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1 Introduction

1.1 What is VIX

VIX, or CBOE Volatility Index, as defined by CBOE [2018] is a measure of implied volatility
of 30-day S&P500 options (SPX) created by the Chicago Board Options Exchange (CBOE). The
CBOE is the largest options exchange in the world, selling through both electronic and open outcry
channels. VIX measures the volatility as priced in the S&P500 index options by the market. Near
term (23 day) and Next term (>30 day) at-the-money and out-of-the-money options are weighed
by time to maturity and moneyness to interpolate a 30-day price of volatility. VIX is also known
as the fear index, based on its correlation with market panics in the past. Normally when market
panics or crashes, VIX spikes to reflect a new-found short-term volatility. A related index is VXO,
or the ”original” VIX, where the underlying index is S&P100, or OEX, and only at-the-money
option is considered.

With the VIX futures and options launched by the CBOE in 2004 and 2006 respectively, investors
have an instrument to hedge against market volatility. Investors could include VIX options in
their portfolio to shield it against an unexpected market downturn. It has since become the most
successful security the CBOE has launched. Because of its success, the CBOE launched a few
related indices like 9-day volatility index VXST, 3-month volatility index VXV, 6-month volatility
index VXMT, Nasdaq-100 30-day volatility VXN, DJIA volatility VXD, Russell 2000 volatility
index RVX.

Implied volatility is the future volatility under no arbitrage principle as priced in the option.
Formulas such as Black-Scholes take account of such volatility when pricing options, and similarly,
we can back off the volatility from the option price. A related, but distinct concept is that of a
historical volatility, which is calculated as the standard error of S&P500 in a specific time period
of the past (such as past 30 days). It is an accurate ex-post measure of volatility but is useless in
hedging unforeseen market events.

1.2 Evolution of VIX

Figure 1 presents an evolution of VIX and VXO from 2004 to present. There are a few spikes along
the way, on the days that S&P500 index fell sharply or unexpectedly. The largest spike is around
2008 financial crisis where the stocks fell continuously. The spike around 2011 when the US’s credit
rating was downgraded. A spike around summer 2015 is caused by Greek’s sovereign bond crisis.
Then there was a spike in 2018 due to a large correction and worries about Fed overtightening.
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Figure 1: Evolution of VIX and VXO

Although the evolution of VIX and VXO are largely similar, there are pronounced differences
around the 2008 financial crisis, as shown in figure 2, where diff = VIX − VXO. The anomaly
around 2008 is in small part due to the larger diversification of S&P500 index as opposed to the
S&P100. The larger part is due to VIX capturing out-of-the-money puts investors bought when
the market is in free fall.

Figure 2: Evolution of the Difference
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1.3 Historical Data

In this section I present statistical summary and fitness gauges with regarding to historical VIX
and VXO data, Table 1 presents the first four moments

Mean Variance Skewness Kurtosis
VIX 18.45766 78.86871 2.663491 12.51215
VXO 18.18334 89.70345 2.766474 13.64604

Table 1: Moments for VIX and VXO

From the previous section we could see a clear correlation between VIX and VXO, but one might
wonder how they are distributed. From the moments, it is clear that they do not fit a Gaussian
distribution, which has Skewness 0 and Kurtosis 3 regardless of mean and variance. Table 1 strongly
refutes that VIX and VXO are Gaussian.

Regardless, we fit a Gaussian and a Lognormal distribution to both VIX and VXO. The results are
presented below. Figure 3 and 5 shows a best-fit Gaussian and Lognormal distributions to VIX and
VXO respectively. From figure 4 and figure 6, we could clearly see that both VIX and VXO are
not Gaussian, with Q-Q plots deviating far from the 45 degree line. On the other hand, Lognormal
distribution fits the data quite well, as shown by both the best fit figures and Q-Q plots. The only
exception is right tail data, which is fatter than our theoretical distribution.

Figure 3: Best fit for VIX
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Figure 4: QQ plot for VIX

Figure 5: Best fit for VXO

Figure 6: QQ plot for VXO
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1.4 Rolling Window

In this section we present the rolling mean, variance, VaR at 25% and VaR at 75% for both VIX
and VXO. See figure 7 and figure 8. We compute the 2-year rolling period by holding the number
of days in each period constant, and we assume each month is 21 days, such that each 2-year period
is 24× 21 = 504 days. The value on x-axis represent the starting date of the time period.

As shown in the figures, the realized volatility of VIX over a 2-year window is incredibly varied as
well. We observe that during the 2008 (2006 on the x-axis) financial crisis, where VIX unprece-
dentedly shot up, the realized variance of VIX went up, and the gap between 25%, 50% and 75%
widened accordingly. We also see that outside the periods of great uncertainty, the variance is
generally low.

