that are
close in time
@ in steady-state Kalman recursions, information is propagated via
multiplication by H and J:

x; = Hx{_1 + Ky; x| = JIxli1 + Px;

@ both of these have spectral radius (denoted o(+)) less than 1, and so
they decay the signal exponentially
J J

J ] J
OO EE

H

oH)=0J)<1
o(HY) = o(H)" < 1
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|
Procedure for estimating the M-statistics

@ how do we compute an estimate of the M-statistics consistent with
the 2nd-order recursions/equations and the approximations?

James Martens (U of T) Learning the LDS with ASOS June 24, 2010 15 /21



|
Procedure for estimating the M-statistics

@ how do we compute an estimate of the M-statistics consistent with
the 2nd-order recursions/equations and the approximations?

e essentially it is just a large linear system of dimension O(N2L)
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Procedure for estimating the M-statistics

@ how do we compute an estimate of the M-statistics consistent with
the 2nd-order recursions/equations and the approximations?

e essentially it is just a large linear system of dimension O(N2L)

@ but using a general solver would be far too expensive: O(N2L3)

o fortunately, using the special structure of this system, we have
developed a (non-trivial) algorithm which is much more efficient
e equations can be solved using an efficient iterative algorithm we
developed for a generalization of the Sylvester equation
e evaluating recursions is then straightforward
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Procedure for estimating the M-statistics

@ how do we compute an estimate of the M-statistics consistent with
the 2nd-order recursions/equations and the approximations?

e essentially it is just a large linear system of dimension O(N2L)

@ but using a general solver would be far too expensive: O(N2L3)

o fortunately, using the special structure of this system, we have
developed a (non-trivial) algorithm which is much more efficient

e equations can be solved using an efficient iterative algorithm we
developed for a generalization of the Sylvester equation
e evaluating recursions is then straightforward

o the cost is then just O(N3L) after (y,y)k = Y., Yr+ky; has been
pre-computed for k =0,..., L
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First convergence result: our intuition confirmed

@ First result: For a fixed 0 the ¢>-error in the M-statistics is bounded
by a quantity proportional to L2AL"1, where A = o(H) = o(J) < 1
o (o(+) denotes the spectral radius)
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@ First result: For a fixed 0 the ¢>-error in the M-statistics is bounded
by a quantity proportional to L2AL"1, where A = o(H) = o(J) < 1
o (o(+) denotes the spectral radius)

@ so as L grows, the estimation error for the M-statistics will decay
exponentially

@ but, A might be close enough to 1 so that we need to make L too big
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First convergence result: our intuition confirmed

First result: For a fixed 0 the ¢>-error in the M-statistics is bounded
by a quantity proportional to L2AL"1, where A = o(H) = o(J) < 1
o (o(+) denotes the spectral radius)

@ so as L grows, the estimation error for the M-statistics will decay
exponentially

@ but, A might be close enough to 1 so that we need to make L too big

o fortunately we have a 2nd result which provides a very different type
of guarantee
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|
Second convergence result

@ Second result: updates produced by ASOS procedure are
asymptotically consistent with the usual EM updates in the limit as
T — o0

e assumes data is generated from the model
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Second convergence result

@ Second result: updates produced by ASOS procedure are
asymptotically consistent with the usual EM updates in the limit as
T — o0

e assumes data is generated from the model

o first result didn't make strong use any property of the approx.
o (could use 0 for each and result would still hold)
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|
Second convergence result

@ Second result: updates produced by ASOS procedure are
asymptotically consistent with the usual EM updates in the limit as
T — o0

e assumes data is generated from the model

o first result didn't make strong use any property of the approx.
o (could use 0 for each and result would still hold)

@ this second one is justified in the opposite way
e strong use of the approximation
o follows from convergence of %—scaled expected {5 error of approx.
towards zero
e result holds for any value of L value

James Martens (U of T) Learning the LDS with ASOS June 24, 2010 17 /21



S
Experiments

@ we considered 3 real datasets of varying sizes and dimensionality

@ each algorithm initialized from same random parameters

@ latent dimension N, determined by trial-and-error

Experimental parameters

Name length (T) | N, | N
evaporator 6305 3| 15
motion capture 15300 | 10 | 40
warship sounds 750000 1] 20
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Experimental results (cont.)

Name

length (T) | N, | N,

evaporator

6305 3115

motion capture

15300 | 10 | 40

warship sounds

750000 1] 20

3200

3000

Negative Log Likelihood

ASOS-EM-5 (13.1667 s)
~ — — ASOS-EM-10 (13.9436 s)
ASOS-EM-20 (16.6538 s)
~ — ASOS-EM-35 (21.0141 s)
—6&— ASOS-EM-75 (27.1616 s)

2800} SS-EM (56.804 s) ,
—+— EM (692.6135 s) —
2600 0 Sy oo T TTTLTI T T = o
0 100 200 300 400 500 600
Iterations
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Experimental results (cont.)

Name length (T) | N, | N,
evaporator 6305 31 15
motion capture 15300 | 10 | 40
warship sounds 750000 1120
x 10°
-1.96f \ ‘ ‘ N
- ASOS-EM-20 (52.0094 s)
S _1971 — — — ASOS-EM-30 (55.623 5) |/
£ ! —+— ASOS-EM-50 (59.9489 s)
£ o8l SS-EM (215.6504 s)
> —6— EM (6018.4049 s)
3 —190f
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Experimental results (cont.)

Name length (T) | N, | N,
evaporator 6305 31| 15
motion capture 15300 | 10 | 40
warship sounds 750000 1120
x 10°
- 671f ASOS-EM-150 (49.6942's) |
S — — — ASOS-EM-300 (84.4925 s)
= 5708k ASOS-EM-850 (214.039's) ||
£ —+— ASOS-EM-1700 (409.0395 s)
-
—o— SS- .
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)
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Conclusion

@ we applied steady-state approximations to derive a set of “2nd-order
recursions and equations”
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@ approximated statistics of time-lag L

@ produced an efficient algorithm for solving the resulting system

EM | SS-EM | ASOS-EM

Per-iteration run-times: O(N):f T) ‘ O(Ns T+ NSI) ‘ O(N)::’kl,m)
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@ produced an efficient algorithm for solving the resulting system

EM | SS-EM | ASOS-EM

Per-iteration run-times: O(N):f T) ‘ O(Ns T+ NSI) ‘ O(N)::’kl,m)

@ gave 2 formal convergence results
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Conclusion

@ we applied steady-state approximations to derive a set of “2nd-order
recursions and equations”

@ approximated statistics of time-lag L

@ produced an efficient algorithm for solving the resulting system

EM | SS-EM | ASOS-EM
O(NZT) [ ONIT + NZi) | O(NZkim)

Per-iteration run-times:

@ gave 2 formal convergence results

@ demonstrated significant performance benefits for learning with long
time-series
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Thank you for your attention
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