
Processing Images and Video for An Impressionist Effect

Peter Litwinowicz

Apple Computer, Inc.

ABSTRACT
This paper describes a technique that transforms ordinary video
segments into animations that have a hand-painted look. Our
method is the first to exploit temporal coherence in video clips
to design an automatic filter with a hand-drawn animation
quality, in this case, one that produces an Impressionist effect.
Off-the-shelf image processing and rendering techniques are
employed, modified and combined in a novel way. This paper
proceeds through the process step by step, providing helpful
hints for tuning the off-the-shelf parts as well as describing the
new techniques and bookkeeping used to glue the parts
together.

1. INTRODUCTION
In the 1800's, Claude Monet created paintings that attempted
to "catch the fleeting impression of sunlight on objects. And it
was this out-of-doors world he wanted to capture in paint -- as
it actually was at the moment of seeing it, not worked up in
the studio from sketches." [Kingston80].

Impressionist paintings provide the inspiration for the work
presented here. We have produced images that are impressions
of an input image sequence, that give a sense of an original
image without reproducing it. These images have a “painterly”
feel; that is, they appear as if they have been hand-painted.
Furthermore, we have produced entire animations with these
same qualities.

Producing painterly animations from video clips automatically
was the goal of this work. Our technique requires that the user
specify a few parameters at the start of the process. After the
first frame is produced to the user's liking, our technique
processes a whole video segment without further user
intervention. Previous painterly techniques require much user
interaction and have only been presented in the context of
modifying a single frame (with the exception of a technique
applied to 3D animated scenes).

While this technique is not the first to produce images with an
Impressionist look, our method has several advantages. Most

significantly, this paper presents a process that uses optical
flow fields to push brush strokes from frame to frame in the
direction of pixel movements. This is the first time pixel
motion has been tracked to produce a temporally coherent
painterly style animation from an input video sequence. Brush
strokes are distributed over an input image and then drawn with
antialiased lines or with supplied textures to produce an image
in the Impressionist style. Randomness is used to perturb the
brush stroke's length, color and orientation to enhance the
hand-touched look. Strokes are clipped to edges detected in the
original image, thus preserving object silhouettes and fine
detail. A new technique is described to orient strokes using
gradient-based techniques. In the course of being moved from
frame to frame, brush strokes may become too sparse to cover
the image. Conversely, brush strokes may become overly
dense. The necessary algorithms for adding and deleting brush
strokes as they are pushed too close or too far apart by the
optical flow field are described within this paper.

The following section describes previously presented painterly
techniques. Then we present the details of our technique:

1) the stroke rendering and clipping technique,
2) the algorithm for producing brush stroke orientations,
3) the algorithm for moving, adding and deleting brush

strokes from frame to frame.

In conclusion, we discuss limitations of the algorithm and
possible future directions.

2. BACKGROUND
Techniques for computer-assisted transformations of pictures
are presented in [Haeberli90]. Many of those techniques
involve extensive human interaction to produce the final
images. More specifically, the user determines the number of
strokes as well as their positions. The user controls the
orientation, size and color of the strokes using combinations of
interactive and non-interactive input. Examples of interactive
input include cursor location, pressure and velocity; and non-
interactive input include the gradient of the original image or
other secondary images. Brush strokes can be selected from a
palette and include both 2D and 3D brushes.

Painting each image in a sequence is labor intensive, and even
more work is necessary to produce a sequence that is
temporally coherent. "Obvious" modifications can be made to
Haeberli’s technique, but each has their drawbacks. For
example, imagine keeping the same strokes from frame to
frame and modifying the color and direction of the strokes as
the underlying image sequence dictates. Doing so produces a
final animation that looks as if it has been shot through a pane
of glass because brush strokes don't follow the movement of
the objects in the scene. Conversely, generating the random
strokes from scratch for each frame often produces animation
with too much jitter. Modifying Haeberli's approach to produce
temporally coherent animations is a primary focus for the work
presented here.

