
Linear Filtering

Goal: Provide a short introduction to linear filtering that is directly relevant for computer vision.

Here the emphasis is on:

• the definition of correlation and convolution,

• using convolution to smooth an image and interpolate the result,

• using convolution to compute (2D) image derivatives and gradients,

• computing the magnitude and orientation of image gradients.

We discuss how the filters we use in 2D images can be extended to compute spatiotemporal gradients

for videos.

Finally, we introduce the concept of the gradient tensor, along with its magnitude and spatial orienta-

tion. We show the application of gradient tensors to colour images.

Readings: Szeliski, Section 3.2 [optional: 3.4-5].
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Correlation for 1D Signals

Filter f(*) recentered at pixel j,

j

j
k

k

Signal I(k)

Response r(k)

(f(−1), f(0), f(1)) = (−0.5, 0, 0.5)

r(j)

Thecorrelation of the filterf(k) with the imageI(k) is the new signalr(k) defined by

r(j) ≡
K
∑

s=−K

f(s)I(j + s).

Heref(k) is assumed to be zero for|k| larger than the filter radiusK.
Figure is from James Sewart’s filtering applet:http://research.cs.queensu.ca/ ˜ jstewart/applets/filter/filter.html
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Correlation and Convolution

Defn. The correlation of a 2D filterf with a monochromatic (i.e., grayscale) imageI:

Correlation: r(j, k) ≡
K
∑

s=−K

K
∑

t=−K

f(s, t)I(j + s, k + t).

Heref(j, k) is zero for|j| or |k| larger than the filter radiusK.

Intuitively, to compute the correlation responser(j, k),

• re-center the filter so thatf(0, 0) is “aligned” with I(j, k) (see 1D example on previous page),

• pointwise multiply the filter and the image values at each pixel (for whichf 6= 0),

• sum these products to formr(j, k).

Defn. The convolution of a 2D filterf with an imageI:

Convolution: r(j, k) ≡
K
∑

s=−K

K
∑

t=−K

f(−s,−t)I(j + s, k + t). (1)

We denote convolution asr = f ∗ I. Notef ∗ I is the same as correlation using the flipped filter kernel,
i.e.,g(j, k) = f(−j,−k). For historical reasons we emphasize convolution over correlation.
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Image Boundary Treatments

Centered filter kernel.

Image from
Elder et al, 1998.

When the filter kernel extends beyond the edge of the image, we use aboundary treatment.

Options for this include (seeupConv in the MatlabiseToolbox ):

• repeat, use the nearest image pixel within the image boundary;

• reflect the image across its boundaries;

• zero, use zero for any pixel beyond the image boundary;

• dont-computethe response when the re-centered filter extends beyond the filterboundary.

We often use the repeat rule, but care must be taken interpreting theresponse near the image boundary.
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Separable Filter Kernels

The direct implementation of the convolution of aL × L filter kernel with anN ×M image requires

O(L2NM) operations.

The same convolution can also be obtained using the Fast Fourier Transform (typically with a periodic

boundary treatment) inO(NM log(NM)) operations.

We can often useseparablefilter kernels which, by definition, can be written as a product oftwo

functions of only one variable each, that is,

f(j, k) = f1(j)f2(k).

It can be shown thatr = f ∗ I = f1 ∗ (f2 ∗ I). These two successive 1D convolutions require only

O(LNM) operations (compared toO(L2NM) for the direct approach) and allow for the use of all the

previous boundary treatments.

Due to the use ofimage pyramids (see Szeliski, Sec. 3.5) the size,L, of the filter kernels can typically

be kept reasonably small.
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Kernels with Real-Valued Arguments

Consider a filter kernelf(~x) defined over a continuous range of values,~x = (x, y)T ∈ R
2. As before,

assumef(~x) = 0 outside the range[−K, K]× [−K, K].

Given such a kernel, it is useful to change variables in the definition of convolution, namely equation

(1). In particular, replace(j, k) by real-valued variables(x, y), and setm = x + s, andn = y + t (both

integer-valued). With this change of variables in, we find from (1) that

r(~x) ≡
∑

m,n∈Z2,f 6=0

f(x−m, y − n)I(m, n). (2)

Here the imageI(j, k) is always evaluated at integer-valued points (i.e., pixels or“grid points”), but

the resultr(~x) can now be evaluated for real-valued points.

The idea in (2) is simply to center the flipped kernel at any real-valued~x rather than only at integer-

valued pixel coords.
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Applications of Kernels with Real-Valued Domains

Filtering and Interpolation. Let the filtered image ber(~x) = f(~x) ∗ I. Since~x here is a continuous

variable, we can clearly sampler(~x) at a higher rate than the original image. That is, we caninterpolate

the filtered imager(~x).

Note, we are interpolatingr(~x), not the original imageI(j, k). To do the latter we need to ensure that

the filter kernel is chosen such thatr(j, k) = I(j, k). (Optional further reading.)

