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Abstract The paper proposes a comprehensive framework for representing and using non-functional
requirements during the development process. The framework consists of five basic components which
provide for the representation of non-functional requirements in terms of interrelated goals. Such goals can
be refined through refinement methods and can be evaluated in order to determine the degree to which a set
of non-functional requirements is supported by a particular design. Evidence for the power of the framework
is provided through the study of accuracy and performance requirements for information systems.

1 Introduction

The complexity of an information system is determined partly by its functionality — 1.e., what the system
does — and partly by global requirements on its development or operational costs, performance, reliability,
maintainability, portability, robustness and the like. These non-functional requirements' play a crucial role
during system development, serving as selection criteria for choosing among myriads of decisions. Errors of
omission or commission in laying down and taking properly into account such requirements are generally
acknowledged to be among the most expensive and difficult to correct once the information system has been
completed. Surprisingly, non-functional requirements have received little attention by researchers and are
definitely less well understood than other, less critical factors in software development. As far as software
engineering practice is concerned, they are generally stated only informally during requirements analysis, are
often contradictory, difficult to enforce during software development and to validate for the user once the
final system has been built. The only glimmer of technical light in an otherwise bleak landscape originates
in technical work on software quality metrics that allow the quantification of the degree to which a software
system meets non-functional requirements [26, 5, 3].

There is not a formal definition or a complete list of non-functional requirements. In a report published by
the Rome Air Development Center (RADC) [7], non-functional requirements (“software quality attributes” in
their terminology) are classified into consumer-oriented (or software quality factors) and technically-oriented
attributes (or software quality criteria). The former refers to non-functional requirements observable by
the consumer, such as efficiency, correctness and interoperability. The latter addresses system-oriented
requirements such as anomaly management, completeness and functional scope. Table 1.1 shows the RADC
consumer-oriented attributes. The non-functional requirements listed in the table apply to all software
systems. However, additional requirements may apply for special classes of software. For instance, precision
would be an important non-functional requirement for a numerical analysis software package, while accuracy
(of maintained information) might feature prominently during the development of an information system.

Two basic approaches characterize the formal treatment of non-functional requirements and we shall
refer to them as product-oriented and process-oriented. The first attempts to develop formal definitions of
non-functional requirements so that a software system can be evaluated as to the degree to which 1t meets
its requirements. For example, measuring software visibility may include, among other things, measuring
the amount of branching in a software system. This might be achieved globally with a criterion such as:
“There shall be no more than X branches per 1,000 lines of code” or locally with a criterion such as “There
shall be no more than Y% of system modules that violate the above criterion.”

L Also referred to as constraints [41], goals [31] and quality attributes [26] in the literature.



Acquisition Concern User Concern Quality Attribute
How well does it utilize a resource? Efficiency
How secure is it? Integrity
Performance — How well does | What confidence can be placed in what it does? Reliability
it function? How well will it perform under adverse conditions? Survivability
How easy is it to use it? Usability
How well does it conform to the requirements? Correctness
Design — How valid is How easy is it to repair? Maintainability
the design? How easy is it to verify its performance? Verifiability
How easy is it to expand or upgrade
its capability or performance? Expandability
How easy is it to change? Flexibility
Adaptation — How adaptable | How easy is it to interfere with another system? Interoperability
is it? How easy is it to transport? Portability
How easy is it to convert for use in another application? | Reusability

Table 1.1 The RADC software quality consumer-oriented attributes. [26]

The product-oriented approach has received almost exclusive attention in the literature and is nicely overviewed
in [26]. Earlier work by Boehm et al. [5] considered quality characteristics of software, noting that designer-
awareness alone improved the quality of the final product. Also supporting a quantitative approach to
software quality, Basili and Musa [3] advocate models and metrics of the software engineering process from
a management perspective. It is interesting that Hauser et al. [21] provide a methodology for reflecting
customer attributes in different phases of automobile design.

An alternative approach, explored in this paper, is to develop techniques for justifying design decisions
during the software development process. Instead of evaluating the final product, the emphasis here is on
trying to rationalize the development process in terms of non-functional requirements. Design decisions
may affect positively or negatively particular non-functional requirements. These positive and negative
dependencies can serve as basis for arguing that a software system indeed meets a certain non-functional
requirement or explaining why it does not.

Orthogonally, treatments of non-functional requirements can be classified into quantitative and qualitative
ones. Most of the product-oriented approaches alluded to earlier are quantitative in the sense that they
study quantitative metrics for measuring the degree to which a software system satisfies a non-functional
requirement. The process-oriented treatment proposed here, on the other hand, is definitely qualitative,
adopting ideas from qualitative reasoning [1]. It should be acknowledged that a process-oriented treatment
of non-functional requirements need not be qualitative. Indeed, one could imagine quantitative measures
for, say, software visibility that can be used as the system 1s being developed to offer advance warning that
non-functional requirements are not being met. Qualitative techniques were chosen here primarily because
it was felt that the problem of quantitatively measuring an incomplete software system is even harder than
that of measuring the final product.

Of course, neither product-oriented quantitative metrics nor process-oriented qualitative measures have
a monopoly on properly treating non-functional requirements. They are best seen as complementary, both
contributing to an evolving comprehensive framework for dealing with non-functional requirements.

Two sources of ideas were particularly influential on our work. The first involves recent work on decision
support systems, such as that described in [28, 29] and [19]. Lee’s work, for example, adopts an earlier model
for representing design rationale [38] and extends it by making explicit the goals presupposed by arguments.
The work reported here can be seen as an attempt to adopt this model to the representation and use of
non-functional requirements. The second source of ideas is the DAIDA environment for information system
development [23] which has provided us with a comprehensive software development framework covering both
notations for requirements modelling, design, implementation and decision support, as well as a starting point
on how the treatment of non-functional requirements might be integrated into that framework. Users of the
DAIDA environment are offered three languages through which they can elaborate requirements, design and
implementation specifications. In developing a design specification, the user consults and is constrained by
corresponding requirements specifications. Likewise, the generation of an implementation is guided by a
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Figure 1.1: Employee and Report Hierarchy.

corresponding design specification. Dependency links represent design decisions and relate implementation
objects to their design counterparts and design objects to their requirements counterparts. The framework
proposed in this paper focuses on these dependency links and how they can be justified in terms of non-
functional requirements. An early description of the framework and an account of how it relates to DAIDA
can be found in [12].

The example used throughout this paper is an ezpense management system for a hypothetical research
project, similar to the one used in [6]. According to the example, project members from organizations based
in different countries, register for and attend various meetings. They then submit their expense summaries
to an expense management system, which maintains all such information and generates expense reports for
each member, meeting and project. As shown in Figure 1.1, there are several kinds of employees, including
secretaries, engineers and researchers, who are in turn classified into computer researchers, math researchers,
and so on.

Establishment of the framework is achieved in two steps. Firstly, the framework 1s presented in Section
2. The presentation includes motivation, the framework’s structure and short suggestive examples. This
framework is then elaborated and illustrated in the following two sections by examining its application
respectively to accuracy and performance requirements for information systems. The final section summarizes
the contributions of this research and presents a number of open questions and directions for further research.