Peter Litwinowicz
1 Infinite Loop, MS 301-3J
Cupertino, CA 95014
email: litwinow@apple.com

Copyright Notice
Copyright ©1997 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to distribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org.

Supplemental Materials
Supplemental materials for this paper are available in the papers/litwinow directory.

An interactive paint-like system for producing pen-and-ink
illustrations is described in [Salisbury94]. The user specifies
regions that are filled with chosen pen-and-ink patterns.
Regions can be determined by hand, or specified as portions of
a supplied secondary image. Similarly, tone can be supplied by
hand or from some portion of an underlying reference image.
Random variations are added to help produce a hand-drawn
look. Building upon this work, [Salisbury96] presents a
computer-assisted technique for producing scale-dependent
pen-and-ink reproductions of images. In this work, tone from an
image is used in conjunction with edges (detected from the
same image) to produce a pen-and-ink format that is
resolution-independent. The final rendered pen-and-ink images
seek to preserve discontinuous shading across the edges that
appeared in the original image, and to produce continuous
shading in other areas. As with the techniques presented in
[Haeberli90], applying the pen-and-ink techniques to sequences
of images to produce a temporally coherent result is not
straightforward. Motivated by this work, our technique also
preserves perceived edges when transforming an input image.

The aforementioned techniques were only applied to single
images. A system for producing 2-1/2D animations using
"skeletal strokes" was presented in [Hsu94]. "Skeletal strokes"
is a term used by the authors to describe a brush and stroke
metaphor that uses arbitrary pictures as ink. However, all
animation is key-framed by the user; that is, there is no
automatic processing of an underlying image sequence.

In [Meier96], a system for transforming 3D geometry into
animations with a painterly look is presented. 3D objects are
animated and "particles" on the 3D surfaces are tracked. After
the objects are projected into 2D (via a camera
transformation), the particles are sorted by depth from the eye
and then serve as positions for 2D brush strokes (painted back
to front). Orientations are determined by using the surface
normals as projected into the image plane. Brush size and
texture is specified by the user. If desired, brush size may vary
across a particular 3D object. This work demonstrates that
temporal coherence of brush strokes is both interesting and
important, but did not use video sequences as its input.

3. THE PROCESS
In this section we present our algorithm for overcoming some
of the shortcomings of the previously described techniques.
First, we describe the rendering technique, then the orientation
algorithm, and finally the technique used to move brush strokes
from frame to frame to produce temporally coherent
animations. Color Plate 1 shows an example image that is used
in demonstrating the process. (All color plates are located near

the end of the paper so the reader may compare successive
stages of the algorithm).
In order to create a final image there are many facets to our
technique that work in concert with each other. However,
explaining all the details at once would be confusing. We will
first describe a very simple method to generate an image. As
the paper progresses we will continue to describe modifications
until the entire process has been explained.

A. Rendering strokes
Stroke Generation
To create the image shown in Color Plate 2, brush strokes are
generated which, when rendered, cover the output image.
Assume that each brush stroke is rendered with an antialiased
line centered at (cx ,cy), with a given length length, a given
brush thickness radius, and a given orientation, theta . Assume
that the brush strokes are generated with centers (cx ,cy)
positioned every two pixels in both the X and Y directions for
the image. This spacing will assure coverage of the entire
image with rendered brush strokes (brush radii and lengths
shown in Table 1). In practice, the user sets the initial spacing
distance. Then cx and cy are stored as floating point numbers
for subpixel positioning. An orientation, theta , for each stroke
is also needed. Discussion of the orientation calculation is
deferred, so assume a constant direction of 45° (an arbitrary
orientation chosen for demonstration purposes). The color for a
particular stroke is assigned the bilinearly interpolated color of
the original image at (cx ,cy). Color components (r,g,b) are in
the range [0,255]. Last, the order that the strokes are drawn is
randomized to help create a hand-touched look (it helps break
up the spatial coherence that would otherwise occur).