Since participants in the capital markets trade VIX, it is only reasonable that they want to hedge
against volatility of VIX. To provide a more concrete example, VIX ETNs require rolling VIX
future contracts, and since they are in contango - meaning the spot price decreases the nearer to
maturity - that the price required to roll the futures are significant. Thus, all VIX ETNs exhibit
an inevitable downward slope. This creates an opportunity for institutions to short VIX futures
to ETN providers and to reap the risk premium. Because of this, many big institutional investors
are constantly shorting VIX futures. To provide hedge, they want to long the volatility of VIX,
such that with a small risk premium, a large loss from their short VIX futures positions could be
avoided. Knowing this, the CBOE publishes a VVIX index that tracks the implied volatility of
VIX. Parties could also trade volatility swaps on VIX.

Figure 7: VIX 2-Year Rolling Stats
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Figure 8: VXO 2-Year Rolling Stats

1.5 Comparison with VXO

As mentioned previously, there was a change of methodology in 2003 when calculating VIX. Pre-
viously the calculation is based on at-the-money S&P100 (OEX) options, then it changed to both
at-the-money and out-of-the-money S&P500 (SPX) options. This change has 2 underlying reasons
as stated by Whaley [2008].

1. At inception of VIX in 1993, OEX is the most actively traded options on the market, account-
ing for 75% of index option volume, six times that of SPX, however, as investors embraced
diversification, and SPX futures and options proliferated, it has overtaken OEX in great
numbers. In fact, by 2008, SPX volume is more than 12 times that of OEX.

2. Moneyness in calculation changed because when VIX is first introduced, only near-the-money
options are frequently traded, however, that quickly changed as portfolio insurers bought large
volumes of SPX puts to guard against losses.

These two reasons prompted the CBOE to change the methodology provide investors with an
up-to-date index that reflects the investment landscapes and needs of the day.

2 Random Walk and VIX

Fama [1995] states that stock prices followed a random walk pattern where price moves are inde-
pendent. As a result, any effort to predict the future movement based on the past, assuming the
theory is true, would not be effective. In addition, fundamental analysts, which concerns themselves
only with intrinsic value of stocks, are no better than random selection unless they have private
information or insights regarding existing information that the market does not capture. In this
section we lay out the mathematical terms of the theory and apply it to the VIX data of previous
chapters.
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2.1 Mathematics of Random Walk

Denote the price of a security at time t by pt and let ϵt an independently distributed random
variable that represents the price adjustments at time i when new information are revealed. Then
security’s price follows a random walk given initial price p0 if pt = p0 +

∑t
i=0 ϵi. We do not impose

identical distribution on ϵi since the information revealed on i is not necessarily identical across
time. It is clear that

E(pt+1 | pt) = pt + E(ϵt+1) = E(pt+1 | pt, pt−1, pt−2 . . . )

Meaning that the current price is as useful in predicting the future as the entire history of prices. In
other words, given we already have the price today, past price information is not useful in predicting
the future in any way. Thus, random walk hypothesis is a direct rebuttal to technical analysis,
which assumes past patterns repeat in the future.

2.2 Autocorrelation of VIX

Define the time series yt = log(V IXt), we run the autocorrelation function (ACF) on the series
with lag 260 to denote a financial year. If there is a seasonal pattern, it should be seen in ACF.
The result is presented in figure 9. Clearly, the autocorrelation function is a decaying function,
however, the decay is very slow, to the extend that the autocorrelation at lag 260 is 0.403.

Figure 9: Autocorrelation for yt

One might wonder, given the high autocorrelation, if a unit root is present or that the time series
is not trend stationary. We apply Augmented Dickey-Fuller test for unit root and obtain a p-value
of 0.0071, well below α = 0.05, which means the null hypothesis that a unit root is present must
be rejected. We also apply a Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test to complement the
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unit root test, and we obtain a p-value of 0.01, also below α = 0.05. However, because H0 for KPSS
test is that no unit root exists, the result of KPSS test directly contradicts with ADF test. What
gives? It turns out that there are specific examples where ADF test do not provide a convincing
answer to the stationarity problem, such as xt = (−1)t. As a result, we conclude that it is not clear
whether or not yt is stationary just by looking at test results.

2.3 Fitting an ARMA Model

Regardless, we fit an ARMA model to yt. Using a small scale model search based on the Akaike
information criterion (AIC), we obtain an optimal set of order (2, 1). The autoregressive coefficients
are shown in table 2. Both coefficients are very significant with p-value extremely close to 0, and
ϕ1 + ϕ2 = 1.759− 0.761 = 0.998, extremely close to a unit root.