2 Representing Non-Functional Requirements:

A Process-Oriented Framework

Formally, the proposed framework consists of five major components?: a set of goals for representing non-
functional requirements, design decisions and arguments in support of or against other goals; a set of link types
for relating goals or goal relationships (hereafter links) to other goals; a set of generic methods for refining
goals into other goals; a collection of correlation rules for inferring potential interactions among goals; finally,
a labelling procedure which determines the degree to which any given non-functional requirement is being
addressed by a set of design decisions. The examples throughout this section concentrate on accuracy and
to a lesser extent operating cost requirements for information systems.

During the design process, goals are organized into a goal graph structure, very much in the spirit of
AND/OR trees used in problem solving [34]. Unlike traditional problem solving and planning frameworks,
however, goals representing non-functional requirements can rarely be said to be “accomplished” or “sat-
isfied” in a clearcut sense. Instead, different design decisions contribute positively or negatively towards a
particular goal. Accordingly, for the rest of the discussion we will speak of goal satisficing [42] 3 to suggest
that generated software is expected to satisfy within acceptable limits, rather than absolutely, non-functional
requirements.

2 An earlier version of portions of this and the next section have appeared in [13].

3[42] actually uses the term to refer to decision methods that look for satisfactory solutions rather than optimal ones. The
term is adopted here in a broadened sense since in the context of non-functional requirements, even the notions of a solution
or optimality of a solution may be unclear.



2.1 Goals

The space of goals includes three mutually exclusive classes, namely, non-functional requirements goals (NFR
goals), satisficing goals and argumentation goals. In general, each goal will have an associated sort and zero or
more parameters whose nature depends on the goal sort. For example, an operating cost requirement might
have as parameter a desired upper bound on the annual operating costs of the system under development.
Sorts may be further subdivided into subsorts, representing special cases for each goal class. For instance,
the Performance sort may have subsorts TimePerformance (or simply Time) and SpacePerformance (or
simply Space), representing respective time and space performance requirements on a particular system.
Goals, NFRGoals, SatGoals and ArgGoals will refer respectively to the set of all possible goals, NFR, goals,
satisficing goals and argumentation goals.

1. Non-functional requirements goals. The sorts for such goals range over the different categories of such
requirements, including accuracy, security, development, operating or hardware costs and performance. For
our expense management system, suppose that it is expected of the system under development to maintain
accurately employee data. Such a goal might be represented by:

Accuracylattributes(Employee)]

where Accuracy is the goal sort and the parameter of attributes(Employee) evaluates to the set of all
attributes associated with the data class Employee. The interpretation of this goal is that instances of the
attributes of the data class Employee, i.e., all attributes of employees, ought to be maintained accurately
in the system’s database. As another example, it may also be expected that the system under development
make minimal demands on manpower. This can be treated as an operating cost requirement and since there
are several contributing factors to operating costs (manpower, maintenance, etc.), this requirement might
be represented as OperatingCosi[manpower].

2. Satisficing goals. These are also sorted and parameterized. In this case, however, the sorts range
over different categories of design decisions that might be adopted in order to satisfice one or more non-
functional requirements goals. The parameters associated with each sort, again, depend on the nature of the
corresponding satisficing goal. For instance, one way to satisfice the accuracy goal mentioned earlier might
be to validate all employee data entered into the system. This can be represented as a satisficing goal:

Validation[attributes(Employee)),

where Validation is the goal sort and attributes(Employee) is as before. This goal, in turn, might be
refined into another satisficing goal,

Validated By[JohnWong, at tributes(Employee)],

representing the situation that JohnWong will be doing the validation.

3. Argumentation Goals (or Arguments). These always have the sort Claim, with subsorts FormalClaim
and InformalClaim, representing formally or informally stated evidence or counter-evidence for other goals
or goal refinements. Consider:

FormalClaim[3e : ValidatedBy[e, attributes(Employee)] A EmpStatus(e,Sec I)]

This argumentation goal supports the refinement from the goal of validating employee data to the one
assigning JohnWong to the task, by claiming that class I secretaries will perform the validation. In contrast,

InformalClaim[ “Rigorous examination is recommended for publications by employees.” ]

is an informally-stated argumentation goal supporting the previous argumentation goal by pointing out why
class I secretaries should validate employee data.

2.2 Link Types

As indicated earlier, design proceeds by refining one or more times each goal, the parent, into a set of other
goals, the offspring. Unlike AND/OR goal trees, where the relationship between a collection of offspring



and their parent can only be AND or OR, in our proposed framework there can be several different types
of relationships or link types describing how the satisficing of the offspring (or failure thereof) relates to the
satisficing of the parent goal. The need for at least some link types is evidenced in [5] which states that
some quality characteristics are necessary, but not sufficient, for achieving others. Boehm et al. then use a
four-grade scale to correlate each quality metric with quality attributes in the final product.

Links may relate a parent goal to one or several of its offspring. In fact, links may also be used to relate
other links to argumentation goals, to indicate that an argument offers positive or negative support for a
particular refinement of a goal. Thus, links too need to be satisficed either through a formal refinement
process or through arguments provided by the designer.

Let Links denote the set of all links and satisficed be a predicate which is true of satisficed goals or links
and false of others. Also, let denied be a predicate which is true of goals and links that have been shown
unsatisficeable (“unsolvable” in problem solving terminology [34]). If

Propositions = Goals U Links,

then satisficed and denied are predicates taking a proposition as argument.

Sometimes a proposition will be found to be satisficeable — thanks to one refinement — and deniable
— thanks to another. For instance, the accuracy goal for employee data might be satisficeable thanks to a
validation procedure adopted for all such data, but deniable because of a user interface that permits general
access to this information. To deal with such conflicting cases, we need to distinguish between a proposition
being satisficed or denied, on one hand, and a proposition being potentially satisficeable or deniable thanks
to some refinement on the other. Accordingly, two more predicates, satisficeable and deniable are introduced
to deal with the latter case.

The set of logical types to be used for links is presented below. For each type, axioms are provided which
formalize its semantics in terms of the predicates just introduced:

-y P sttions
AND : Propositions x 27 7oPosonE

satisficed(G1) A satis ficed(G2) A ... A satis ficed(Gr) A satisficed(AND(Go,{G1,G2,...,Gn}))
— satis ficeable(Go)

satisficed(AND(Go,{G1, 2, ...,Gn}) A (denied(G1) V denied(G2) V ... V dented(G)) — deniable(Go)
OR: Propositions x gfropositions
denied(G1) A denied(G2) A ... Adenied(Gr) N satisficed(OR(Go,{G1, G2, ...,Gn})) — deniable(Go)

satisficed(OR(Go, {G1, 2, ...,Gn}) A (satisficed(G1) V satis ficed(G2) V ...V satis ficed(Gr))
— satis ficeable(Go)

sup : Propositions x Propositions.

satisficed(G1) N satisficed(sup(Go, G1)) — satis ficeable(Go)

sub : Propositions x Propositions.

dented(G1) A satisficed(sub(Go,G1)) — deniable(Go)

The link type sub is also intended to convey the sense that (G; contributes partially to the satisficing of G.
This can be expressed as follows: If satis ficed(sub(Go,G1)) then there exist propositions Gia, ..., Gy, such
that

—(satis ficed(G2) A ... A satis ficed(Gr) — satis ficeable(Go))
but
satisficed(G1) A satis ficed(G2) A ... A satisficed(Gr) A satisficed(sub(Go, G1)) — satis ficeable(Go)



In words, if GGy is a sub(proposition) of Gy then there exist propositions G, . .., Gy which cannot achieve
the satisficing of GGy without the contribution of (.
Two additional link types are introduced to represent negative influences of one goal on another.

