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Abstract
We present an algorithm for computing joint state, smoothed,

density estimates for non-linear dynamical systems in a Bayesian
setting. Many visual tracking problems can be formulated as prob-
abilistic inference over time series, but we are not aware of mixture
smoothers that would apply to weakly identifiable models, where
multimodality is persistent rather than transient (e.g. monocular
3D human tracking). Such processes, in principle, exclude iter-
ated Kalman smoothers, whereas flexible MCMC methods or sam-
ple based particle smoothers encounter computational difficulties:
accurately locating an exponential number of probable joint state
modes representing high-dimensional trajectories, rapidly mixing
between those or resampling probable configurations missed dur-
ing filtering. In this paper we present an alternative, layered, mix-
ture density smoothing algorithm that exploits the accuracy of effi-
cient optimization within a Bayesian approximation framework. The
distribution is progressively refined by combining polynomial time
search over the embedded network of temporal observation like-
lihood peaks, MAP continuous trajectory estimates, and Bayesian
variational adjustment of the resulting joint mixture approximation.
Our results demonstrate the effectiveness of the method on the prob-
lem of inferring multiple plausible 3D human motion trajectories
from monocular video.

Keywords: non-linear non-Gaussian systems, variational approxi-
mation, mixture models, high-dimensional search, constrained opti-
mization, monocular 3D body tracking, Kinematic Jump Sampling.

1 Introduction

Many visual tracking problems can be naturally formulated
as probabilistic inference over the hidden states of a dynam-
ical system. In this framework, we work with time series of
system state vectors linked by probabilistic dynamic transi-
tion rules, and for each state we also have observations and
define an observation model. The parameter space consists
of the joint state vectors at all times. This trajectory through
states is probabilistically constrained both by dynamics and
by the observation model. To the extent that these are real-
istic statistical models, Bayes-law propagation of a probabil-
ity density for the true state is possible. Filtering computes
the optimal distribution of states conditioned only by the past
whereas smoothing finds the optimal state estimate at each
time given both past and future observations and dynamics.

For non-linear dynamics and observation models under Gaus-
sian noise, this can be computed using iterated Kalman filter-
ing and smoothing. However, for many tracking problems in-
volving clutter and complex models this methodology is not
applicable. For general multimodal distributions under non-
Gaussian dynamics and observation models, direct MCMC
methods or particle filters/smoothers [10, 13, 15, 12, 19, 16]
result. These algorithms naturally represent uncertainty, but
are less efficient for weakly identifiable high-dimensional
models where multimodality is persistent rather than tran-
sient.1 In such cases, there is, theoretically, an exponential
number of trajectories for any single observation sequence,
and many of these may be probable. Accurately locating
them, or sampling new trajectories through temporal states
missed during filtering is a major computational challenge.
An additional difficulty is that none of the methods give mul-
tiple MAP estimates or a similar compact multimodal approx-
imation. This may be useful in its own right for many applica-
tions (e.g. visualization, high-level analysis and recognition)
where the mean state or other expectation calculations may
be uninformative or, at least, not the only desired output.

We are not aware of prior work that computes a mixture ap-
proximation for smoothing general non-linear non-Gaussian
dynamical systems. In this paper, we propose such an al-
gorithm that exploits the accuracy of efficient discrete and
continuous optimization within a variational approximation
setting. Our method estimates a compact mixture distribu-
tion over joint temporal states, and can be efficiently used
in tandem with mixture filtering methods [2, 23, 24, 28].
To sidestep the difficulties associated with random high-
dimensional initialization, the algorithm cascades several lay-
ers of computation. We use dynamic programming, sparse
robust non-linear optimization, and variational adjustment, in
order to progressively refine a Kullback-Leibler approxima-
tion to the true joint state posterior, given an entire observa-
tion sequence. The resulting density model is compact and
principled, allowing accurate sampling of alternative trajec-
tories, as well as general Bayesian expectation calculations.
We finally demonstrate the algorithm on the difficult prob-

1Consider e.g. 3D monocular human tracking where for known link
(body segment) lengths, the strict non-observabilities reduce to twofold ‘for-
wards/backwards flipping’ ambiguities for each link, at each timestep [24].
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lem of inferring smooth trajectories that reconstruct different
plausible 3D human motions in complex monocular video.