Spatial Deriviatives. It also follows that thex andy derivatives ofr(~x), namelyrx(~x) and ry(~x),

satisfy

rx(~x) = fx ∗ I, andry(~x) = fy ∗ I,

wherefx(~x) andfy(~x) are thex andy derivatives of the kernelf(~x).
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Example: Clipped Gaussian Filter
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)

For example, consider the 1D clipped Gaussian kernel:

g(x; σ) =

{

Ce−x2/(2σ2), for −K ≤ x ≤ K,

0, otherwise.
(3)

Herex ∈ R and

• σ ≥ 1 is the scale parameter, it is proportional to the width of the kernel in x,

• K > 0 is an integer specifying the radius in which the kernel is non-zero, typically K ≈ 3σ,

• 1/C =
∑K

k=−K e−x2/(2σ2), which normalizesg(x; σ) to sum to one over all integer arguments.

The kernelg(x; σ) and its first derivativegx(x; σ) (ignoring the discontinuities) are shown above.
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Image Smoothing

Convolution with the 2D clipped Gaussian filter kernel,g(~x; σ) ≡ g(x; σ)g(y; σ), blurs the image:

Using:
σ = 2

The kernelg(~x; σ) is shown in the bottom right corner of the smoothed image, and iscircularly sym-

metric (modulo the clipping at±K).
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Image Derivatives

The blurred image along with itsx andy derivatives are shown below. The dominant grey tone in the

derivative images denotes a response of zero, with positive (negative) values being lighter (darker).

x

y

Thex andy derivative filters aregx(~x) = gx(x)g(y) andgy(~x) = g(x)gy(y) (see the inlaid images in

the bottom-right corners).
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Image Gradient

Thegradient of an imager(~x) is defined to be the following 2-vector at every point~x,

~∇r(~x) ≡
(

rx(~x)

ry(~x)

)

. (4)

Disc Image

y

x
x-derivative y-derivative Gradient Magnitude Gradient Orientation

The magnitude of the gradientS(~x) is defined to be the vector 2-norm of the gradient, namelyS(~x) =

||~∇r(~x)|| = (rx(~x)2 + ry(~x)2)1/2. The magnitude is zero only if both thex andy derivatives ofr(~x)

vanish.

When ||~∇r(~x)|| is nonzero, the gradient (vector) at~x is in the “steepest ascent” direction (i.e., the

directionr(~x) increases the fastest). We define the gradient angle asθ = atan2(ry(~x), rx(~x)), and the

gradient direction to be~u(θ) = (cos(θ), sin(θ))T = ~∇r(~x)/||~∇r(~x)||.
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Image Gradient

The gradient identifies the local magnitude and direction of variation in the blurred imager(~x).

Original Image Gradient Magnitude Gradient Orientation

Colour Key

The only remaining parameter here is the scale parameterσ (we usedσ = 2). As σ increases the
original image is increasingly blurred, and detail is lost. On the other hand, the responses are less
sensitive to image noise, and will have better performance on smooth ramps in the image.
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Image Gradient: Fine Scale

The results forσ = 1 are shown below.

Original Image Gradient Magnitude Gradient Orientation

Colour Key

Compare these results with those forσ = 2 (previous slide). While the detail is significantly sharper
here (forσ = 1), the gradient directions are more sensitive to image noise (e.g.,on the jagged edges
and within the soft shadows in the original image). See Elder et al, 1998, for automatic scale selection.
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Spatiotemporal Images

A sequence of video images forms a space-time volume image.

yOne video frame of pedestrians

x
t

From Niyogi and Adelson, 1994.

Gradients, gradient magnitude and orientation, can all be measured as before, for example, using a

separable filterg(~x, t) = g(x; σ)g(y; σ)g(t; σ) along with itsx, y, andt derivatives. Gradients again

point in the “steepest ascent” direction, perpendicular to 2Dsurfaces of constant brightness in(~x, t).
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Multispectral Images

Consider an n-dimensional image~I(~x) = (I1(~x), . . . , In(~x))T . For example, an RGB image hasn = 3.

We could form an = 4 dimensional image by adding an infrared channel, say.

Hats Image Red (R) Component Green (G) Component Blue (B) Component

RGB Space RGB Space RGB Space (View Along Gray Axis)

RGB-space is a cube, with each side of length 255 (for8-bit images). The gray axis is the diagonal

from (0, 0, 0)T (Black) to(255, 255, 255)T (White).
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Projecting Multispectral Images to Monochromatic

For an n-dimensional image~I(~x) = (I1(~x), . . . , In(~x))T our previous filtering techniques can be applied

to any monochromatic imageh(~I(~x)), whereh is a (smooth) mapping fromRn to R.

For example, a simple form forh is a linear mapping,

h(~I) = ~w T ~I,

where~w is a constantn-vector (aka the projection direction).

Suitable projection directions~w can be selected to highlight different aspects of the original image~I

in the monochromatic image~w T ~I(~x).