—sup : Propositions x Propositions.

satisficed(G1) A satisficed(—sup(Go, G1)) — deniable(Gyo)

—sub : Propositions x Propositions.
dented(G1) A satisficed(—sub(Go, G1)) — satis ficeable(Gh)
If — sub(Go,G1) then there exist Go, ..., Gy such that
—(satis ficed(G2) A ... A satisficed(Gr) A satisficed(—sub(Go,G1)) — dentable(Go))
but
satisficed(G1) A satis ficed(G2) A ... A satisficed(Gr) A satisficed(—sub(Go,G1)) — deniable(Go)

In words, if G is a negative sub(proposition) of Gy then denial of (1 leads to the satisficing of Gy and
satisficing of (G contributes to the denial of Gj.
Finally, it is useful to define the eql (equivalent) link type in terms of the link types introduced here:

eql : Propositions x Propositions.

eql(Go,G1) = sup(Go, G1) A sup(G1,Go) A sub(Go,G1) A sub(G1, Go)

At times, it may be hard to determine a prior: the logical relationship between a set of offspring and
their parent goal without further expansion of the goal graph. For example, the designer may see that a
certain hiring policy for technical staff is relevant, without being sure of its impact on a particular goal, say,
in justifying the assignment of a class I secretary to the task of validating employee data. This situation is
accommodated through three variations of an undetermined link type:

und : Propositions x Propositions.

und(Glo, G1) indicates the possible presence of positive or negative in fluence between Gy and G.

Likewise, +und and —und indicate respectively possible positive or negative influence between two propo-
sitions.

2.3 Methods

Goals may be refined by the designer, who is then responsible for satisficing not only the goal’s offspring
but also the refinement itself represented as a link. Alternatively, the framework provides goal refinement
methods (methods for short) which represent generic procedures for refining a goal into one or more offspring,
such as:

“To maintain accurately data about class x, you need to maintain accurately data about all
relevant subclasses of x.”

Every such refinement is represented in terms of a link having one of the types of the previous section and
which is considered satisficed.
Generally, a method has the form

x1/Cq,%x9/Co,...xn/Cn : SelP(xq1,%9,...xn) |
L
Go(xq,...xn) —> {G/(xl7 ...xn) | For all G' such that Pred(G/,xl7 ...xn))}

Here Gy represents the parent goal, predicate Pred determines the set of offspring while L is the link type
relating Gy to its offspring. The refinement of Gy through a method is subject to the method’s selection
criterion, SelP, consisting of a Boolean expression with free variables xq,x5,...,xn. These are bound to
objects of type Cq, ..., Cp respectively when the method is applied.



There are three types of goal refinement methods, corresponding to the three types of goals introduced
earlier:

1. Goal Decomposition Methods. These are usually AND decomposition methods of the form

AND
SelP : G —— {G1, G, ..., G} used to decompose a goal G into an AND set of offspring G, Go, ..., Gy.
For instance, the following method decomposes a goal having a class as argument into goals having as argu-
ments its immediate specializations:

x/Class : Glx] ﬂ) {G[xi],] (x4 isA x) A
Vx5 [((xi 1sA Xj) A (Xj isA X)) = ((xJ =xi)V (Xj =x))]}

Since there are three specializations of Employee in our example, the accuracy goal Accuracy[attributes(Employee)]
(abbreviated as A[attributes(Employee)]) can be refined using the subclass goal decomposition method:

AND
Alattributes(Employee)] —— {A[attributes(Researcher)], ..., Alattributes(Secretary)]}

In Figure 2.1, offspring are shown underneath the parent goal. Link types are sometimes omitted from figures.
Now each of these goals needs to be satisficed in turn. Likewise, satisficing the goal of
Alattributes(Researcher)] requires that all attributes of Researcher be maintained accurately. This de-
composition can be accomplished by a method of the form:

AND
x/Class : Alattributes(x)] —— {Afattr(x)]| attr € attributes(x)}

This method leads to the following further decomposition of Alattributes(Researcher)]. Assuming that
research employees have attributes degree and publ (publications), in addition to those of Employee,

AND
Alattributes(Researcher)] —— {A[Researcher.nane|, ..., A[Researcher.degree|, A[Researcher.publ]}

2. Goal Satisficing Methods. Such methods refine a goal into a set of satisficing goals, thereby committing
the design that is being generated to particular design decisions. Returning to our example, there may be two
satisficing methods offered for the goal A[Researcher.publ]. If the publication record of each researcher
is obtained from existing databases, the accuracy of this information might be ensured through periodic
auditing of those databases. If, on the other hand, these data are fed directly by the employee in question,
a method may call for the validation of the data by the employee’s manager:

Fund
i/InformationItem: A[i] N Audit[i]

i/InformationItem: A[i] BN Validation[i]

Using these methods, A[Researcher.publ]can be refined to Audit[Researcher.publ]or Validation[Researcher.publ
through 4+und and sup links respectively. Note that the designer may later change the type of the +und

link once the design has proceeded further and it can be determined that auditing indeed leads to more

accurate publication data. Clearly, selection of one of the two alternatives leads to very different types of

user interfaces for the system under development. In particular, if validation is selected, all publication
information will have to be confirmed by another person, while auditing calls for the inclusion of an audit
requirement on the database from which publication data are imported.

3. Argumentation methods. These methods refine a goal or a link into an argumentation goal, thereby
indicating evidence/counter-evidence, in terms of arguments, for the satisficing of a goal. For instance, a
formal claim consisting of a conjunction could be refined into claims of each conjunct related to the parent
through an AND link.

Figure 2.1 illustrates the goal structure that might be generated by the simple example we have been
introducing piecemeal. In the bigger picture of information system development, a source object, say a
component of a requirements specification, is mapped into one (or possibly several) target object(s), say
components of a design specification [13]. The dependencies among these objects are shown through depen-
dency links on the left- and right-hand sides of Figure 2.1. The use of the goal structure generated by the
designer from non-functional requirements, possibly with the help of methods, is intended to help her select
among alternatives and justify her design decisions. She can selectively focus attention, thus controlling goal
structure expansion.
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Figure 2.1: Goal graph structure for accurate employee attributes.

2.4 Correlation Rules

As indicated earlier, the non-functional requirements set down for a particular system may be contradictory.
For instance, having built-in procedures for validating or auditing the data managed by the information
system in general requires additional manpower thereby interfering with the operating cost requirement,
OperatingCoslmanpower]. Guidance is needed by the designer in discovering such implicit relationships and
in selecting the satisficing goals that best meet a set of given NFR goals. This is achieved either through
external input by the designer herself or through the representation of generic interactions between goals
through correlation rules.

