
Page ‹#›

Information Systems Analysis and Design csc340

 2003 John Mylopoulos Architectural Styles -- 1

XVIII.1 Software ArchitecturesXVIII.1 Software Architectures
Software ArchitecturesSoftware Architectures

Subsystems, Modules and ConnectorsSubsystems, Modules and Connectors
Pipes and Filters, Object-Oriented, Layered,Pipes and Filters, Object-Oriented, Layered,

Event-Driven, Repository-Based ArchitecturesEvent-Driven, Repository-Based Architectures
Client Server ArchitecturesClient Server Architectures

Web-Based Software ArchitecturesWeb-Based Software Architectures
ExamplesExamples

Information Systems Analysis and Design csc340

 2003 John Mylopoulos Architectural Styles -- 2

Architectural Styles
� It is useful to classify software architectures into classes of

architectural styles.
� For example, the client-server architecture discussed earlier is

an architectural style.
� The styles we’ll discuss below are as follows:

� Pipes and filters;
� Object-Orientation;
� Event-Based
� Layered;
� Repository-Based;
� Client-Server;
� Three-Tier;
� …more...

Page ‹#›

Information Systems Analysis and Design csc340

 2003 John Mylopoulos Architectural Styles -- 3

Pipes and FiltersPipes and Filters
� Each component has inputsinputs and outputsoutputs. A component

reads streams of data on its inputs and produces data on its
outputs, continuously as data are coming in.

� Components compute by performing local transformations on
their inputs to produce their outputs and are termed filtersfilters.
The connectors of components transmit the outputs of one
component to the inputs of another and are termed pipespipes.

� Unix supports a linear pipe and filter architecture called
pipelinepipeline. I/O

Information Systems Analysis and Design csc340

 2003 John Mylopoulos Architectural Styles -- 4

Pipes and Filters: Strengths andPipes and Filters: Strengths and
WeaknessesWeaknesses

StrengthsStrengths
• Makes it easy to understand overall function of the system as a

composition of filter functions
• Encourages reuse of filters
• Facilitates maintenance
• Facilitates deadlock and throughput analysis

WeaknessesWeaknesses
• Often leads to batch-type processing
• Not good for interactive applications where you often want to do

incremental computations, e.g., incremental display updates
• Can’t coordinate stream inputs
• Data transmission critical for system performance

Page ‹#›

Information Systems Analysis and Design csc340

 2003 John Mylopoulos Architectural Styles -- 5

Data Abstraction andData Abstraction and
Object-OrientationObject-Orientation

� Data structures and their associated operations are
encapsulated encapsulated in an abstract data type abstract data type (ADT) or objectobject. The
components of a system are instances of an ADT and they
interact through procedure (or methodmethod) calls

� An object is responsible for preserving the integrity of its data
structures and also these data structures are hidden from
other objects.

� Objects may operate concurrently or not

obj

obj
obj

obj

methods

method call

Information Systems Analysis and Design csc340

 2003 John Mylopoulos Architectural Styles -- 6

Data Abstraction: Strengths andData Abstraction: Strengths and
WeaknessesWeaknesses

StrengthsStrengths
� Possible to change implementation of an object without affecting its

clients
� Encourages decomposition of a problem into a number of

interacting components/agents
� Encourages software reuse

WeaknessesWeaknesses
� For an object to interact with another, it must know its identity (not

so for pipe&filter architectures)
� When the methods of an object change, so must all other objects

that use this object

Client-Server Architecture a special case ofClient-Server Architecture a special case of
the Data Abstraction Architecturethe Data Abstraction Architecture

Page ‹#›

Information Systems Analysis and Design csc340

 2003 John Mylopoulos Architectural Styles -- 7

Event-Based ArchitecturesEvent-Based Architectures
� Instead of invoking a procedure directly, a component can

announce announce one or more eventsevents (such as arrival of data or
execution of an operation)

�On <event> if <condition> then <action>
�On arrive(D) if D < a or D ≥ b then print(“out of

bounds”)
� Such procedures are also called triggers, actors or event-

condition-action (ECA) rules
� An advantage of event-based invocation is that it encourages

reuse; a component can be introduced in a system simply by
registering it for the events of that system

� A drawback is that sometimes event-based systems become
quite unpredictable and hard to control.

Information Systems Analysis and Design csc340

 2003 John Mylopoulos Architectural Styles -- 8

InformationInformation
sourcesource

InformationInformation
sourcesource

InformationInformation
sourcesource

Interface libraryInterface library
(services,events)(services,events)

Interface libraryInterface library
(services,events)(services,events)

Interface libraryInterface library
(services,events)(services,events)

InterfaceInterface
librarylibrary

(services,(services,
events)events)

RuleRule
setset

RuleRule
engineengine

KBKB
schemaschema

[Gal97][Gal97]

Event-Based Architecture
for Data Integration

Page ‹#›

Information Systems Analysis and Design csc340

 2003 John Mylopoulos Architectural Styles -- 9

Layered SystemsLayered Systems
� A layered system is organized hierarchically, each layer

serving the layer above. In some systems, inner layers are
hidden in all but the adjacent outer layer.

� Best examples of layered software systems are layered
communication protocols.

� Layered systems support design based on increasing levels of
abstraction. However, not all systems can be structured in a
layered fashion.

Core
Level

Basic Utilities

Useful Systems

Information Systems Analysis and Design csc340

 2003 John Mylopoulos Architectural Styles -- 10

Repository-Based ArchitecturesRepository-Based Architectures

Enterprise
Modelling

Produce
Generate

Analyze
Design Build/Test

Production
Maintenance

Software Repository

Page ‹#›

Information Systems Analysis and Design csc340

 2003 John Mylopoulos Architectural Styles -- 11

Repository-Based ArchitecturesRepository-Based Architectures
� A repository architecture consists of a central data structure

(often a database) and a collection of independent
components which operate on the central data structure

� Examples of repository architectures include blackboardblackboard
architecturesarchitectures, where a blackboard serves as communication
centre for a collection of knowledge sources, and database
systems serving several applications

� Repositories are very important for data integration, are being
introduced in a variety of applications, including software
development, CAD etc.

Information Systems Analysis and Design csc340

 2003 John Mylopoulos Architectural Styles -- 12

Other Architectural StylesOther Architectural Styles
�� Table-Driven Interpreters Table-Driven Interpreters -- each interpreter offers a “virtual

machine” to high layers of interpreters; special case of the
layered architecture

�� Distributed Processes Distributed Processes -- program consists of distributed
components organized into a static or dynamic configuration;
this is a special case of the object-oriented architecture

�� Main Program/Subroutine Main Program/Subroutine -- FORTRAN-style architecture
�� State-Transition Architecture State-Transition Architecture -- system structured in terms

of states, state transitions; useful architecture for real-time
systems.

Page ‹#›

Information Systems Analysis and Design csc340

 2003 John Mylopoulos Architectural Styles -- 13

Additional ReadingAdditional Reading

[Architectures] http://www.pithecanthropus.com/~awg/browsing_library.html
[Bass98] Bass, L., Clements, P., Katzman, R., Software Architecture in Practice,
Addison Wesley, 1998.
[Gal97] Gal, A. and Mylopoulos, J. “The CoopWARE Demo”,
http://www.cs.toronto.edu/~coopware, 1997.
[Garlan93] Garlan D. and Shaw, M., “An Introduction to Software Architectures”,
in Advances in Software Engineering and Knowledge Engineering, volume I,
World Scientific, 1993.
[Umar97] Umar, A., Application Reengineering, Prentice Hall, 1997.