Coefficient p-value
ϕ1 1.759 6.64e-179
ϕ2 -0.761 9.47600231e-254

Table 2: Autoregressive coefficients for ARMA(2,1)

The residuals from our ARMA(2,1) model is plotted in figure 10. It seems that the residual is
indeed a white noise process as an ARMA model would imply. But when we run Ljung–Box test
for autocorrelation of residuals, we find that it is not the case. The p-values for Ljung-Box q-
statistic at all lags are 0, which suggests that the residuals are serially dependent, a likely case of
model misspecification.

Figure 10: Residuals from an ARMA(2,1) for yt
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2.4 Differencing the Time Series

Now we integrate yt by order 1, i.e. define a new time series ∆yt = yt − yy−1, which represents the
log return of VIX. We perform the same analysis from the previous subsection on this integrated
data set. The ACF is shown in figure 11. We can see that autocorrelation quickly drops to 0
compared to the ACF for yt.

Figure 11: Autocorrelation for ∆yt

Unit root tests also confirm that ∆yt is trend stationary, ADF test gives a p-value of 0, rejecting the
existence of a unit root, while KPSS test returns a p-value of > 0.1, also confirming stationarity.
The coefficients from table 3 also confirms the stationarity tests, since 0.818+0.0186 = 0.8366 < 1.

Coefficient p-value
ϕ1 0.818 9.91680787e-01
ϕ2 0.0186 1.16485807e-69

Table 3: Autoregressive coeffecients for ARIMA(2,1,1)

Again, Ljung–Box test rejects the null hypothesis with p-value = 0 and concludes serial dependence
exists in residuals. This is likely due to model misspecification in that the linear structure of ARMA
is unsuited for VIX data.
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2.5 Applying EMH to VIX Returns

If the weak form of efficient market hypothesis holds, the price of a security, in our case VIX, would
resemble a random walk up to a drift. In mathematical terms,

log pt = µ+ log pt−1 + ϵt

log pt − log pt−1 = µ+ ϵt

∆pt = µ+ ϵt

To test efficient market hypothesis on our VIX returns from last section, we define a regression test
of VIX return on its lagged return.

∆yt = β0 + β1∆yt−1 + β2∆y2t−1 + ϵt (1)

If the random walk hypothesis holds, we should identify a coefficient of 0 on lagged returns and
risk premium, i.e. β1 = β2 = 0. The regression results of equation 1 is presented in table 5 below,
notice the both β1, β2 are non-zero, and that p-value for both β1 and β2 are very significant. Clearly
there is a statistically significant, albeit near zero, short-term predictability associated with VIX.
However, the more salient point here is that risk premium on VIX is in fact large and negative,
meaning that the volatility is negatively correlated with short-term return. This is reasonable,
considering VIX derives its utility by acting as an insurance plan to guard against volatility in a
stock portfolio, and if VIX is volatile, then its insurance value is somewhat negated. We reject
either of them being 0, a direct contradiction to the random walk hypothesis which dictates that
past information has no value in predicting future returns.

Coefficient p-value
β0 0.00096234 4.32595449e-01
β1 -0.07106933 2.36555536e-05
β2 -0.18976056 3.28175691e-02

Table 4: Testing Random Walk Hypothesis on VIX

2.6 Long-Term Predictability

In the previous section, we observe that in the short-term we can predict VIX to a small extent,
but what if we stretch the time window to weeks, months or even years? Let 0 < b < e, b, e ∈ N
be beginning and end date, define ∆yb,e = ∆yb +∆yb+1 · · ·+∆ye−1 +∆ye, which is the log-return
between b and e. Let h be the prediction window length in days, then ∆yt−h+1,t is the log-return
of past h periods, and ∆yt+1,t+h is the log-return of h periods into the future. We formulate

∆yt+1,t+h = βh∆yt−h+1,t + wt,h

Where w is a white noise. The βh term, as a function of h, describes relationship between past
return and future return, while R2 signifies predictability. Result of the regression is presented in
figure 12. We note that VIX return has a strongly cyclical pattern over period of roughly 260 days,
or a year. Since the βh is negative for all periods, VIX also exhibits strong mean reversion, especially
for prediction window of 2 or 4 years, per the cyclical pattern. When it comes to R2, it is clear
that it has a upward trend with strong uncertainty. We believe that, perhaps counterintuitively,
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that VIX return is more predictable over the long run because of its mean reversion property. This
is a result of the cyclical nature of the real economy, where credit cycles stresses the stock market
during certain periods while accommodates it during others. Our assertion is supported by Fama
and French [1989], who notes that the return is dependent on business conditions through the risk
premium.