Consider a satisficing goal whereby the system under design will offer an interface for “casual” users, say,
all company employees, who wish to query or update the system’s database.

sub

OperatingCostlmanpower] ———  CasualUserInterface[Employee,Database]

Unfortunately, making the database readily available to all employees is likely to lead to data inaccuracy,
thereby interfering with accuracy goals. This can be expressed, for example, by a rule such as:

CasualUserInterfacele,i] A  cardinality(e) > 5 A A[i'TAi' C i
— —sub(A[1"], CasualUserInterface[e, i])

This rule can be used to infer a -sub link between the goals CasualUserInterface[Employee, Database] and
Alattributes(Employee)], assuming that attributes(Employee) C Database and that there are more
than five employees.

Likewise, consider a security goal (with sort S) discouraging secretaries from accessing research publi-
cation data. Now a validation goal which is positive for A[Researcher.publ], with a class I secretary as
validator, would also contribute negatively to such a security goal, and vice versa:*

(S[i,e,accessCond A ValidatedByle',i'] A (i C i') A isA(e,e’) A HigherClassification(e,e') A

s

accessCond) — (—sup(S[i, e, accessCond], Validation[i']) A —sup(Validation[i'], S[i, e, accessCond]))

4The representation of security requirements is adopted from [20].



Finally, consider the case where two satisficing goals interfere with each other because of dependence on
a critical resource. This competition may be synergistic or antagonistic, leading respectively to positive or
negative argumentation. For instance, two unrelated goals calling for auditing and validation of information
may influence each other positively (through sub links if there is no one on staff assigned to either task,
because they jointly suggest the hiring of of personnel data may not individually justify hiring additional
staff. If, however, the argumentative structure indicates that they can share an agent, one new staff member
may be hired for the two tasks.

Validation[i] A Audit[i'] A —3 e,e'/Employee: ValidatedByle, i] A AuditedByle',i']
— sub( Validation[i], Audit[1']) A sub(Audit[i'], Validation[i])

It is now possible to describe the expansion procedure which starts with a set of NFR goals and iteratively
expands them into a goal graph structure. Throughout the expansion, the system maintains a list of all
propositions that are to be refined, called Open, while the list Closed includes all propositions that have been
completely refined.

Once a proposition has been selected from Open for refinement, the designer chooses whether she wants
to propose a refinement or apply one of the available methods. Carrying out a chosen refinement involves
creating propositions for the offspring and the newly-created link and adding each to Open. Correlation
links are then introduced for the new propositions, using both the designer’s judgement and correlation rules
in the system. This process is repeated for the chosen proposition until there are no more refinements the
system or the designer can offer. At this time, the proposition is placed on the Closed list and another open
proposition is selected.

A second alternative for proposition refinement is to simply label the proposition satisficed or denied.
Such labelling may come about either because of input from the designer or because of the use of a method
during proposition refinement.

2.5 The Labelling Procedure

Given a partially constructed goal graph structure, the labelling procedure determines the status of each
node on the graph through the assignment of a label. A node or link of the graph is labelled satisficed
if 1t 1s satisficeable and not deniable; denied if it is deniable but not satisficeable; conflicting if it 1s both
satisficeable and deniable; and undetermined if it is neither. These labels are denoted respectively by S,
D, C and U. They are similar to those in [16] and generally ones used in qualitative reasoning frameworks
[1]. The U label, in particular, is intended to represent situations where either there is both positive and
negative support, albeit inconclusive, for a given goal, or there is neither positive nor negative support.

The labelling algorithm consists of two basic steps. For each proposition P on a given goal graph, the
algorithm first computes the individual effect of each satisficed outgoing link. Secondly, the individual effects
of all outgoing links are combined into a single label taking one of the four possible values mentioned earlier.

Given the open-ended nature of the argumentation process (i.e, the premise built into this framework that
only some of the relevant knowledge is formally represented, the rest remaining with designers) the framework
calls for an interactive labelling procedure where the designer may be asked to step in and determine the
appropriate label for a particular proposition having supporting but inconclusive evidence. For this reason,
the labels characterizing the influence of one set of offspring towards a parent include 5, D, C, and U, as
mentioned before, but also U/~ and U7T representing respectively inconclusive positive or negative support
for a parent. Moreover, 7 indicates a situation where the designer is to determine the label that characterizes
the contribution of a proposition towards another. Note that the labels /=, U/t and 7 are introduced by the
first step of the labelling algorithm and are eliminated by the second when the set of all contributions from
all outgoing links associated with a given proposition are combined into a single label, S, D, C'or U.

Table 2.1 shows the propagation rules along different link types (always from offspring to parent). Ac-
cording to these rules; sup propagates S while sub propagates D; -sup inverts an S label into a D and -sub
inverts a D label into a S one.



link type
labelsoyrce | sub | sup | -sub | -sup | und
S vt | s U~ D U
D D | U~ S Ut U
C 7 7 7 7 U
U U U U U U

Table 2.1 The indiwidual effect of source label upon its destination label.

The propagation rules for AND and OR links are based on the ordering of labels S > U, C' > D and is
defined as follows:

Assuming AND(Go,{G1,G2,...,Gyn}) then label(Go) = min(label(G))

Assuming OR(Go,{G1,Ga,...,Gn}) then label(Go) = max(label(G;))

Once all contributed labels have been collected for a given proposition, the second step of the labelling
procedure combines them into a single label. Assuming that L is the bag ® contributed to a given proposition,
consisting of labels from the set {5, D, C, U, U~,U*}, the Ut and U~ labels are first combined by the designer
into one or more S, D, and U labels. The resulting set of labels is then combined into a single one, by
choosing the minimal element, min; 1 (/), and assuming a label ordering S, D > U > C.

It is interesting to compare our labelling procedure with those of truth maintenance systems (TMSs)
[15, 17]. They record and maintain beliefs, their justifications and assumptions, while distinguishing facts
from defeasible beliefs, which are either accepted or rejected. As with TMSs, our graph labelling procedure
recursively propagates values of offspring to parents. However, our procedure is not automatic, but interac-
tively allows the designer to deal with inconclusive evidence. While we have AND and OR, comparable to
TMS conjunction and disjunction, our link types have additional values, all of which are inputs to computing
windividual effect in our first step. In applying the propagation rules of Table 2.1, links, which are not included
in TMS beliefs, must be satisficed. Unlike TMSs, we then combine individual effects of label values including
qualitative (conflicting) and open-ended (undetermined) ones, using a label ordering in the second step.

3 Dealing with Accuracy Requirements

A major consideration in building an information system is the degree to which its design encourages accuracy
of the information being managed. For example, a system which allows users to update information in their
own files may be user-friendly, but one will not have confidence in the information it contains. There are
many ways to promote accuracy requirements for an information system. Restricting access to resources is
only one such technique.

Within our framework, treating accuracy requirements as goals offers directional guidance for the overall
design process. In particular, accuracy requirements are used below as criteria for selecting a particular
design in order to address elements of a given functional requirement.

3.1 Goals of Accuracy Requirements

The goals of accuracy requirements have Accuracy as the sort and InformationItem (abbreviated Info) as
the parameter. They are expressed as Accuracy[i] (abbreviated as A[i]), where i is a collection of information
items. Information items may be categorized into three types of propositions: i) that an entity in the system
has the property of some class during some time interval; ii) that an entity in the system has an attribute with
a certain value during some time interval; iii) that an object in the system, say a record, has one and only
one corresponding entity in the application domain, say an employee. Accuracy requirements can then be
expressed on collections of such information items, such as the employee attributes of Section 2 (See [12, 13]
for this). In general, satisficing accuracy goals is understood in terms of the degree of confidence in the
accuracy of information items maintained by the projected system.