Color Plates 2-5 Color Plates 6-8
Brush stroke radius
(or offset for textured
 brushes)

1.5-2.0 4.0-4.5

Length 4-10 8-20
Table 1. Ranges for brush stroke radius and length.

Random Perturbations
Adding random variations and perturbations to a stroke helps to
create a hand-crafted look. Much of the previous work on
painterly renderings contain some form of random variation.
We assign random amounts to length and radius in ranges
supplied by the user (see Table 1). We perturb the color by a
random amount for ∆r , ∆g and ∆b , each in the range [-15,15]
(a range empirically found to be useful). We scale the
perturbed color by a random amount, ∆intensity, in the range
[.85,1.15]. After the originally sampled color is modified, the

Figure 1. As shown at the left, previous methods have drawn brush strokes without regard to edges.
The same brush stroke clipped to edges in the image is shown on the right.

resulting color is clamped to the valid range [0,255]. We also
perturb theta , the orientation for the stroke, and do so by
adding ∆theta, a random amount in the range [-15°,15°] (a
range used for all images shown in the paper). length, radius,
∆r , ∆g , ∆b , ∆intensity and ∆theta are stored in the brush
stroke's data structure and are used from frame to frame. We do
not generate new values for each frame as this results in
animations with too much jitter.

Clipping and Rendering
To render a brush stroke, an antialiased line is drawn through
its center in the appropriate orientation. In order to preserve
detail and silhouettes, strokes are clipped to edges that they
encounter in the original image (see Figure 1). In this way,
edges in the original image are more or less preserved. This is
accomplished by starting at the center of the stroke and
growing the stroke (in its orientation) until edges in the
original image are detected. Color Plate 2 shows the results of
drawing strokes while not trying to preserve edges, in contrast
to Color Plate 3, which demonstrates the results of clipping the
strokes against edges in the original image.

The stoke clipping technique is motivated in part by the work
presented in [Salisbury94], in which stroke textures are clipped
to edges provided by the user. Edges may be drawn or derived
from an underlying image. [Salisbury94] presents an interactive
system; the regions for stroke textures are specified by the user
(using the original and secondary images, such as an edge
enhanced version of the image). In our system there is no user
interaction to specify edges; we rely solely on standard image
processing techniques to locate edges.

The line clipping and drawing process proceeds as follows:

1. An intensity image is derived from the original color image.
If the color value at a pixel is stored as red, green and blue
components (r,g,b) in the range [0,255], then the intensity at
each pixel is calculated as (30*r + 59*g + 11*b)/100 (standard
conversion of r,g,b values to intensity value [Foley84]).

2. The intensity image is blurred with a Gaussian kernel
[Jain95]. This blur helps reduce noise in the original video
images. A larger kernel reduces noise, but at the expense of
losing fine detail. A smaller kernel helps preserve fine detail,
but may retain unwanted noise in the image. In this
implementation, a B-spline approximation to the Gaussian is
used. The width of the kernel should really depend on the
content of the original sequence, so we let the user choose the
kernel width. (A blurred image is shown in Figure 2, and uses a
kernel that goes to zero at a radius of 11 pixels).

3. The resulting blurred image is Sobel filtered [Jain95]. The
gradient (Gx ,Gy) is calculated at each pixel and the value of
the Sobel filter at any given pixel is:

Sobel(x,y) = Magnitude (Gx , Gy)
See Figure 2 for the Sobel filtered image of the example
image.

4. Given the center (cx ,cy), the orientation of the stroke, theta
and the Sobel filtered image, endpoints of the stroke (x1 ,y1)
and (x2 ,y2) need to be determined. The process starts at
(cx ,cy) and "grows" the line in its orientation until the
maximum length is reached or an edge is detected in the
smoothed image. An edge is considered found if the magnitude
of the gradient (the Sobel value) decreases in the direction the
stroke is being grown. See Appendix A for the pseudo-code for
stroke clipping. This is similar to the edge detection process
used in the Canny operator. For details of the Canny operator
the reader is referred to [Jain95].