Many existing tracking or smoothing solutions attempt to
limit multimodality using learned dynamical models [1, 11,
5, 20, 21]. While these may stabilize the estimates, the dis-
tracting likelihood peaks are only down-weighted, but rarely
disappear. The state space volume, and therefore the theoreti-
cal search complexity remains unchanged, and the generality
of the tracker may be significantly reduced. In an upcom-
ing paper [22], we propose a non-linearly embedded density
propagation algorithm that restricts visual inference to low-
dimensional manifolds learned from motion data that is typ-
ical of the context where the model will be used. It is likely,
however, that under realistic imaging conditions, at least a
mild degree of multimodality will still persist during visual
inference, for any interesting (i.e. sufficiently flexible) mo-
tion model or low-dimensional state representation. The al-
gorithm we propose remains useful in such contexts. Another
application is the accurate reconstruction of general 3D bio-
logical motion for computer graphics or animation.

2 Related Research

There is a large literature on non-linear filtering and smooth-
ing, using both Kalman [9] and Monte-Carlo methods [13, 15,
16]. Kalman filtering and smoothing [9] is not applicable for
non-Gaussian systems. Particle smoothers [13, 15] are based
on forward filtering, followed by smoothing that reweights
existing particles, in order to better reflect future evidence. In-
troduced mostly to tackle the erroneous mean state estimates
under transient multimodality [13], the algorithms may not
scale well under strong multimodality, where a large number
of trajectories have high probability, or when probable tempo-
ral states have been missed or eliminated prematurely during
filtering. Direct full sequence MCMC methods [16] itera-
tively generate particle smoother style proposals in their tran-
sition kernel. This makes the sampling of new states possible
at the price of more expensive step updates, but the methods
do not provide an explicit multi-modal representation and fast
mixing is difficult. A more compact and efficient approxima-
tion that retains modeling generality would be useful.

Bayesian variational methods are one possible class of so-
lutions [14, 8, 18] that typically construct approximations that
decouple some of the dependencies present in the original
model (e.g. mean field). The switching state space model
[8, 18] is designed only for piece-wise linear, Gaussian dy-
namical systems. In general, the variational methods have to
sidestep suboptimal modeling and high-dimensional initial-
ization, both of which are problematic. The algorithm we
propose is also formulated in a variational setting. Here we
use a fully coupled mixture approximation, initialized based
on layered, time efficient processing: dynamic programming,
polynomial time trajectory search over the network of tem-

poral observation likelihood peaks (initialized from filtering),
and local continuous MAP trajectory refinement. Our final
approximation is a mixture of Gaussians, and it can be also
used to improve mixing in MCMC simulations [25].

Several multiple hypothesis methods exist for filtering 3D
human motion [5, 20, 23, 21, 24] but less attention has been
given to similar methods for smoothing. Most of the pro-
posed methods compute a single point estimate. Howe et al
[11] use a dynamical prior obtained from motion capture data
and assume 2D joint tracks over an entire time series to com-
pute a 3D joint position MAP estimate. Brand [1] similarly
learns a HMM representation from motion capture data and
estimates a MAP trajectory, based on time series of human
silhouette inputs. DiFranco et al [6] propose an interactive
system based on a batch optimizer of a Gaussian observation
model consisting of 2D human joint correspondences and 3D
given human pose key-frames that help disambiguate multi-
modality resulting from monocular reflective limb ambigui-
ties. This is essentially an iterated Kalman smoother with a
better second order step update.

3 Formulation

Consider a non-linear, non-Gaussian, dynamical system hav-
ing temporal state ��� , ��� ���	�	� 


, prior �
���
��� , observa-
tion model �
������� ����� with observations ��� , and dynamics�
������� ��������� . Let ��� � ���
� ����!�� ����� �"���#� be the model joint
state estimated over a time series

���	�$� � � �&%'

, based on obser-

vations encoded as ( � � ��� � � ����� �"� � � . The joint probability
of all observations and hidden states can be factored (assume
for now � � �*) and ( � (+) for notational simplicity) as:

, ���-�.(*� � �
���
��� )/
��01! �
������� ���������

)/
��02� �
������� ���3� (1)

For smoothing and other sequence calculations, we are how-
ever interested in

, �4�5� (*� � , ���6�"(7�"8 , �4(*� . For multi-
modal temporal observation likelihood distributions �
��� � � � � � ,
the joint