5L is a bag because duplicate labels are useful; for instance several positive supporting links indicated by several U*’s may
be combined into an S label by the designer.
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3.2 Goal Refinement Methods
3.2.1 Goal Decomposition Methods

We present below some examples of accuracy decomposition methods, to be used in the illustration of Section

3.4.

e subclass method: In order to establish the accuracy of a class C of information items, establish the
accuracy of each immediate specialization, C;, of C. This is a special case of the goal decomposition
method mentioned in Section 2.3.

e subset method: To establish the accuracy of a set of information items, establish the accuracy of each
subset of information items. Similarly, a superset method can be provided.

o indwidual Attributes method: To establish the accuracy of the attributes of a class of information items,
establish the accuracy of each attribute of the class.

e derivedInfo method: To establish the accuracy of a set of information items, establish that the function
which derives them is correctly designed and that all of the function’s source parameters; currently in
the system, are accurate.

e attributeSelection method: To establish the accuracy of an information item obtained by a sequence
of attribute selections (e.g., Joe.project.budget), establish the accuracy of each information item
obtained in the sequence (e.g., Joe.project, Project.budget).

e conservation method: To establish the accuracy of a collection of information items which can no
longer be decomposed into information items currently in the system, establish i) their accuracy, when
received by the system from some external agent, and ii) their correct internal manipulation by the
system.

e correctBrternalManipulation method: To establish the accuracy of information items upon receipt,
establish CorrectinfoFlow, i.e., they were accurate when they were first transmitted by the original
sender, and have subsequently been correctly manipulated until receipt by the system. CorrectinfoFlow
is a sub-sort of Correctness goals which, unlike accuracy goals, are related to actions that induce certain
results.

3.2.2 Goal Satisficing Methods

Taking the premise that the accuracy of information items depends entirely on the process in which they are
manipulated within the system and its environment, accuracy satisficing goals alter that process®. Accuracy
satisficing goals include preventive, curative and precautionary techniques. They affect the level of our
confidence 1n the accuracy of information items.

Preventive accuracy satisficing goals detect and disallow inaccuracies, when information items are received
by the system. Most of them require direct interaction between the system and agents in the application do-
main. They can be specialized by varying the agent who performs the needed task, the volume of information
items, evidences attached, the time of processing and output, etc.:

e confirmation: The informant, either a machine or a person, double-checks the previously-submitted
information item. This technique can be specialized: to confirmation-via-identical-channel if the con-
firmation and first transmission use the same channel; otherwise to confirmation-via-distinct-channel
(e.g., via a daisy-channel).

e verification: A verifier, who is a co-worker of the sender of information item makes a duplicate entry
of the item onto some medium in the system (e.g., via duplicate IBM key-entry operation). As with
confirmation, verification can be specialized to verification-via-identical-channel or wverification-via-
distinct-channel.

8Martin[30], for instance, offers a glossary of techniques for improving accuracy.
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e wvalidation: A validator performs checking in the application domain, using certain records or proce-
dural guidelines to ensure that the information item meets predetermined standards. The type and
thoroughness of the checking can be reflected in specialized methods: creation-validation for directly
contacting the information source, experimentation for re-testing the information item, etc.

e audit: An accuracy auditor uses procedures to periodically go through suspicious sampled information
items.

e consistency-checking: To prevent frequently-occurring errors, the system enforces certain integrity
constraints (e.g., check-sums incorporated into ISBNs).

Curative satisficing goals trace inaccuracies to their source, and provide for recovery from inaccuracies.
Precautionary satisficing goals make information flow more reliable in terms of what is involved, such as
senders, receivers, and communication channels.

3.2.3 Goal Argumentation Methods

These methods support or deny the use of accuracy satisficing goals and various refinements in terms of
arguments. Examples include:

e resource-assignment: In performing a task for a satisficing goal, assign resources in the application
domain. For example, one can support a refinement from a goal of validating expense summaries
to one assigning a staff member to the task, by claiming that class I secretaries will perform the
validation.

Validation[Summary] o, FormalClaim[3e : ValidatedBy[e, Summary] A EmpStatus(e,Sec I)]

e policy-manual-consultation: When a question arises about the applicability of various types of methods,
consult policy manuals in the application domain.

e priority-based-selection: Select a method among alternatives according to their relative priority. E.g.,
for a satisficing goal which is good for high-priority accuracy goal A but bad for goal B, the priority
would be a positive argument for A but negative for B.

3.3 Correlation Rules

Accuracy satisficing goals, such as verification, usually contribute positively to accuracy goals (such as
Alattribute(Researcher)]) provided the (verification) process is rapid. Otherwise, information items will
become less timely. This perturbation is an example of a satisficing goal becoming negative. For example:”

VerifiedByle,i,t] A Excessive(t) A A[i'] A i’ C 1 — —sub(A[i"], Verification[i])

Verification may be negative for a security goal if the verifier is not allowed to access the information item
to be verified.

A security satisficing goal (such as Mutual-ID) or a user-friendliness satisficing goal (such as CasualUserInterface)
can be positive or negative for an accuracy goal. Consider Mutual-ID[a:Agent, i:Info, p:Procedure,
t:Time]. To mutually ensure the identity of the agent a, attempting to access certain information items i,
and the identity of the system process, both the agent and the system, during time interval t, go through a
test procedure, p, which requires alternating queries and answers by the two (This is similar to the challenge
response process [37]). This would be positive for accuracy goals if a malicious user, in the absence of mutual
identification, would penetrate the system and falsify the information item.

Table 3.1 summarizes some of the correlations. Entries of the form: < condition, orientation > mean “if
the condition holds, then the relationship between the requirements goal and satisficing goal is given by the
ortentation.”

"The time parameter (t) is omitted when not needed.

12



NFRGoal Accuracy Security

SatGoal
Verification < Ri, sub> < Ra, —sub> < R4, —sub>
Mutual-1D < Rs, sub> <TRUFE, sub>

CasualUserInterface <TRUFE, —sub>
Ro: A[i] A i’ Ci
Ri: VerifiedByle,i,t] A Ro
Ry: Ri A Ezcessive[t]
Rs: Mutual—1IDle,i,p,t] A Ry A Informant—ID — established[e]
R4: S[i,e,AccessCond] A VerifiedByle',i',t] A 1 Ci' A isA(e,e') A HigherClassification(e,e') A AccessCond

Table 3.1 Correlation of NFR Goal (NFRGoal) with Satisficing Goals (SatGoal).

The table is similar in spirit to the “relationship matrix” [21], which indicates, informally and without
correlation rules, how much each engineering characteristic affects each customer quality requirement in
terms of four types of values: strong positive, medium positive, medium negative or strong negative.

An accuracy satisficing goal can be synergistic or antagonistic with respect to another satisficing goal, for
one or more types of non-functional requirements goals. Suppose a single channel can sometimes be shared
for confirmation and verification. Now confirmation-via-distinct-channel and verification-via-distinct-channel
are mutually synergistic if a new channel can be installed for shared use by the two, but mutually antagonistic
if the channel is unshareable.