Determination of the stroke orientation, theta , is described in
the following section. For Color Plate 3 we used a constant 45°
orientation, with perturbations added.

5. The stroke is rendered with endpoints (x1,y1) and (x2 ,y2).
The color of the stroke is assigned the color of the original
image at the center of the stroke. The stored perturbations are
used to modify this color, and then the color is clamped. The
strokes in Color Plates 2 through 5 are rendered as antialiased
lines using a stroke radius in the range [1.5,2.0] (again, a
number used for example purposes). A linear falloff is used in
a 1.0 pixel radius region (alpha, for compositing, transitions
from a value of 1.0 to 0.0 linearly). Figure 3 shows how the
values are used to render the stroke.

1.0 pixel falloff

given radius,
includes
falloff

(x1,y1) (x2,y2)

Figure 3. Antialiased stroke rendering.

Note that the drawing process touches pixels past the clipped
endpoints of the line. Drawing slightly past the endpoints,
along with the random ordering of strokes, creates a non-
perfect line along edges. This helps to produce the hand-

Figure 2. Blurred image and Sobel filtered image.

touched slightly wandering edges in the final image (shown in
Color Plate 3) rather than an absolute hard edge.
It is important to note that, at the very least, a circle is drawn
of the given brush radius, even if there are edges in the image
that clip a particular stroke to zero length. This means that
something will be drawn for each stroke even if the stroke’s
center is surrounded by edges in the original image.

Using Brush Textures
Brush strokes may also be rendered with textured brush images
that have r,g,b and alpha components. A given offset is
provided (akin to the radius given for the antialiased lines) and
a rectangle surrounding the clipped line is constructed (see
Figure 4). The brush stroke texture is then rendered into this
rectangle. Each component of the color of the brush stroke
texture is multiplied by the color assigned to the stroke. In the
current implementation, the given offset is used regardless of
the length of the clipped line. Another approach would be to
scale the offset based on the length of the stroke. Color Plates
7 and 8 demonstrate the use of brush stroke textures.

(x1,y1) (x2,y2)

given offset given
offset

Figure 4. Rectangle for rendering textured brushes

B. Brush Stroke Orientation
In the previous section, a 45° constant orientation was used for
all strokes (before the random variations were added). An
artist, however, may not want to have all the strokes drawn in
the same direction. We provide the user the option of drawing
brush strokes in the direction of constant color, or near constant
color, of the original image. This has the real world metaphor
of strokes painted in a medium where a stroke does not change
color as it is painted. This orientation can be approximated
automatically by drawing strokes normal to the gradient
direction (of the intensity image). Differentially, the gradient is
the direction of most change, and normal to the gradient is the
direction of zero change. Using this information, we assume
that the image can be approximated locally with a relatively
short stoke of constant color in the gradient-normal direction.

In our first implementation, the same Gaussian kernel used in
the edge finding process was used for smoothing the image for
the gradient calculation. However, using the same kernel did
not produce a gradient that was smooth enough. A greater
kernel width is used for the orientation calculation; in fact, the
Gaussian filter used has a radius that is 4 pixels greater than

the filter used for the edge finding process. Of course the user
could supply this parameter, but for the video sequences we
processed, the slightly larger kernel provided an adequately
smoothed orientation field (and eliminated one more choice for
the user).

The gradient direction is used to guide brush strokes in the
work presented in [Haeberli90]. However, the user must
interactively supply the position and length of the strokes.
Using equally spaced brush strokes and the normal to the
gradient of a smoothed version of the original image, Color
Plate 4 was produced. However, when the magnitude of
gradient is near zero we cannot rely on the gradient direction
to be useful. We introduce a novel technique which modifies
the gradient field so that brush strokes in a region of constant
color (or near constant color) smoothly interpolate the
directions defined at the region's boundaries (the difference is
shown between Color Plates 4 and 5).