, ���6�"(*� may contain an exponential number of
modes. We seek a tractable approximating distribution9�: ���*� , parameterized by ; , that minimizes the relative en-

tropy: <6� 9�: �	� , � �>=�? 9�: ���7�A@$BDCFE3G H ?JIK H ?ML NJI .
We further consider the variational free energy OP� 9D: � , � ,

which is a simple modification to <-� 9 : �	� , � that does not
change its minimum structure:O7� 9 : � , � � <-� 9 : �	� , �RQ5@	B�C , �4(*� (2)�TS ? 9 : ���*�U@$BDC 9�: �4�*�, ���V� (7� Q S ? 9 : ���7�A@	B�C , �4(*� (3)

� S ? 9 : �4�*�A@	B�C 9�: �4�*�, ���-�.(*� (4)

In the above @$BDC , ��(7� does not depend on ; and does there-
fore not count for the optimization. Minimizing the varia-
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tional free energy w.r.t. ; is equivalent to refining the approx-
imation 9�: ���7� to

, �4�5� (*� . The effectiveness of this proce-
dure depends on a good design and initialization of 9D: �4�*� .
We use a fully coupled mixture approximation 9 : �4�*� ���� 9�:� ���7� , with Gaussian components 9�:� �4�*� . Methods to
initialize its parameters are given in � 4 and � 5.

4 Multiple Embedded Trajectory Op-
tima using Dynamic Programming

Let the temporal observation likelihood density be approxi-
mated by mixtures: �
��� � � � � � � ������ 0
��� ��
	 �� ��� � ��� �� ��
 �� � , � ����	�$� 


, where 	
�� are observation likelihood modes (Gaussian

or heavy tail distributions), �
�� are mixing proportions, � � are

the number of modes at time
�
. In practice, this representation

can be efficiently computed in tandem with a filtering method.
For continuously optimized filters like [2, 23, 24], a mixture
for �
������� ����� is estimated anyway, as a necessary substep dur-
ing the computation of �
������� (+�#� (we will use KJS [24] for
the work here). For discrete particle filters [13, 3, 28] this
may involve local optimization on samples from �2��� � � ( ����� �
or on the centers of its fitted mixture [28]. Regard the ob-
servation likelihood modes as nodes of an embedded net-
work that approximates

, ���6�"(7� . Each 	
�� is a node hav-

ing value equal to its observation likelihood �
��� � � 	 �� � . It
connects with all the components � in the previous and next
timesteps through links that are the dynamic probabilities�
� 	 �� � 	�� ����� � and �2� 	�� ���
� � 	 �� � . The values for the inter-mode
dynamics and mode observation likelihood can be obtained
by integrating the point-wise dynamics and observation like-
lihood over the support of each mode: �
� 	 � ���2� � 	 �� � �=�� ����� =�� � 	�� ���
� �������
��� 	 �� �����3���
�������2�D� ���3� and �2������� 	 �� � �= � � 	 �� ��� � ���
��� � � � � � , and �2� 	 � � � � = � � 	 � � ��� � � �2��� � � . Given
the parametric temporal mixture representation, this opera-
tion can be performed efficiently either by sampling or by us-
ing analytic approximations for particular functional forms of
	
�� or � (e.g. a Bhattachayya distance for Gaussians).2 Notice

that the mixture weights �
�� are not necessary for the construc-

tion of the embedded network.
Each embedded trajectory is a sample from

, ���-�.(*� but
we seek a reduced set that is representative of

,
among expo-

nentially many possible paths. We select a tractable intuitive
approximation and consider the � � � ) most probable trajec-
tories between any possible pairs of observation likelihood
modes in the initial and final timesteps. To compute these
efficiently with dynamic programming (DP), we exploit the
embedded network sparsity (each mixture set at

�
only con-

nects with the previous ones at timestep
� Q �

and with the next

2The embedded network is not a HMM. In a HMM, the number and the
set of possible values for the states is the same, temporally. Here, the number
of modes at each timestep depends on the uncertainty of the observation like-
lihood, and their corresponding means can take different continuous values.

ones at timestep
��� �

) and use Johnson’s algorithm [4]. This
applies multiple Dijkstra computations at each node in the
network to compute single source most probable paths (each
of these forms a tree rooted at the source node [4]). The pro-
cess has complexity �+�! ! @$BDC" �  $# � for a network with
 vertexes and # edges. For our problem this can be further
reduced since only the most probable paths between nodes
of the initial and final timesteps are desired. Given an up-
per bound % &'� � �)(+* and



timesteps, the complexity of

this computation is �+�!%-,�� 
 Q � � � % ! 
 @$BDC"% 
 � for a Fi-
bonacci heap implementation.