Figure 12: Effect of past VIX on future returns
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3 Realized Volatility

3.1 Measures of Realized Volatility

In this section we construct two measures of realized volatility on SPX, and contrasts it with implied
volatility VIX. They are defined as follows,

rt =
SPXt − SPXt−1

SPXt−1

vt,1 = r2t

vt,2 =
1

25

25∑
i=1

vt−i,1

The measure vt,1, or squared daily return, is a very short term volatility measure while vt,2 is a
smoothed series by taking the 25-day moving average of vt,1.

3.2 SPX Data

We take daily SPX closing price from CBOE and calculate rt based on formula above, 13 plots the
series rt. The mean daily return is about 0.0343%, very close to 0. However, it does not mean that
we should simply round it off and claim it is 0. Indeed, if we annualize, it is about 9%, very far
from zero return. To judge whether EMH applies to SPX or not, we plot the ACF for rt in figure
14, and it is clear from the sharp drop-off that autocorrelation isn’t significant. To strengthen the
claim, we ran ADF and KPSS tests, which gave p-value of 0 and > 0.1 respectively, both confirming
stationarity. It is possible and from the numerical evidence, even likely, that EMH applies for SPX.

Figure 13: SPX Daily Returns
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Figure 14: Autocorrelation for SPX Return

3.3 Volatility Data

The evolution of VIX, vt,1 and vt,2 are shown in figure 15. From the figure it is clear that up
to a multiplicative factor, VIX anticipates volatility, as measured by square returns, rather well.
Overall the peaks and troughs of vt,1, vt,2 and VIX track very closely. All measures peaked near
Asian financial crisis of 1997, dot-com bubble of 2000, terrorist threat of 2001, financial crisis of
2008 and debt crisis of 2010. The daily volatility measure of vt,1 varies quite a bit more, while
the implied and smoothed measures of VIX and vt,2 see dampened movement. From the shapes
alone, we note that VIX and vt,2 are very similar. To analyze it further, we computed the mean
and variance-covariance matrix, and they are as follows

Mean Variance
V IX 19.3 61.61
vt,1 1.23 16.56
vt,2 1.23 4.71

Table 5: Mean and Variance for Volatility Measures

Σ =

σ
2
V IX,V IX σ2

V IX,vt,1
σ2
V IX,vt,2

σ2
vt,1,V IX σ2

vt,1,vt,1 σ2
vt,1,vt,2

σ2
V IX,vt,2

σ2
vt,1,vt,2 σ2

vt,2,vt,2

 =

61.61 14.78 13.34
14.78 16.56 3.90
13.34 3.90 4.71


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Figure 15: Evolution of Realized Volatility

Using spectral decomposition, we write Σ = QΛQ−1, where Q is the matrix whose columns are
eigenvectors of Σ, and Λ is a diagonal matrix where the values on the diagonal are the eigenvalues
whose order is the same as the order of their corresponding eigenvectors in Q. We obtain a
decomposition as follows

Q =

−0.94 −0.28 −0.20
−0.28 0.96 −0.05
−0.21 −0.01 0.98

 , Λ =

69.02 0 0
0 12.14 0
0 0 1.71


Clearly, the smallest eigenvalue is 1.71, different from a risk-free portfolio of 0. As a result, we
could not have found an arbitrage portfolio such that by buying and selling it and a safe asset we
obtain limitless risk-free return.

3.4 Vector Autoregression

We estimate a vector autoregression (VAR) model on the time series

Yt =

V IXt

vt,1
vt,2


Yt = c+AYt−1 + ϵ

The result is as follows

c =

0.605
−2.06
−0.01

 ,A =

 0.963 0.144 0.0003
−0.0155 −0.0185 0.043
0.0983 0.427 0.959


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Granger causality test shows that vt,2 and vt,1 granger causes the other two, while VIX granger
causes vt,1. We apply the same eigendecomposition procedure on the variance-covariance matrix of
the residual from the VAR model, and we obtain the following results

Σϵ =

 2.313 0.677 −0.002
0.677 12.915 0.045
−0.002 0.045 0.02

Qϵ =

0.063 0.998 0.002
0.998 −0.063 −0.004
0.003 −0.002 1

 , Λϵ =

12.96 0 0
0 2.27 0
0 0 0.019


The smallest eigenvalue is λ3 = 0.019, substantially closer to 0 than we previously observed.
Does it mean we have an arbitrage opportunity this time? To answer this we must note the
difference between the settings by which we conduct the eigendecomposition. In the last section,
the decomposition is on the volatility measures we constructed. Assuming we could trade on each
of the measures, if we have an eigenvalue of 0, we are certain that there is a portfolio by which
we could arbitrage against a safe asset. Here it is different as we are dealing with the residual of
a VAR model and its variance-covariance matrix. A eigenvalue of 0 means that the residuals do
not vary with a portfolio with allocation given by the eigenvector corresponding to the eigenvalue
0. This is in contrast with the previous notion where the level of volatilities themselves did not
vary. As a result, we could either subsume the residual term into the constant term or eliminate it
outright, given that residuals have zero mean. It would entail that we have removed the stochastic
part and we are left with a deterministic linear trend, meaning we could predict the future levels
of volatilities with certainty. However, it would still not constitute an arbitrage opportunity, as we
may not make money if the price of the goods are the same, so lastly we would require the forward
price of the portfolio of volatilities to diverge from our surefire prediction of the future price. In
practice our eigenvalue is still different from 0, meaning that there are still risks involved and it
would not constitute an arbitrage opportunity.