We illustrate the monochrome images obtained from several different projection directions in the next

two slides.
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Colour-Opponent Channels

For example, consider choosing projection directions to (roughly) decorrelate a typical RGB image
~I = (IR, IG, IB)T . Define
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← Brightness

← R + G - 2B, aka Y-B

← R - G

(5)

This matrixC is a unitary transformation of theRGB coordinates, i.e.,CTC = I (notedet(C) = −1).

This transformation very roughly decorrelates the RGB channels (seecolourTutorial.m in the

utvis toolbox).

Note each component of the transformed image vector, sayIY B, has the form~w T ~I(~x) where~w T is the

corresponding row ofC.

Caution: A significant amount of research has been done on colour spaces.The mappingC above

is greatly simplified and is not meant to be an optimal choice. (For more information about colour

spaces, begin by looking up “Color model” in Wikipedia.)
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Example: Colour Opponent Channels

These colour opponent channels are illustrated in the following example.

Hats Image Red (R) Component Green (G) Component Blue (B) Component

Brightness Component Y-B Component R-G Component

Note theR andG images appear very similar, indicating a typically strong correlation. Also note that,

in each of the monochromatic images, there are small image regions where the boundaries of the hats

have low contrast. For these regions the gradients will be either small or dominated by other structure

in the region. Thus it may be hard to find a single projection direction, ~w ∈ R
3, for which the hat

boundaries all have large gradients in the single monochromatic image~w T ~I(~x)/||~w||.
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Image Gradient Tensors: Magnitude and (Spatial) Direction

Alternatively, it is possible to consider alln channels of~I(~x) simultaneously.

Consider the JacobianJ(~x) = ∂~I
∂~x. This is ann× 2 matrix (aka tensor), with thekth row given by thex

andy derivatives ofIk, that is,(Jk,1(~x), Jk,2(~x)) = [~∇Ik(~x)]T = (Ik,x(~x), Ik,y(~x)).

The gradient tensor magnitude,S(~x), and direction,~u(θ(~x)), are defined using

S(~x) = max
0≤φ<π

||RJ(~x)~u(φ)||, θ(~x) = arg max
0≤φ<π

||RJ(~x)~u(φ)||, (6)

where~u(φ) = (cos(φ), sin(φ))T , || · || denotes the usual 2-norm, andR is a selectedn × n weighting

matrix. The gradient direction is then~u(θ(~x)) (aka, the right principal vector of the weighted Jacobian,

RJ(~x)). See DiZenzo, 1986, for a closed form solution ofθ(~x).

Note that, in contrast to the gradient direction in monochromatic images, the gradient tensor direction

is only defined up to a sign. That is, both~u(θ(~x)) and−~u(θ(~x)) are solutions.

CSC420: Linear Filtering Page: 19



Image Gradient Tensors: Left Principal Vector

The left principal vector of the weighted JacobianRJ(~x) is defined to be

~w(~x) =
1

S(~x)
RJ(~x)~u(θ(~x)). (7)

This ~w(~x) ∈ R
n is, in a sense, a locally optimal choice for the projection vector ~w discussed above.

To see this optimality, consider the monochromatic imageHw(~x) = ~w TR~I(~x)/||~w||, where ~w is a

constant vector. Here we have divided by||~w|| to avoid a trivial dependence of the gradient magnitude

of Hw(~x) on the magnitude of~w

Then it follows that, at every~x, the left principal vectormaximizes the (monochromatic) gradient

magnitude over all images of the formHw(~x). We omit the proof of this (but hint that the interested

reader should consider the singular value decomposition (SVD) of the gradient tensorRJ(~x)).

For scalar images (i.e.,n = 1 andR = 1), this definition of the gradient tensor magnitude and direc-

tion agrees with our previous definition, with the one exception that the gradient tensor direction is

independent of sign. In particular, it can point in the steepest ascent or descent direction.
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Example Using Gradient Tensors
Brightness Image Gradient Magnitude Gradient Orientation

Original Image Gradient Tensor Magnitude Gradient Tensor Orientation

Here we usedR = diag([1, 4, 4])C (borrowing diag(·) from Matlab) to emphasize the colour opponent

channels over the brightness channel. Note that the hat boundaries are all clearly defined in the gradient

tensor approach, which is not true of the results from the brightness image alone. This illustrates the

adaptive selection of the left principal direction~w(~x) that is inherent in this approach.
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Further Information

Linear filtering is a rich subject, of which we have (intentionally) given only a brief sketch. Important

subjects that students can entirely skip in this course include:

• Fourier analysis,

• sampling, and aliasing,

• signal interpolation (more generally),

• upsampling and downsampling signals,

• filter design,

The textbook by Castleman, 1995, provides an excellent introductory treatment of most of these topics

(for any student interested in further study outside of this course).

Alternatively, Sections 3.2 and 3.4-6 of the textbook by Szeliski provide more information, while

Section 3.8 provides an excellent set of pointers into recent literature.
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