3.4 Illustration

Consider the example of research expense management system in Section 1. Now assume that Alattributes (Rpt)]
is the root node of the goal tree representing an accuracy requirement, “all the attributes of expense reports
should be accurate”. The root goal can be refined with the subclass method into three offspring corresponding

to the subclasses of Rpt, specified as part of functional requirements (See Figure 3.1):

AND
Alattributes(Rpt)) —— {Afattributes(ProjRpt)], Alattributes(MtgRpt)], Alattributes(MbrRpt)]}

Now each of these offspring needs to be satisficed. Focusing on the subgoal of A[attributes(ProjRpt)], the
goal of Alattributes(ProjRpt)]is decomposed by the individual Atiributes method in terms of the accuracy
of the attributes.

AND
Alattributes(ProjRpt)] ——— {A[ProjRpt.mon],..., A[ProjRpt.budgetLeft]}

The legend for the symbols is given in Figure 2.1 (When omitted, assume that the link type for satisficing
and argumentation methods is sup in the remainder of this paper).

Focusing on A[(ProjRpt.exp)], the designer indicates that ProjRpt.exp is a derived information item,
where the derivation function, £, is shown in Figure 3.1. Thus, the derwedlnfo decomposition method is
instantiated: the function needs to be correctly designed and the parameters of the function should be
accurate. Next the subset method is instantiated for the decomposition of AccurateParameters[£]:

AND
A[ProjRpt.exp] —— {CorrectDerivFn[f,ProjRpt.exp], AccurateParameters[f]}
AND
Accurate Parameters[f] ——— {A[Exp.date|,..., A[Exp.proj]}

Two competing alternatives (i.e., digjunctive refinements) are foreseen by the designer for the date the ex-
pense was incurred: it may come from either the expense reimbursement requests (by requiring the members
to send their reimbursement request forms to the central management office), or the expense summary (by
requiring the secretary to submit it directly):

OR
A[Exp.date] —— {A[Exp.reim—req.date]|, A[Exp.summary.when]}

To explore the first alternative, the designer applies the attributeSelection method :

AND
A[Exp.reim—req.date] —— {A[Exp.reim—req], A[Reim—req.date]}
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To illustrate manipulation of information items, we introduce some method applications which were not
shown in Figure 2.1. The designer indicates that Exp.reim-req should be received from an external agent.
According to the conservation method, Exp.reim-req should be both accurate when received and correct
when processed by the system:

AND
A[Exp.reim—req] —— {A[Rec(Exp.reim—req)], CorrectProcessing[Reim—req.date]}

When invoked by the designer, the labelling procedure assigns U (undetermined) to all goals, since there
are no closed leaves. Although omitted, all the links in Figure 3.1 have S as their labels, since they are the
results of generic-method applications.

U) A[attributes(Rpt) ]

Alattributes (MtgRpt) ] U) Alattributes (ProjRpt) ] Alattributes (MbrRpt) ]

@ @ <U A [ProjRpt . exp] @

A[ProjRpt .mon] A[ProjRpt .budgetLeft]

AccurateParameters [£] (U @
CorrectDerivFu[£, ProjRpt.exp]

U) A [Exp.date]
A[Exp.reim—req.da% A[Exp.proj]

S A[Exp.summary.when]
A[Exp . reim-req] @ AlReim-req.date]

Al[Rec (Exp.reim-req)]

where £ = ComputeAmount (Exp, Exp.date, Exp.proj, ProjRpt.mon, ProjRpt.proj)
Figure 3.1: Goal graph structure with decompositions for accurate expense-reports attributes.

The designer uses the correctBErternalManipulation method to refine the accuracy of the received infor-
mation item (Figure 3.2):

AND
A[Rec(Exp.reim—req)] —— {CorrectCreation[Rec(Exp.reim—req)], CorrectinfoFlow[Rec(Exp.reim—req)]}

Unfortunately, ensuring the correct creation and subsequent transmissions of the item from the creator to the
system 1s in many cases costly and impractical. Accordingly, the designer may resign himself to using some
satisficing methods for A[Rec (Exp.reim-req)]. In selecting a method, the designer uses the argumentation
method of policy-manual-consultation, Designer’s Consultation Guidelines (DCG). The designer regards the
validation method to be appropriate:

CorrectInfoFlow[Rec(Exp.reim—req)] -, Validation[Exp.reim—req]
Note how the method above (call it validation.) is supported by a designer-supplied argument:
validation. i} InformalClaim[“DCG : Careful examination is preferred for
those materials that are directly related to issuing a cheque.”]

To satisfice the goal of validation, the designer again consults the DCG and discovers that class I secretary
is one, but not the only, good class of candidate for carrying out the validation. Thus, a class I secretary is
assigned (call the assignment, assign,) and the assignment is supported by:

eql
Validation[Exp.reim—req] BN FormalClaim[ ValidatedBy[Sec I,...]A...]

sup
assign, —— InformalClaim[“DCG : For ..., consider class I secretary.”]
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S [attributes (Exp), Sec I, alwaysDisallowed]
A [Rec (Exp.reim-req)]
@ S [attributes (Summary), Sec I, ...]

[attributes (Reim-req), Sec I, ...] CorrectlnfoFlow[Exp . reim-req]

-sup Validation[Exp . reim—-req] sub
ValidatedBy[Sec I, .. / £
InformalClaim ['DCG: For those general tasks '-'._S_.' InformalClaim ['DCG: Careful examination is
that require moderate experience, preferred for those materials that are
consider class | secretary."] directly related to issuing a cheque."]

Figure 3.2: Mutual exclusion in satisficing accuracy of received reimbursement information.

Now suppose, as in Figure 3.2, that a security requirement was considered earlier: reimbursements should
not be revealed to secretaries with a job classification below II. However, this is in direct conflict (i.e.,
mutually exclusive or sufficiently negative) with using a secretary of class I as the validator. Now the system
uses the correlation rules to propose two new links with type -sup:

—sup
Slattributes(Reim—req), SecI,AlwaysDisallowed) ——— Validation[SecI,Exp.reim—req,...]
—sup
Validation[SecI,Exp.reim—req,...] ——— S[attributes(Reim— req),SecI,.. ]

Suppose that the designer assigns FormalClaim[ValidatedBy[Sec I,...]A...] the label S (satisficed), and
labels all the other leaves®.

The labelling procedure of Section 2 propagates the labels upwards. Some of the results are shown in
Figure 3.2. Since the validation by a class T secretary is sufficient counter-evidence, the security goal (See
left-hand side of figure) is labelled D (denied). This value and the U value in the AND link in the upper-left
corner are further propagated; the minimum value of the two is selected, resulting in D.

Note that the denial of the root security goal is not final. Instead of a class I secretary, the designer may
see if a higher-ranking stafl member can do the validation. Other satisficing methods may be considered as
well. The designer will choose one alternative and provide an argument for later use in justifying the final
design; then the labelling procedure will update the labels which reflect the current status of the process.

The success, or lack thereof, of goal satisficing methods relies on the cooperation between the system
and agents in the environment, which is described in the user’s procedure manual,® which is initially drafted
during the design process. The manual indicates policies that the agents in the environment should obey
when interacting with the system in order to satisfice the methods selected. For instance, if a verification
method is selected, the manual indicates that a member must transfer his expense information to the system
and to the project office which will enter the same information into the system.