4 Causality and Conclusion

What do we gain from analyzing implied and realized volatilities? Do one of them predict the
other, given the VAR analysis in the previous section? To answer this question, we breakdown the
causality chain in VAR model in figure 16. It is clear that if we do not restrict the distribution
of error term to be structural, i.e. each shock or innovation being independent of each other,
determining the causality would be difficult because of the ”instantaneous causality” between the
error terms.
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Figure 16: Chain of Influence in a VAR Model

At the end, we would like to comment on some of the differences between implied and realized
volatility. Implied volatility is a measure of future volatility priced in by the market through
derivatives. Realized volatility is a mathematical construct on past stock returns. Both measures
are backward facing as they are dependent historical data, but Christensen and Prabhala [1998]
has found that implied volatility contains more information in predicting the future compared to
historical volatility. This is as we should expect, that if the option market is efficient, the price of
options used to calculate the implied volatility should contain all the public information such that
implied volatility reflects the best predictor of what’s going to happen.
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5 Appendix

util.py
import csv
import math
import numpy as np

def importvix ( path ) :
vix = [ ]
dates = [ ]
with open( path , ’ r ’ ) as c s v f i l e :

reader = csv . reader ( c s v f i l e )
for row in reader :

dates . append ( row [ 0 ] )
vix . append ( row [ 1 ] )

return dates [ 1 : ] , np . array ( [ f loat ( a ) for a in vix [ 1 : ] ] )

v.py
import numpy as np
import csv
import sc ipy . s t a t s
from u t i l import importvix

def roll ing_window_stats ( i n f i l e , o u t f i l e ) :
dates , vixopen = importvix ( i n f i l e )
t = 0
with open( o u t f i l e , ’w ’ ) as f :

wr i t e r = csv . wr i t e r ( f )
wr i t e r . writerow ( [ ’ date ’ , ’mean ’ , ’ var ’ , ’ 25 th␣ p e r c e n t i l e ’ , ’ 75 th␣ p e r c e n t i l e ’ ] )
while ( t+23) ∗ 21 < len ( dates ) :

window = np . array ( vixopen [ t ∗ 21 : ( t+23) ∗ 21 ] )
row = [ dates [ t ∗21 ] , sc ipy . s t a t s . tmean(window ) , sc ipy . s t a t s . tvar (window ) , \

np . p e r c e n t i l e (window , 25) , np . p e r c e n t i l e (window , 75 ) ]
wr i t e r . writerow ( row)
t += 1

i f __name__ == ’__main__ ’ :

18

https://doi.org/10.2469/faj.v51.n1.1861
http://www.sciencedirect.com/science/article/pii/0304405X89900950
http://www.sciencedirect.com/science/article/pii/0304405X89900950


An Analysis of VIX Yu & Li

roll ing_window_stats ( ’ . / vxocurrent . csv ’ , ’ vxostats . csv ’ )

lognormal.py
from u t i l import importvix
import matplot l ib . pyplot as p l t
import numpy as np
import csv
import math
import sc ipy . s t a t s as s t a t s

def export_fig ( d i s t , i n f i l e , o u t f i l e , t i t l e ) :
# VIX
dates , vixopen = importvix ( i n f i l e )
count , bins , ignored = p l t . h i s t ( vixopen , 100 , dens i ty=True , a l i gn=’mid ’ )
x = np . l i n s pace (min( bins ) , max( bins ) , 10000)
param = d i s t . f i t ( vixopen )
pdf = d i s t . pdf (x , ∗param [ : −2 ] , l o c=param[ −2] , s c a l e=param[ −1])
p l t . p lot (x , pdf , l inewidth =2, co l o r=’ r ’ )
p l t . t i t l e ( t i t l e )
p l t . x l abe l ( ”Opening␣ pr i c e ” )
p l t . y l abe l ( ” Density ” )
p l t . s a v e f i g ( o u t f i l e , dpi=750)
p l t . c l f ( )

def main ( ) :
export_fig ( s t a t s . norm , ’ . / v ixcurrent . csv ’ , ’ vixnormal . png ’ , \