5 Continuous MAP Refinement

Trajectories obtained with DP are globally optimal only w.r.t.
a fixed network of observation likelihood peaks (obtained us-
ing filtering or some importance proposal distribution). True
optimal smoothing can be obtained by re-estimating the joint
hidden state � based on the full observation sequence ( . Be-
cause the model is non-linear and non-Gaussian, we have to
follow a general approach and directly optimize

, ���-�.(*� .
The DP solutions provide good quality, fast initialization to an
otherwise difficult high-dimensional search problem. Based
on these, trajectories are refined to obtain optimal modes
(MAP) using efficient sparse second order continuous meth-
ods [7, 26]. (While the DP results are also aposteriori maxima
w.r.t. the embedded network, for brevity we use the names DP
and MAP to differentiate between the discrete and the contin-
uous optimization results) An ascent direction is chosen by
solving the regularized subproblem:�/. �1032 �34�� �65

subject to 798!:�;��=<1> (5)

with
5P�@? KA ? , . �B?�C KA ? C ,

2
is a symmetric positive definite

damping matrix and
0

is a dynamically chosen weighting fac-
tor. 7 8/: are hard rectangular prior state constraints (e.g. joint
angle limits, replicated at all time-steps). For our problem,
the joint state Hessian . is block tridiagonal. The observa-
tions couple to the current time state, and fill the diagonal

blocks . � � ?�CED HGF � L � � IA � C� , whereas the first-order Markovian
dynamics couples to the previous and next states, and fills the

off-diagonal blocks . �EH ����� � ?�CED H � � L � �/IJ� IA � C� . The lower and
upper triangular factors are also block tridiagonal, the inverse
is however dense. 3

To efficiently compute the state update, the Hessian is de-
composed by recursive steps of reduction, where blocks of
variables are progressively eliminated by partial factorization.
At each linearization point, the forwards reduction gives fil-
tering. It progressively computes, for each timestep, the opti-

3For kinematic modeling, the Hessian has, in general, a secondary tridi-
agonal structure embedded in each block. This is produced by the simply
coupled kinematic chains of the limbs, where each link couples with the pre-
vious and next ones. Body parts at the root of the hierarchy, e.g. the torso,
however induce denser couplings.
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Variational Mixture Smoothing Algorithm

Input: Temporal set of mixture approximations for�2������� ���#� � � � �� 0
� � �� 	 �� ����� � � �� ��
 �� ��� �J� ���	�	� 

.

Output: Joint mixture approximation of, �4�5� (*� � � � � � �� 0
� 9�:� �4�*� .
1.( � 4) Build the embedded network

�
For

�J� �D�$�	� 
 Q �
, * � �D�$�	� � � , � � ���	�	� � ���
� :

— � � ���� �
� 	�� ���2� � 	 �� ���
��� ���
� � 	�� ���
� � .
— If � �R� � ��� � ���� � � �� �
��� �D� 	 � � � �
� 	 � � ��

has nodes 	
�� and weights � � �� with

�>� �D�$�	� 
 � * ��D�$�	� � � � � � ���	�	� � � �
	 � �D�$�	� 
 Q �
. A weighted path between

any two nodes is the product of all intermediate weights.

2. ( � 4) Compute most probable weighted paths � ? D� �
� ��D�$�	� � � � ) between modes 	
� � ��* � �D�$�	� � � and 	 � ) �E� ��D�$�	� � ) in

�
.

3. ( � 5) Estimate local MAP modes and covariances ( 
 � �
����� D� ��� � � �/.���� D� � ��� � , � � �D�$�	� � � � ) , using DP ini-
tialization � ? D� �
� � ���	�$� � ��� ) (without loss of generality
assume no duplicate local optima are found). The size of
 � ��� � is � 
 ;��1� and � 
 ;��1� ! , where � ������� ���1� .
4. ( � 6) Initialize the variational mixture approxima-
tion

��� � � �� 0
� 9�:��� ���7� using ;! � � ;! � � ����� �.;" � � � � � with;  � � �$# � ��
 � �
� � � , � � ���	�$� � � � ) , or alternatively use
best % modes for computational efficiency. The mix-
ing proportions for components are computed as # � �, �4�&��� D� �"(7�"8 � � � � �� 0
� , ������� D� �.(*� .
5. ( � 6) Optimize variational bound O (6) by updating vari-
ational parameters ; using (9).