At the design stage, the choice of methods (related to requirements for accuracy, security, and the like)
results in selection among design alternatives.'? In the next section, we consider how performance goals are
dealt with in the implementation stage.

4 Dealing with Performance Requirements'!

8To resolve conflicts, a negotiation-based approach may be taken (e.g., [40, 24]). We use argumentation methods to record
how conflicts are resolved, e.g., by attachment of priorities.

®In acquiring formal requirements, [39] recognizes the need for generating documents which are in spirit similar to our
manuals.

108¢ee the description of dependency types in Section 2.3.
11 An earlier version [36] of portions of this section appears in the Proceedings of the Third International Workshop on
Database Programming Languages, Nafplion, Greece, August 1991.
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The previous section illustrates the dynamic process aspect of design. This section focuses on performance
requirements, as a second example of how a class of non-functional requirements can be treated within our
proposed framework. Unlike accuracy requirements which were treated in the context of system design,
performance requirements will be treated during the implementation phase when designs are mapped on to
implementations.

A starting point for understanding good system performance is the set of standard definitions from
computer systems theory (e.g., [27]), such as achieving low response time and suitable device utilizations. In
practice,'? performance goals often focus on response time and throughput, and are developed for particular
application systems. They are often stated briefly, yet users expect the system to somehow meet their
(implicit) performance concerns. And as we will see, performance goals can result in very complex goal-
graph structures.

When implementing an information system using performance as a main criterion, the implementor has
to abandon generic implementation algorithms and structures. Instead, implementation techniques have to
be selected on a case-by-case basis from a number of alternatives. Inputs to this mapping process are: 1)
a given set of implementation alternatives; 2) the source schema (some portion of the design specification);
3) a workload characterization for the particular system (e.g., an estimate of the number of researchers to
be handled by the expense management system); 4) performance goals, specified for a particular system. As
examples of performance goals, one could require that a researcher registering for a meeting should get from
the system under design fast response time, and that storage requirements for information on all researchers
be minimized. The framework detailed in section 2 is then applied for the satisficing of these qualitative
goals. Outputs of the process are the target implementation, goal graphs, and a prediction of performance
[36] calculated in terms of a performance model.

It is interesting to contrast the treatment offered in this section with other research based on the transfor-
mational approach, such as the TT system [2]. TI, like its transformation-based peers, focuses on correctness
requirements, i.e., making sure that the generated implementation is consistent with the original specifica-
tion. Performance, if treated at all, 1s treated as a selection criterion among alternative transformations.
Kant’s early work [25], on the other hand, does address performance goals. Her framework, however, focuses
on conventional programming-in-the-small rather than information system development, relies on quantita-
tive performance measures (which are available for her chosen domain but are, unfortunately, not available
for information systems because of their complexity) and assumes an automatic programming setting rather
than the dialectical software development process adopted here.

4.1 Layered Goal Structures

Since generating efficient implementations is better understood than some of the other phases of information
system development, we can impose additional structure in the representation of performance goals. This is
accomplished through a series of language layers, which account for potentially interacting data model fea-
tures, implementation techniques and performance characteristics of design languages. This layered approach
is inspired by a framework for prediction of performance of relational databases [22]. As design decisions
are made at higher layers, corresponding to higher levels of abstraction, they are reflected in lower layers
which describe the system in more detail. The layering shows where to introduce inputs related to design
components, thus providing the information needed to make implementation decisions, while controlling the
number of concepts to consider at a time.

We apply this layering approach to performance-based selection among implementation alternatives for
conceptual design specification languages.!> Our layering organizes some recent work on performance and
implementation from the areas of semantic data models and object oriented systems.'® For each layer, there
are goal graphs whose refinements have an impact on graphs at lower layers. Figure 4.1 shows a series of
linguistic subsets, where higher-level languages include more features supported by semantic data models:
0) The target relational data model, such as the database system facilities offered by the DBPL language
[6]; 1) Entities, both persistent data entities (such as John, an instance of Researcher), and finite entities

12Many thanks to Michael Brodie for his insight on the use of performance goals in industry.

12See [36] for more on performance prediction for conceptual design specification languages.

14This includes results on record layout for entities and attributes [9, 46, 35, 4], enforcement of constraints [44, 8], and process
scheduling [11].
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(e.g., integers), arranged in classes; 2) Attributes, defined on entity classes, roughly corresponding to the
Entity-Relationship Model [10]; 3) Transactions, modelled as classes with attributes and instance entities;
4) Entities and transactions with attributes, and classes arranged in IsA hierarchies, roughly corresponding
to the Taxis subset described in [35]; 5) The above Taxis subset, extended with constraints; 6) The source
conceptual design specification language, including constraints and long-term processes (whose nature has
aspects of entities and activities, as well as constraints), comparable to Taxis [11] or TDL [6].

Entity Activity ~Constraint Performance
Classification 1 / \
Time Space
Aggregation 2 3 / \ /] \
Specialisation 4 5 Throughput Response Main Secondary
6 Time Memory  Storage
Figure 4.1: Layers arranged in a grid. Figure 4.2: The Performance sort.

4.2 Performance Goal Refinement Methods

Performance goals drive selection of implementation alternatives, and are stated in terms of concepts appli-
cable to information systems, such as response time. Many of our methods are based on features specific to
information systems, and their implementation. All performance goals use the Performance sort. There are
several sub-sorts, some of which are shown in Figure 4.2.

4.2.1 Goal Decomposition Methods

One aspect of goal decomposition involves the selection of an appropriate sub-sort. For example, we can use
the time-space goal decomposition method to decompose the goal of “good performance for the Researcher
class at layer 4” into the goals of good time performance for Researcher at layer 4 and good space performance
for Researcher at layer 4:1°

AND
P[Researcher, 4] —— {Time[Researcher, 4], Space[Researcher, 4]}

Likewise, a goal involving time can be decomposed by the throughput-response time method, and a goal
involving space can be decomposed by the main memory - secondary storage method.
Another aspect of goal decomposition involves the decomposition of goal parameters. The subclass and
ndividual Attributes performance goal decomposition methods are similar to the structural methods with the
same names described in Section 3.

operational method. A performance goal on an information item i (such as a class, or an attribute of a
class) can be decomposed into the corresponding goal for the operations 0 on the item.

sub
P[i, Layer] —— {P[oj(i), Layer]|oj(i) is an operation on i}

This method can be specialized. The individual-bulk operations method decomposes a goal on the basis of
whether an operation manipulates one or many items. By the implementation components method, a goal
for an operation is decomposed into lower-layer components of the operation.

static-dynamic schema method. While the conceptual design (or schema) of an information system
may remain constant, in some cases it may be expected to change. For example, new specializations of
Researcher might be added over time with relative efficiency, without requiring the entire system to be shut
down and restarted. This method decomposes a performance goal for an information item, on the basis of
whether the schema is expected to change.

15Here P stands for the Performance sort.
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4.2.2 Goal Satisficing Methods

Some performance goal satisficing methods are available from systems performance engineering and semantic
data model implementation techniques. Indezing is positive for time but negative for space. By earlyFizing,
early connection is made between an action and the instructions that achieve it [43]. A specialization of
earlyFiring is staticOffsetDetermination, which determines offsets statically, rather than at execution time.
Using accessManyAttributesPerTuple, if many of the attributes in a tuple will frequently be accessed, time
goals can be positively satisficed.