’ Normal␣ Fit ␣ to␣VIX␣Open ’ )
export_fig ( s t a t s . lognorm , ’ . / v ixcurrent . csv ’ , ’ vixlognormal . png ’ , \

’ Lognormal␣ Fit ␣ to␣VIX␣Open ’ )
export_fig ( s t a t s . norm , ’ . / vxocurrent . csv ’ , ’ vxonormal . png ’ , \

’ Normal␣ Fit ␣ to␣VXO␣Open ’ )
export_fig ( s t a t s . lognorm , ’ . / vxocurrent . csv ’ , ’ vxolognormal . png ’ , \

’ Lognormal␣ Fit ␣ to␣VXO␣Open ’ )

i f __name__ == ’__main__ ’ :
main ( )

qqplot.py
from u t i l import importvix
import matplot l ib . pyplot as p l t
import numpy as np
import sc ipy . s t a t s as s t a t s
import statsmodels . api as sm

dates , vixopen = importvix ( ’ . / v ixcurrent . csv ’ )
ppnorm = sm. ProbPlot ( vixopen , s t a t s . norm , f i t=True )
pplognorm = sm. ProbPlot ( vixopen , s t a t s . lognorm , f i t=True )
f i g 1 = ppnorm . qqplot ( l i n e=’ 45 ’ )
f i g 1 . gca ( ) . s e t _ t i t l e ( ’VIX␣vs . ␣Normal ’ )
p l t . s a v e f i g ( ’ vixqqnorm . png ’ , dpi=750)

f i g 2 = pplognorm . qqplot ( l i n e=’ 45 ’ )
f i g 2 . gca ( ) . s e t _ t i t l e ( ’VIX␣vs . ␣Lognormal ’ )
p l t . s a v e f i g ( ’ vixqqlognorm . png ’ , dpi=750)

ar.py
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import u t i l
import math
import matplot l ib . pyplot as p l t
import numpy as np
import sc ipy . s t a t s as s t a t s
import statsmodels . t sa . s t a t t o o l s
import statsmodels . t sa . arima_model

def plot_acf ( ts , nlags , o u t f i l e ) :
autocorr = statsmodels . t sa . s t a t t o o l s . ac f ( ts , unbiased=True , n lags=nlags )
x = range (0 , n lags +1)
p l t . bar (x , autocorr )
p l t . ylim ((0 , 1))
p l t . t i t l e ( ’ACF␣ f o r ␣ log (VIX) ’ )
p l t . x l abe l ( ”Lag” )
p l t . y l abe l ( ” Autocorre lat ion ” )
p l t . s a v e f i g ( o u t f i l e , dpi=750)
p l t . c l f ( )

def t e s t_ s t a t i o na r i t y (y ) :
adf , pvalue_adf , nlags_adf , nobs_adf , c r i t i c a l_ad f , \

icbest_adf = statsmodels . t sa . s t a t t o o l s . a d f u l l e r (y , r e g r e s s i o n=’ ct ’ )
kpss , pvalue_kpss , nlags_kpss , c r i t i c a l _ k p s s = \

statsmodels . t sa . s t a t t o o l s . kpss (y , r e g r e s s i o n=’ ct ’ )
print ( ’Augmented␣Dickey␣ Fu l l e r ␣ t e s t ␣ r e s u l t : ␣{0} , ␣p−value ␣ i s ␣{1} ’ . format \

( adf , pvalue_adf ) )
print ( ’KPSS␣ t e s t ␣ r e s u l t : ␣{0} , ␣p−value ␣ i s ␣{1} ’ . format ( kpss , pvalue_kpss ) )

i f __name__ == ”__main__” :
dates , vix = u t i l . importvix ( ’ . / v ixcurrent . csv ’ )
y = np . log ( vix )
plot_acf (y , 260 , ’ l o g v i x a c f . png ’ )
t e s t_ s t a t i o na r i t y (y)

min_aic = f loat ( ” i n f ” )
arma_model = statsmodels . t sa . arima_model .ARMA(y , (2 , 1))
arma_res = arma_model . f i t ( )

print ( arma_res . arparams )
print ( arma_res . pvalues )

p l t . bar ( dates , arma_res . r e s i d )
p l t . t i t l e ( ’ Res iduals ␣ f o r ␣ARMA(2 ,1) ’ )
p l t . x l abe l ( ” t ” )
p l t . y l abe l ( ” r e s ” )
p l t . s a v e f i g ( ’ armares . png ’ , dpi=750)
p l t . c l f ( )

autocorr = statsmodels . t sa . s t a t t o o l s . ac f ( arma_res . re s id , \
unbiased=True , n lags =260)

q_stat , p_value_q = statsmodels . t sa . s t a t t o o l s . q_stat \
( autocorr , nobs=len (y ) )

print ( len ( q_stat ) )
print ( ’ Ljung−Box␣ t e s t ␣ r e s u l t : ␣{0} , ␣p−value ␣ i s ␣{1} ’ . format \