Figure 1: The steps of our Variational Mixture Smoothing
Algorithm for high-dimensional multimodal distributions.

mal current state estimate given all previous observations and
dynamics. The corresponding recursion by back-substitution
gives smoothing [9, 27]. Filtering is the first half-iteration of
a general nonlinear optimizer. For non-linear dynamics and
non-Gaussian observation models, the local MAP state trajec-
tory is estimated by successive passes of filtering, smoothing
and relinearization of

, ���6�"(*� .
6 Variational Updates for Mixtures

Given, MAP modes of
, �4�-�"(7� (computed in � 5) hav-

ing mixing proportions, means and covariances unfolded

in parameter vector ; � � �'# � �(
 � � ���)� D� �
� � �
�/.���� D� � ��� � , * � �D�$�	� � � � ) , we construct an approximating
mixture distribution with augmented parameter space ; �
�4; � � ����� � ; � �
�*� � , 9 : � � � 9 :� , with 9 :�,+ # ��- �4�-�(
 � �
� � � .
(Each component 9 :� indexes in the global state ; for its pa-
rameters ; � ) The variational free energy is:

OP� 9 : � , � � S ? 9 : ���7�A@$BDC 9�: ���7�, �4�-�"(7� (6)

�/. � S ? 9 :� ���*� @$BDC 9�: �4�*�, ���6�"(*� (7)

�/. � < @	B�C 9�: �4�*�, ���-�.(*�10 E G2 (8)

The mixture parameters can be optimized by computing
the gradient of the variational free energy:3 O4 ; �5. � S ? 9 :� ���*�76 :� ���7��8 �"� @	B�C 9�: ���7�, �4�-�"(7�:9 (9)

�;. � <<6 :� ���7��8 �"� @	B�C 9 : ���7�, �4�-�"(7�=9>0 E G2 (10)

6 :� ���7� � 3 @	B�C 9�:� ���7�4 ; (11)

where 6 :� ���7� are the gradients of the individual mixture
component Gaussian quadratic forms w.r.t. parameter subsets; � � �'# � ��
 � �
� � � of ; . The mixture has to obey two internal
constraints: (1) on the mixture coefficients

��� �
�*�� 0
� # � � �
;

and (2) on the positive definiteness of component covariance
matrix � � � * � �D�$�	� � � � ) . These can be easily enforced by
reparameterization using softmax for the mixing proportions:? � �A@CBED �$# � �"8 � � @CBED �$# � � , and Cholesky decomposition
for the covariance matrices: � ���� �/FHGIF

where
F

is up-
per triangular with elements J � � , the diagonal terms are pos-
itive, e.g. J � � �K@�BLD � 3 � � and � � � � ���(M.! �ON � J � � . The newly
introduced variables ? � � 3 � and J � � � � 0 *3� are now uncon-
strained real numbers. The smoothing algorithm is summa-
rized in fig. 1.

7 Experiments

We show experiments that involve estimating a joint mixture
distribution for smoothing 3D articulated human motion in
monocular video (fig. 9).

The human model consist of 32 d.o.f. kinematic skeleton
controlled by angular joint state variables, covered by ‘flesh’
built from superquadric ellipsoids with global deformations.
The state space has priors controlling joint angle limits, and
body part non self-intersection constraints, included as addi-
tional terms in the likelihood [23]. The Observation Like-
lihood is based on a robust combination of intensity-based
alignment metrics, silhouette, and normalized edge distances
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[23]. Filtering is based on Kinematic Jump Sampling (KJS)
[24], which is a density propagation method involving locally
optimized covariance based random sampling [23, 24] with
a domain-specific deterministic sampler based on skeletal re-
construction using inverse kinematics.