To accomplish this, gradient values are “thrown out” at pixel
locations where the Magnitude((Gx ,Gy)) is near zero. In this
implementation, this is approximated by the test: |Gx |<3.0 and
|Gy |<3.0, which was empirically found to be useful. The
gradient at pixels with near zero gradient magnitude are then
replaced by interpolating surrounding "good" gradients. The
"good" values do not necessarily lie on a uniform grid, so
generating points with cubic interpolation (or other closed-form
solution) does not work here. An interpolant that does not
assume uniformly spaced data in both direct ions is needed. In
our implementation, Gx and Gy are interpolated using a thin-
plate spline [Franke79], which is chosen for its smoothness
characteristics.

Finally, at each brush stroke center (cx ,cy), the modified
gradient field components (Gx ,Gy) are bilinearly interpolated.
A direction angle is computed from this vector as
arctan(Gy /Gx), 90° is added to it (to draw it normal to the
gradient direction), and the ∆theta stored with the stroke is
added to produce theta , the orientation of the drawn stroke
(see Color Plate 5).

Using the normal to the gradient causes strokes to look glued
to objects in a scene (it helps define their shape), especially
when the objects are moving, rotating or changing shape.
Keeping stroke orientation the same from frame to frame does
not provide the same amount of perceived spatial and temporal
coherence that is provided by using the normal to the gradient
direction. Of course, keeping the strokes oriented along a
particular constant direction remains an option.

C. Frame-to-Frame Coherence
In [Meier96], a temporally coherent technique is presented

Figure 5. Two frames and the optical flow field that maps pixels from one frame to another.

which employed “particles” on 3D objects as centers for brush
strokes. By transforming these points into 2D, using the normal
direction of 3D surfaces as guides for brush stroke orientations,
and rendering strokes back to front as seen from the camera,
temporally coherent animations were produced. However, input
to our process is a video clip with no a priori information about
pixel movement in the scene. Our technique uses standard
vision techniques to produce an automatic technique to guide
brush strokes in the direction of pixel movement.

To render the first frame, we use the process described in the
previous two sections. In order to move the brush strokes from
one frame to the next, we first calculate the optical flow
between the two images. Optical flow methods are a subclass
of motion estimation techniques and are based on the
assumptions that illumination is constant and that occlusion
can be ignored, that is, that the observed intensity changes are
only due to the motion of the underlying objects. It should be
noted that this assumption is quite invalid for many of our test
sequences. However, the artifacts of these assumptions produce
interesting results even when the assumptions aren't true. When
objects appear or disappear, optical flow methods tend to mush
together or stretch apart the image portions corresponding to
these objects. This provides a pleasing temporal coherence
when portions of objects appear or disappear.

We chose the algorithm presented in [Bergen90] for its speed.
This algorithm uses a gradient-based multi-resolution
technique, employing a pyramid of successively low-passed
versions of the gradient to help compute the optical flow.
Presenting details concerning this optical flow method is
beyond the scope of this paper.

The optical flow vector field is used as a displacement field to
move the brush strokes (specifically, their centers) to new
locations in a subsequent frame. The optical flow technique we
implemented provides subpixel positioning, and this feature is
exploited by moving brush strokes to subpixel locations. See
Figure 5 for two images and the flow field that maps pixels in
the first one to pixels in the second. After application of the
displacements, some of the strokes may have been pushed
from the edge of the image. The best match for a pixel will not
be outside the image, but the algorithm may map edge pixels
in one frame to an interior point in the next. We must make
sure to generate new strokes near the image boundaries when
this happens.
After application of the flow field to move the strokes, there

also may be regions away from image boundaries that become
unnecessarily dense with brush strokes or not dense enough.
We want full coverage of the image with rendered brush
strokes, so brush strokes are "too sparse" in our algorithm when
there are pixels left untouched in the final rendered image.