( q_stat , p_value_q ))

plot_acf ( arma_res . re s id , 260 , ’ r e s a c f . png ’ )
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arima.py
import u t i l
import math
import matplot l ib . pyplot as p l t
import numpy as np
import sc ipy . s t a t s as s t a t s
import statsmodels . t sa . s t a t t o o l s
import statsmodels . t sa . arima_model

def plot_acf ( ts , nlags , o u t f i l e ) :
autocorr = statsmodels . t sa . s t a t t o o l s . ac f ( ts , unbiased=True , n lags=nlags )
x = range (0 , n lags +1)
p l t . bar (x , autocorr )
p l t . ylim ((0 , 1))
p l t . t i t l e ( ’ACF␣ f o r ␣Delta␣ log (VIX) ’ )
p l t . x l abe l ( ”Lag” )
p l t . y l abe l ( ” Autocorre lat ion ” )
p l t . s a v e f i g ( o u t f i l e , dpi=750)
p l t . c l f ( )

def t e s t_ s t a t i o na r i t y (y ) :
adf , pvalue_adf , nlags_adf , nobs_adf , c r i t i c a l_ad f , \

icbest_adf = statsmodels . t sa . s t a t t o o l s . a d f u l l e r (y , r e g r e s s i o n=’ ct ’ )
kpss , pvalue_kpss , nlags_kpss , c r i t i c a l _ k p s s = \

statsmodels . t sa . s t a t t o o l s . kpss (y , r e g r e s s i o n=’ ct ’ )
print ( ’Augmented␣Dickey␣ Fu l l e r ␣ t e s t ␣ r e s u l t : ␣{0} , ␣p−value ␣ i s ␣{1} ’ . format \

( adf , pvalue_adf ) )
print ( ’KPSS␣ t e s t ␣ r e s u l t : ␣{0} , ␣p−value ␣ i s ␣{1} ’ . format ( kpss , pvalue_kpss ) )

i f __name__ == ”__main__” :
dates , vix = u t i l . importvix ( ’ . . / v ixcurrent . csv ’ )
y = np . log ( vix )
de l tay = y [ 1 : ] − y [ : −1]
plot_acf ( deltay , 260 , ’ . . / f i g u r e s / de l tayac f . png ’ )
t e s t_ s t a t i o na r i t y ( de l tay )

arma_model = statsmodels . t sa . arima_model .ARMA( deltay , (2 , 1))
arma_res = arma_model . f i t ( )
print ( arma_res . arparams )
print ( arma_res . pvalues )

p l t . bar ( dates [ 1 : ] , arma_res . r e s i d )
p l t . t i t l e ( ’ Res iduals ␣ f o r ␣ARIMA(2 ,1 ,1 ) ’ )
p l t . x l abe l ( ” t ” )
p l t . y l abe l ( ” r e s ” )
p l t . s a v e f i g ( ’ . . / f i g u r e s / arimares . png ’ , dpi=750)
p l t . c l f ( )

autocorr = statsmodels . t sa . s t a t t o o l s . ac f ( arma_res . re s id , \
unbiased=True , n lags =260)

q_stat , p_value_q = statsmodels . t sa . s t a t t o o l s . q_stat \
( autocorr , nobs=len (y ) )

print ( len ( q_stat ) )
print ( ’ Ljung−Box␣ t e s t ␣ r e s u l t : ␣{0} , ␣p−value ␣ i s ␣{1} ’ . format \

( q_stat , p_value_q ))

plot_acf ( arma_res . re s id , 260 , ’ . . / f i g u r e s / d e l t a r e s a c f . png ’ )
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emh.py
import u t i l
import math
import matplot l ib . pyplot as p l t
import numpy as np
import statsmodels . api as sm

i f __name__ == ”__main__” :
dates , vix = u t i l . importvix ( ’ . . / v ixcurrent . csv ’ )
y = np . log ( vix )
de l tay = y [ 1 : ] − y [ : −1]