The experiments we show are based on the analysis of a
2.5s, 120 frame sequence of monocular video involving ag-
ile complex motion of a human subject in a cluttered scene
(see fig. 9). KJS filtering uses up to 8 modes per timestep.
Mixtures for �2��� � � � � � , here containing up to 8 modes, are esti-
mated during the computation of the filtered �
��� � � ( � � [2, 23].
The flow of processing is the one in fig. 1: observation like-
lihood modes are assembled in an embedded network where
all most probable trajectories between pairs of modes in the
initial and final timestep are computed using dynamic pro-
gramming. These are refined non-linearly to obtain trajec-
tory modes of

, �4�-�"(7� . The modes and covariances (inverse
Hessians at maxima) are used to initialize a variational mix-
ture approximation of

, ���5� (*� that is refined based on the
updates in (9). Data analysis for these steps is described next.

The embedded network structure (node values and inter-
node edges, with the observation likelihood modes being
nodes) is estimated, as explained in � 4, based on a subsam-
pled time series having



=47 steps. We compute 64 most

probable paths corresponding to trajectories between all pos-
sible pairs of nodes at times

�
and



. In fig. 2, we show, for

each node, the probability that it is visited by the different
probable paths. The nodes at all times are unfolded on the
x axis (temporal modes are sequentially assigned a unique
number). The probabilities are all positive, but we flip sign
at the beginning of each new timestep for visualization. Each
node 	

�� can be visited by generally � � possible trajectories
(here ��� ��0
��� ��� � ��� ) 0����	� �
�

), each initiated at a differ-

ent starting mode 	�� � (the highest probable paths routed at 	 � �
form a tree). However, the ‘visiting probabilities’ for a mode
could be negligible, e.g. because it has low likelihood or very
low dynamic transition probabilities w.r.t. probable modes at
times

� ��� � ��� � . Let the corresponding path probabilities to the
mode be � �� � . We compute the probability that 	

�� is visited

by some trajectory initiated at 	 � � as:
�
� �
�� � 8 � � �

� �
�� � ,plotted in fig. 2. The trajectory distribution is highly mul-

timodal. Occasionally, there are ‘bottlenecks’ at timesteps
where the observation likelihood mixture collapses to fewer
components, producing spikes up or down in fig. 2. This also
leads to fewer and more probable trajectories, e.g. for modes
indexed

� > > Q ��� > . Some of these correspond to timesteps
where the tracked subject has both arms in front of his face.
Many reflective ambiguities of the arms become improbable,
due to the presence of physical body non-penetration priors.
This is one situation where the physical priors, although lo-
cally much broader than the observation likelihood, are more
constraining.

Fig. 3 and 4 compare joint angle trajectories for the DP and
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Figure 2: There are many different probable trajectories
through the embedded network. We show the trajectory prob-
ability through modes at all times, unfolded on the x axis (see
text). These values are positive, but we flip sign in-between
consecutive timesteps for visualization. The temporal trajec-
tory distribution collapses to fewer components in regions
where the uncertainty of the observation likelihood dimin-
ishes (to fewer modes), but is generally multimodal.
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Figure 3: MAP smooths trajectories but correctly preserves
prior constraints (joint angle limits and body non self-
intersection), e.g. frames 60-70.

MAP solutions. MAP significantly improves smoothness and
preserves joint angle limits, see e.g. fig. 3, frames 60-70. Se-
quence smoothing can sometimes lead to qualitatively differ-
ent solutions at particular timesteps w.r.t. the DP results, e.g.
there is a large change in the state variables in-between the
frames 50-60 in fig. 4.

We also compute the average joint state distance between
the MAP and the DP solutions for all 64 trajectories in fig. 5.
The averaging is done over a radian + meter state space (the
distance between trajectory vectors is averaged by the num-
ber of timesteps and the number of variables). The differ-
ence per state variable is about 2-3 degrees, but many changes
are concentrated in only a few temporal states as shown in
fig. 3,4. This explains why the DP and MAP trajectories are
often qualitatively different.

Fig. 6 shows the MAP trajectory energy only (without dy-
namics), i.e. negative log-likelihood product over temporal
states in (1). The measurement error is low, only about 
��
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larger than the one of a filtered fit. This shows that MAP not
only smooths the trajectories, but also preserves good image
likelihood.