To generate new brush strokes in regions that are too sparse, a
Delaunay triangulation [Preparata85] using the previous frame's
brush stroke centers (after application of the optical flow field)
is generated using the methods described in [Shewchuk96]
using source code available at [TriangleCode] (see Figures
6a,b,c). The particulars of the Delaunay triangulation is beyond
the scope of this paper; however, it is important to know that
the Delaunay triangulation covers the convex hull of the
submitted points with triangles. By including the corners of the
image in the point set, it is assured that the entire image will
be covered with triangles (remember, as stated above, the
optical flow may push strokes far away from the image
boundaries).

The Delaunay triangulation by itself does not generate new
points for brush strokes. However, after the Delaunay
triangulation is performed, the mesh is subdivided so that there
are no triangles with an area larger than maximum supplied
area (as presented in [Shewchuk96]). By supplying an
appropriate maximal area, new vertices are created which fill
in the sparse areas and are subsequently used as new brush
stroke centers. To produce Color Plate 5, the specific maximal
area we supplied was 2.0 in pixels units squared (the
antialiased lines for this plate were rendered with brush radii
with a range of 1.5 to 2.0), a number found empirically to
provide dense enough vertices . The maximum area may be
tuned by the user if desired; for example, if the user wishes to
have areas of the final image untouched by strokes. New brush
strokes are created for the new vertices and a new random
length and new variations for angle, color, intensity are
determined and stored. See Figure 6d for the subsequent
subdivision of the initial triangulation shown in Figure 6c.

Eliminating brush strokes in regions that are overly dense is
desirable. After pushing strokes around frame after frame, brush
strokes collect in image regions that "shrink." Over time this
results in overly dense brush stroke regions, which then causes
the rendering process to slow down tremendously. The amount
of brush buildup depends of course on the specific video
sequence. To dispose of brush strokes, the edge list of the
triangulation is traversed (remember, each point in the

a b c d e
Figure 6.

a) Initial brush stroke positioning.
b) The four middle strokes are to be moved as shown.
c) Delaunay triangulation of the moved strokes
d) Red points show new vertices introduced as a result of satisfying the maximal area constraint.
e) The updated list of brush strokes. The original lower left corner brush stoke has been deleted because the distance between it and

another original stroke satisfies the closeness test. Two of the potentially added new brush strokes have also been removed from
the list.

triangulation is the center for an associated brush stroke). If the
distance between the two points of an edge is less than a user-
specified length, the corresponding brush stroke that is drawn
closer to the back is discarded (a display list of strokes is kept,
so there is an implicit front to back ordering). For Figure 6e
and Color Plate 5, strokes were discarded when their centers
were closer than 0.25 pixel units. As the edge list of the
triangulation is traversed, if a point has been discarded we
must be sure to perform the distance calculation with the point
(and associated stroke) that replaced it. The triangulation
provides the closest neighboring points to a given point,
enabling a great reduction in the number of distance and
comparison calculations.

At this point there are two lists of brush strokes: a list of "old"
strokes (strokes moved and subsequently kept) from the
previous frame, and the "new" strokes generated in sparse
regions. Old stroke ordering (after throwing out unwanted
strokes) is kept to provide temporal coherence. To place the
new strokes on the list with the old strokes, the new strokes'
order is randomized with respect to themselves. Then the new
strokes are uniformly distributed among the old strokes. If the
new strokes are simply painted behind the old strokes,
undesirable effects can occur.

Figure 7. Top row shows a flow field. The second row
shows the effects of placing new strokes behind old

strokes, where new strokes are alternately coded dark and
light. The third row demonstrates the effects of uniformly

distributing the new strokes among the old ones.

For instance, in Figure 7 shows a flow field representing a pan
of a video camera. The same figure demonstrates the results of
putting new strokes behind old ones as well as uniformly
distributing them. New strokes from frame to frame are
alternately coded light and dark. Very clear edges appear if the
new strokes are drawn behind the old ones. This is a problem,
producing edges in the rendered image that may not be present
in the original image. Uniformly distributing the new strokes
produces much better results, effectively eliminating the
problems encountered by painting new strokes behind the old
ones. Distributing new strokes uniformly produces some
temporal scintillation (strokes popping on top) but this was
found to be preferable to the spatial anomalies that may
otherwise occur.