4.2.3 Goal Argumentation Methods

Expected or actual usage statistics, and predictions of performance of implementation alternatives, can be
used as arguments for a choice of satisficing methods. Suppose we know that all references to information
item i in a segment of code can be uniquely determined statically, rather than being expressions with several
possible values. We write: EzplicitReferences[i, Layer]. An argument that information item is subject to
frequent changes in the schema can be written: FrequentSchemaChanges[i, Layer]

4.3 Tllustration

Returning to our research expense management system example, we will illustrate how a designer builds
a goal graph for a few layers starting at Layer 4 (IsA hierarchies), showing some goal refinement methods
and the impact of higher-layer goals upon lower ones. Figure 1.1 shows part of the IsA hierarchy for the
example. Of the 12 attributes (not shown) of the Researcher class, ten, including Name, are inherited from
Employee, while two others, including Meeting, are not inherited. Additional input information, such as
the distribution of class populations, is required to characterize the workload. Of the 2000 employees, for
instance, 1000 are researchers, including 700 computer researchers and 300 mathematicians. Of the two
non-inherited attributes of Researcher, the Meeting attribute is very frequently accessed. This information
can be included in argumentation structures.

Layer 4 selects implementations for attributes of entity classes; in the presence of IsA hierarchies, there
are several possible implementation techniques. Inheritance hierarchies result in collections of attribute
values whose appearance is more like a “staircase” than a relational table:1®

Name | Meeting | OperatingSystems

ComputerResearcher
Researcher

Employee

As a result, a simple relational representation may waste space. Options include using one relation per class:
storing either all attributes (newly defined or inherited) of a particular class in the corresponding relation
(horizontal splitting), or only the newly defined attributes (vertical splitting).

Turning to the top of the goal graph (See Figure 4.3, and the legend for symbols in Figure 2.1.), the
implementor’s Layer 4 goal is good performance for the attributes of the Researcher entity class. First,
the implementor decides to use the time-space method to decompose the goal into good time performance
and good space performance for the attributes. The implementor can then use the individual-bulk operations
method to decompose the time goal based on whether operations affect many entities, or just an individual
entity. The goal of good time performance for individual operations on attributes of the Researcher class
can now be decomposed by the indwidual Attributes method, resulting in goals for individual operations on
the Name attribute, the Meeting attribute, etc. The implementor then focuses on the Meeting attribute,
and observes that while most of the attributes of Researcher are inherited, Meeting is one of the two that
is not. The implementor also recalls that Meeting is frequently accessed. By storing only the non-inherited
attributes together, we have a small tuple size; moreover, of the attributes which are stored in the tuple, a
high proportion will be frequently accessed. The actual value of this ratio (50%) is recorded as an argument
for selecting the satisficing goal of improving time performance by accessing many attributes per tuple.
This satisficing goal leads to selection of an implementation using vertical splitting for the attributes of

16Tn the illustration, not all attributes are shown.
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LAYER 4 Pl[attributes (Researcher), 4] attributes of
. Researcher
time-space

Time[attributes (Researcher), 4]
individual-bulk

Time[individual operations on
attributes (Researcher), 4]

Space[attributes (Researcher), 4]

Time [bulk operations on
attributes (Researcher), 4]

individual attributes
Time [individual operations on
Researcher .Meeting, 4]

Time[individual operations on
Researcher .Name, 4]

7S
>‘\-1‘InformalClaim["50% attrs. frequently accessed"]
AccessManyAttributesPerTuple ReduceDuplicati it ifi
- iplicationOfEntityldentifiers
[Researcher.Meeting, 4] ()\"\.\ [attributes (Researcher), 4]]7
T < /
VerticalSplitting HorizontalSplitting
[Researcher, 3] [Resarcher, 3]
Time[individual operations on UniformTime(individual operations on ingividual ops, on

Researcher.Meeting, 3] Researcher Meeting, 3] Meeting

LAYER 2 . : Time[retrieve sub
Time([find offset, 2] from storage, 2]
FormalClaim [ Ex, %ltcttReferences s~ sub ~~ FormalClaim
[Researcher .Meeting, 2]11% . <o [F requentSchemaChanges
. L [Researcher .Meeting, 2]]
EarlyFixing[find offset, 2] ReduceRunTimeReorganization
: [retrieve from storage, 2]
LAYER 1 M/
StaticOffsetDetermination DynamicOffsetDetermination
[Researcher .Meeting, 1] [Resarcher .Meeting, 1]

Figure 4.3: A Performance goal graph.

Researcher and its specializations. Another implementation alternative is horizontal splitting, which can
offer better space performance.
At Layer 4, the designer dealt with the Researcher class in an IsA hierarchy, leaving the mapping target at

Layer 3 being the Researcher class using vertical splitting. The satisficing goal AccessManyAttributesPerTuplel. .

is refined to the Layer 3 (transactions) goal of good time performance for individual operations on the Meeting
attribute of Researcher. Thus the implementor continues addressing the goal of good time performance,
but at Layer 3, which deals with operations without inheritance.

The implementor decomposes the Layer 3 Time goal (See middle left of Figure 4.3) according the im-
plementation components of the operation (only some of which are shown). The result is a set of Layer
2 (attributes) time goals — for finding the offset for the Meeting attribute field within a relational tuple,
retrieving the value from secondary storage, etc. The implementor focuses on finding the offset quickly;
earlyFiring 1s positive. The implementor reviews the source schema and observes that Meeting is always
referenced explicitly in the code. EzplicitReferences[Researcher.Meeting, 2] is recorded as an argument
for the sub link, and static offset determination for the Meeting attribute is chosen as an implementation
technique. Thus the implementor has dealt with a Layer 2 issue, resulting in a mapping target at Layer 1.

An alternative implementation is dynamic offset determination. The -sub link records its negative impact
on the goal of minimizing time. However, this would have a positive impact on another goal — offering
uniform time performance. As shown in the lower right-hand side of Figure 4.3, when dealing with frequent
schema changes, a structure which reduces expensive run-time reorganization can offer less variation in

19

-]



response time.

5 Conclusions

The main contribution of this research is that it offers a concrete framework for integrating non-functional
requirements into the software development process, at least for information systems. In tackling this task,
our research extends earlier work by Lee [28, 29] and [38, 14]. The framework is still under refinement and
a prototype implementation is under way, intended to provide a vehicle for more thorough testing and for
gaining experience with the framework’s strengths and weaknesses.

Much remains to be done with this work. Firstly, the framework needs to be applied to other types of non-
functional requirements and life-size examples. Secondly, the framework needs a theoretical foundation for
representing and reasoning with non-functional requirements. This foundation needs to include a semantics
for non-functional requirements. For example, what does it really mean to claim that a particular design
decision enhances system accuracy concerning employee data? Moreover, a proof theory based on this
semantics is required, including efficient algorithms for special classes of inferences related to non-functional
requirements. The whole framework we have offered here can then be justified on formal semantic grounds
rather than informal, intuitive ones.

Unfortunately, it seems that such a formal semantic treatment of non-functional requirements would need
to be done individually for different types of requirements and is therefore a long term research project. In
the meantime, an experimental approach such as the one adopted here can offer solutions that may find
immediate use in an area of computer practice that is in great need of concepts, methodologies and tools.
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