Y = deltay [ 1 : ]
X = np . append (np . expand_dims ( de l tay [ : −1 ] , ax i s =1) , \

np . expand_dims (np . power ( de l tay [ : −1 ] , 2) , ax i s =1) , ax i s =1)
X = sm. add_constant (X)
model = sm.OLS(Y,X)
r e s u l t s = model . f i t ( )
print ( r e s u l t s . params )
print ( r e s u l t s . pvalues )
print ( r e s u l t s . f_pvalue )

klagreg.py
import u t i l
import math
import matplot l ib . pyplot as p l t
import numpy as np
import statsmodels . api as sm

i f __name__ == ”__main__” :
dates , vix = u t i l . importvix ( ’ . . / v ixcurrent . csv ’ )
y = np . log ( vix )
de l tay = y [ 1 : ] − y [ : −1]

k = l i s t (range (1 , 1040))
beta = [ ]
rsquare = [ ]
for l ag in k :

y = [ ]
x = [ ]
s t a r t = lag
end = len ( de l tay ) − l ag
for t in range ( s tar t , end ) :

past = deltay [ t−l ag : t ]
future = deltay [ t : t + lag ]
y . append (np .sum( future ) )
x . append (np .sum( past ) )

model = sm.OLS(y , x , hasconst=False )
r e s u l t s = model . f i t ( )
beta . append ( r e s u l t s . params [ 0 ] )
rsquare . append ( r e s u l t s . rsquared )

p l t . p lot (k , beta )
p l t . t i t l e ( ’ Pred ict ing ␣VIX ’ )
p l t . x l abe l ( ”h” )
p l t . y l abe l ( ” beta ” )
p l t . s a v e f i g ( ’ . . / f i g u r e s / klagbeta . png ’ , dpi=750)
p l t . c l f ( )
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p l t . p lot (k , rsquare )
p l t . t i t l e ( ’ Goodness␣ o f ␣ f i t ’ )
p l t . x l abe l ( ”h” )
p l t . y l abe l ( ”R␣Squared” )
p l t . s a v e f i g ( ’ . . / f i g u r e s / klagrsquared . png ’ , dpi=750)
p l t . c l f ( )

spxret.py
import csv
import math
import datetime
import numpy as np
import statsmodels . t sa . s t a t t o o l s
import matplot l ib . pyplot as p l t

def import_data ( path ) :
data = [ ]
dates = [ ]
with open( path , ’ r ’ ) as c s v f i l e :

reader = csv . reader ( c s v f i l e )
for row in reader :

tokens = row [ 0 ] . s p l i t ( ’ / ’ )
i f len ( tokens ) > 1 :

dates . append ( datetime . date ( int ( tokens [ 2 ] ) , int ( tokens [ 0 ] ) , int ( tokens [ 1 ] ) ) )
else :

dates . append ( row [ 0 ] )
data . append ( row [ 1 ] )

return dates [ 1 : ] , np . array ( [ f loat ( a ) for a in data [ 1 : ] ] )

i f __name__ == ”__main__” :
dates , r e t = import_data ( ’ . . / spxret . csv ’ )
adf , pvalue_adf , nlags_adf , nobs_adf , c r i t i c a l_ad f , \

icbest_adf = statsmodels . t sa . s t a t t o o l s . a d f u l l e r ( ret , r e g r e s s i o n=’ ct ’ )
kpss , pvalue_kpss , nlags_kpss , c r i t i c a l _ k p s s = \

statsmodels . t sa . s t a t t o o l s . kpss ( ret , r e g r e s s i o n=’ ct ’ )
print ( ’Augmented␣Dickey␣ Fu l l e r ␣ t e s t ␣ r e s u l t : ␣{0} , ␣p−value ␣ i s ␣{1} ’ . format \

( adf , pvalue_adf ) )
print ( ’KPSS␣ t e s t ␣ r e s u l t : ␣{0} , ␣p−value ␣ i s ␣{1} ’ . format ( kpss , pvalue_kpss ) )
autocorr = statsmodels . t sa . s t a t t o o l s . ac f ( ret , unbiased=True , n lags =260)
x = range (0 , 260+1)
p l t . bar (x , autocorr )
p l t . ylim ((0 , 1))
p l t . t i t l e ( ’ACF␣ f o r ␣ r t ’ )
p l t . x l abe l ( ”Lag” )
p l t . y l abe l ( ” Autocorre lat ion ” )
p l t . s a v e f i g ( ’ . . / f i g u r e s / spxre tac f . png ’ , dpi=300)
p l t . c l f ( )
import pdb ; pdb . set_trace ( )

realizedvol.py
import pandas as pd
import numpy as np
from statsmodels . t sa . api import VAR

i f __name__ == ”__main__” :
data = pd . read_csv ( ’ . . / r e a l i z e d v o l . csv ’ ) . drop ( ’ Date ’ , 1 ) . va lues
mean = np . mean( data , ax i s =0)
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vol = np . cov ( data , rowvar=False )
evalue , evector = np . l i n a l g . e i g ( vol )
model = VAR( data )
r e s u l t s = model . f i t (1)
r e s i d u a l = r e s u l t s . r e s i d
res_vol = np . cov ( r e s i d u a l , rowvar=False )
res_evalue , res_evector = np . l i n a l g . e i g ( res_vol )
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