After strokes are created, deleted and placed in their new
positions, the base color of the stroke is retrieved from the
image at the stroke center. The gradient field is determined for
the new image in the sequence and used to calculate each

brush's orientation. The stored delta values are then used to
perturb these sampled values as described above and the next
image in the rendered sequence is produced.

4. DISCUSSION
An algorithm for producing painterly animations from video
clips has been presented. Brush strokes are clipped to edges
detected in the original image sequence in an attempt to
maintain silhouettes and other details present in the original
images. Brush strokes are oriented normal to the gradient
direction of the original image; a scattered data interpolation
technique is used to interpolate the gradient field in areas
where the magnitude of the gradient is near zero. Finally, a
brush stroke list is maintained and manipulated through the use
of optical flow fields to enhance temporal coherence.

The numbers presented in the paper represent a particular
implementation. For the image sequence represented by the
technique to produce Color Plate 5 (brush radii in the range
[1.5-2.0], brush lengths in the range [4,10] and a maximal area
constraint of 2.0), 76800 strokes were used to start the process
(= 640/2 * 480/2). As the process continued, the stroke count
averaged 120,000. Time to produce each frame averaged 81
seconds on a Macintosh 8500 running at 180 MHz.

Of course the specific parameters to the brush and the specific
image processing and rendering techniques may be
manipulated to produce different results. A fatter brush stroke
radius of 8 produced the image in Color Plate 6, and textured
brush strokes produced Color Plates 7 and 8. In the future
different color ass ignment techniques are planned (such as
averaging the colors under a particular brush stroke to generate
its color).

We see this algorithm as an important step in automatically
producing temporally coherent "painterly" animations.
However, because we paint some of the new strokes in front of
old strokes, the animations can scintillate. Whether we can
avoid this and not introduce spatial anomalies remains to be
determined. Also, because we clip lines to edges in the
original video sequence, the presence of noise in the original
video will cause the derived edges to scintillate, which in turn
causes the brush stokes to scintillate. The brush stroke
placement from frame to frame is not perfect either, and is
only as good as the underlying motion estimation technique
used. The technique we used does fairly well but can only do
so much without any advanced knowledge of the objects in the
scene. In particular, brush strokes can sometimes seem to swim
in areas of near constant intensity.

Further directions may include implementing other rendering,
image processing and vision techniques to produce other
artistic styles. Applying the techniques to 3D objects to
produce painterly renderings would be interesting (as in
[Meier96]), and would enable animations with much greater
temporal coherence since object movement is known a priori.

For the first time, temporal coherence in video segments is
used to drive brush stoke placement for a painterly style effect.
After a few initial decisions, such as what the brush stroke
length, radius and texture should be; whether or not to use the
gradient for brush stroke orientation; what filter kernels should
be used; providing distances and areas for the closeness and
sparseness tests, our system process the video automatically.
Hopefully this technique proves easy enough for those who do
not have the time, desire, or talent to hand-animate a

Color Plate 1. An original image. Plates 1-8 are 640x480 pixels.
Color Plate 2. Processed image using no brush stroke clipping and

a constant base stroke orientation of 45°.

Color Plate 3. Technique of Color Plate 2 is modified so that
brush strokes are cliped to edges detected in the original image.

Color Plate 4. Technique of Color Plate 3 is modified to orient
strokes using a gradient-based technique.

Color Plate 5. Technique of Color Plate 4 is modified such that regions with
vanishing gradient magnitude are interpolated from surrounding regions.

Color Plate 6. Image produced using larger brush stroke radii
and lengths.

Color Plate 7. Brush stroke textures are used. Lower right corner
shows basic brush intensity and alpha. Color Plate 8. Another brush stroke texture is demonstrated.

sequence, but is also powerful enough to be part of the battery
of tools a trained artist might use.

5. ACKNOWLEDGEMENTS
Thanks to Apple Research Labs for sponsoring this work, Gavin
Miller for many ideas, and the reviewers who provided a
careful reading of this paper.