In fig. 7 we show computations of the Hessian matrix
eigenspectrum at a local MAP trajectory, for state spaces of
increasing dimension. Joint states for the 32 d.o.f. human
model are estimated over 1, 8, 47 timesteps (having 32, 256
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Figure 7: Continuous optimization over long sequences re-
duces the local MAP uncertainty. Notice the change in the un-
certainty structure at a local maximum, for a 32 d.o.f. model
optimized over 1, 8 and 47 frames (with joint state having 32,
32x8, 32x47 variables). The largest/smallest eigenvalue ratio
decreases from 5616 through 2637 to 737. The state is larger,
but the longer sequences are better constrained.

and 1504 variables respectively). The ratio of largest/smallest
singular values decreases from 5616 showing severe ill-
conditioning for 1 frame to 2637 for 8 frames and 737 for
47 frames. The advantage of additional constraints provided
by longer sequences dominates over the inconvenience of a
larger state space. The overall effect is the decrease in esti-
mation uncertainty.

The final smoothing step involves initializing the varia-
tional mixture approximation based on the set of MAP modes
found using continuous optimization. Fig. 8 shows the de-
crease in variational free energy over 15 iterations, but a
plateau is already reached after about 6-8 refinement steps.
For this sequence, we assumed the covariance structure is
fixed to the one obtained from MAP (which is however
different for each mode) and estimate the mixing propor-
tions, component means and one separate positive inflation
factor that uniformly rescales the covariances � � , for each
mode. The inflation factor accommodates broader component
spread along directions where several trajectories with rea-
sonable high probability cross. This may correspond to cases
where the corresponding state variable couplings are close to
a low-lying saddle point between two close state space reflec-
tive ambiguities at that particular timestep. Other situations
include sharply peaked priors that when composed with an ill-
conditioned observation likelihood may lead to biased MAP
modes and covariances that underestimate the surrounding
volume. This is typical of many ill-posed problems in vi-
sion.4 For the algorithm we present, all mixture parameters

4In fact, the MAP estimates do not play the central role in Bayesian infer-
ence. They change arbitrarily with reparameterization, and they optimize the
density without taking into account the complementary volume information.
On the other hand, a KL approximation may occasionally fail to precisely ac-
count for narrow peaks. Depending on efficiency constraints, or the expected
utility of the density model, one can also follow the steps � 4, � 5 or � 4, � 6, or
optimize different parameter subsets in � 6 (e.g. keep the means fixed).
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, �4(*� and the quality of the approximation 9�: to, ���5� (*� . Not much improvement is achieved after 10 itera-
tions.

can vary and, most importantly, the variational free energy
provides a cost function for their optimal adjustment. Differ-
ent subsets of parameters can be selected and optimized based
on application constraints.

Finally, fig. 10 shows a couple of trajectories sampled from
the smoothed distribution. Although in the beginning of the
sequence the two trajectories look qualitatively similar, they
diverge significantly during its second half. Noticeable dif-
ferences are the different tilt of the torso and especially the
left arm positioning that follows a trajectory corresponding to
a reflective ambiguity w.r.t. the camera. However, both solu-
tions look plausible and have high observation likelihood.

8 Conclusions

We have presented a mixture smoother for non-linear dynam-
ical systems. We are not aware of any prior algorithm that
would compute a mixture approximation for smoothing such
systems. The one we propose applies to weakly identifiable
models, where multimodality is persistent rather than tran-
sient. Such models are typical of many visual inference ap-
plications like 3D monocular human modeling and tracking,
or scene reconstruction using structure-from-motion. Strong
multimodality and non-Gaussianity rules out the use of iter-
ated Kalman smoothers, whereas direct MCMC methods or
particle-based smoothers may encounter difficulties in accu-
rately locating multiple probable high-dimensional state tra-
jectories or rapidly mixing between them. Our algorithm
refines a compact approximation by combining polynomial
time search over the network of observation likelihood peaks,
local MAP continuous trajectory estimates and Bayesian vari-
ational adjustment of the resulting joint mixture representa-
tion. We show results that demonstrate the method on the
estimation of multiple, smooth, high-quality trajectories that
represent plausible articulated 3D human motions in difficult
monocular video.

Future Work will explore the use of multiresolution solvers
for large dynamic programming problems, as well as tractable
mixture approximations that automatically decouple some of
the state variables. It would be interesting to study the impact
of learned motion models on the trajectory distribution, or
derive reconstruction algorithms robust to missing data [22].
Acknowledgments We give special thanks to Kyros Kutu-
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