6. REFERENCES
[Bergen90] Bergen, J. R. and R. Hingorani. “Hierarchical motion-

based frame rate conversion,” David Sarnoff Research Center,
Princeton, N. J.

[Foley84] Foley, James and Adries Van Dam. Fundamentals of
 Interactive Computer Graphics . Addison-Wesley, Reading,
Massachusetts, 1984.

[Franke79] Franke, F. “A Critical Comparison of Some Methods for
Interpolation of Scatte red Data,” Report NPS-53-79-03 of the
Naval Postgraduate School, Monterey, CA. Obtained from the
U.S Department of Commerce, National Technical Information
Service.

[Haeberli90] Haeberli, Paul. “Paint By Numbers: Abstract Image
Representations,” Computer Graphics, SIGGRAPH Annual
Conference Proceedings 1990, pp. 207-214.

[Hsu94] Hsu, Siu Chi and Irene Lee. “Drawing and Animation Using
Skeletal Strokes,” Computer Graphics, SIGGRAPH Annual
Conference Proceedings 1994, pp. 109-118.

[Jain95] Jain, Ramesh, Ranga char Kasturi, and Brian Schunck.
 Machine Vision . McGraw-Hill, Inc. New York, 1995.

[Kingston80] Kingston, Jeremy. Arts and Artists . Book Club
Associates, London, 1980. pp. 98-99.

[Meier96] Meier, Barbara. “Painterly Rendering for Animation,”
Computer Graphics, SIGGRAPH Annual Conference Proceedings
1996, pp. 477-484.

[Preparata85] Preparata, Franco, Michal Ian Shamos, Computational
 Geometry, An Introduction , Springer-Veralg, 1985.

[Salisbury94] Salisbury, Michael, Sean Anderson, Ronen Barzel, and
David Salesin. “Interactive Pen-and-Ink Illustration”, Computer
Graphics, SIGGRAPH Annual Conference Proceedings 1994, pp.
101-108.

[Salisbury96] Salisbury, Mike, Corin Anderson, Dani Lischinski, and
David Salesin. “Scale-Dependent Reproduction of Pen-and-Ink
Illustrations”, Computer Graphics, SIGGRAPH Annual
Conference Proceedings 1996, pp. 461-468.

[Shewchuk96] ShewChuk, Jonathan. “Triangle: Engineering a 2D
Quality Mesh Generator and Delaunay Triangulator,” First
Workshop on Applied Computational Geometry, Association for
Computing Machinery, May, 1996, pp. 124-133.

[TriangleCode] Code for reference [Shewchuk96] available at
http://www.cs.cmu.edu/~quake/triangle.html.

Appendix A. STROKE CLIPPING
The center of the stroke is given by (cx ,cy) and the direction
of the stroke is given by (dirx,diry). This process determines
(x1 ,y1) and (x2 ,y2), the endpoints of the stroke clipped to
edges in the image.

The Sobel filtered intensity image is sampled in steps of unit
length in order to detect edges. To determine (x1 ,y1):

a. set (x1 ,y1) to (cx ,cy)
b. bilinearly sample the Sobel filtered intensity image

at (x1 ,y1), and set lastSample to this value
c. set (tempx, tempy) to (x1+dirx, y1+diry), taking

a unit step in the orientation direction.
d. if (dist((x1 ,y1),(tempx, tempy)) > (length of

stroke)/2, then stop
e. bilinearly sample the Sobel image at

(tempx, tempy), and set newSample to this value
f. if (newSample < lastSample) then stop
g. set (x1 ,y1) to (tempx, tempy)
h. set lastSample to newSample
i. go to step c

At the end of this process, the endpoint (x1 ,y1) of the line in
one direction has been determined. To find (x2 ,y2), the
endpoint in the other direction, set (dirx,diry) to (-dirx, -
diry) and repeat the above process.

Color Plate 9. Another image produced with the technique.

