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Abstract—When model-checking reports that a property holds
on a model, vacuity detection increases user confidence in this
result by checking that the property is satisfied in the intended
way. While vacuity detection is effective, it is a relatively expensive
technique requiring many additional model-checking runs. We
address the problem of efficient vacuity detection for Bounded
Model Checking (BMC) of LTL properties, presenting three par-
tial vacuity detection methods based on the efficient analysis of the
resolution proof produced by a successful BMC run. In particular,
we define a characteristic of resolution proofs – peripherality – and
prove that if a variable is a source of vacuity, then there exists a
resolution proof in which this variable is peripheral. Our vacuity
detection tool, VaqTree, uses these methods to detect vacuous
variables, decreasing the total number of model-checking runs
required to detect all sources of vacuity.

I. INTRODUCTION

Model-checking [1] is a widely-used automated technique

for verification of both hardware and software artifacts that

checks whether a temporal logic property is satisfied by a finite-

state model of the artifact. If the model does not satisfy the

property, a counterexample, which can aid in debugging, is

produced. If the model does satisfy the property, no information

about why it does so is provided by the model-checker alone.

A positive answer without any additional information can be

misleading, since a property may be satisfied in a way that

was not intended. For instance, a property “every request is

eventually acknowledged” is satisfied in an environment that

never generates requests.

Vacuity detection [2]–[5] is an automatic sanity check that

can be applied after a positive model-checking run in order to

gain confidence that the model and the property capture the

desired behaviours. Informally, a property is said to be vacuous

if it has a subformula which is not relevant to its satisfaction,

or if the property itself is a tautology. Conversely, a property is

satisfied non-vacuously if every part of the formula is important

– even a slight change to the formula affects its satisfaction.

In this paper, we focus on vacuity detection for SAT-based

Bounded Model Checking (BMC). Given a BMC problem with

a particular bound, we wish to determine if the property holds

vacuously on the model up to this bound. In this context, a naive

method for detecting vacuity is to replace subformulas of the

temporal logic property with unconstrained boolean variables

and run BMC for each such substitution. If the property with

some substitution still holds on the model, the property is

vacuous. This naive approach is expensive, since in the worst

case it requires as many model-checking runs as there are

subformulas in the property. Our goal is to reduce the number

of model-checking runs required to detect vacuity. We do

this by detecting some vacuity through novel and inexpensive

techniques reported in this paper, and complete the method by

running the naive algorithm on the remaining atomic subfor-

mulas. The key to our technique is that SAT-based BMC can

automatically provide useful information (a resolution proof)

beyond a decision whether the property holds on the model; we

exploit such proofs for partial vacuity detection.

In SAT-based BMC, the property and the behavior of the

model are encoded in a propositional theory, such that the

theory is satisfiable if and only if the formula does not hold.

When the property does hold, a DPLL-based SAT solver can

produce a resolution proof that derives false from a subset of

the clauses in the theory called the UNSAT core. Intuitively,

the resolution proof provides an explanation why the property

is not falsified by the model, and the UNSAT core determines

the relevant parts of the model and the property [6].

In this paper, we develop three methods of increasing pre-

cision (irrelevance, local irrelevance and peripherality) to an-

alyze the resolution proof to achieve partial vacuity detec-

tion. These algorithms are used by our vacuity detection tool,

VaqTree, in order to reduce the number of model-checking runs

required to find all sources of vacuity, thus reducing execution

times. Irrelevance and local irrelevance detect vacuity based

on which variables appear in the UNSAT core, and in which

locations. However, as these methods only examine the UNSAT

core, their precision is limited. The peripherality algorithm

examines the structure of the resolution proof, identifying as

vacuous those variables that are not necessary or central to the

derivation of false. This method is as precise as can be achieved

through analyzing a single resolution proof, and its running

time is linear in the size of the resolution proof and the number

of variables in the property. Our experience shows that local

irrelevance is the ideal candidate for replacing naive vacuity.

The remainder of the paper is organized as follows. Sec. II

presents some required background, followed, in Sec. III by

our definition of vacuity, the naive algorithm for LTL vacuity

detection using BMC, and an overview of work in the vacuity

detection field. Sec. IV presents the three algorithms that detect

vacuity by analyzing a resolution proof. Our experimental
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results are presented in Sec. V. We conclude with a summary,

additional related work, and suggestions for future work in

Sec. VI.

II. BACKGROUND

In this section, we review bounded model-checking and

resolution proofs.

A. Bounded Model-Checking

Bounded model-checking (BMC) [7] is a method for deter-

mining whether a linear temporal logic (LTL) formula ϕ holds

on a finite state system represented by a Kripke structure K up

to a finite number of steps. An instance of a BMC problem,

denoted by BMCk(K, ϕ), is whether K |=k ϕ, where |=k is

the k-depth satisfaction relation. An informal description of

LTL formulas, Kripke structures and BMC is given in [8], and

detailed definitions can be found in [1], [7].

To determine whether K |=k ϕ, the problem is converted

to a propositional formula Φ (see [7], [9], [10]) which is

satisfiable if and only if there exists a length-k counterexample

to K |=k ϕ. Φ is then given to a SAT solver which decides its

satisfiability. The propositional encoding represents the behav-

ior ofK up to k steps with a path constraint CLK , and encodes

all counterexamples to ϕ of length k in an error constraint

CLe. Therefore, if the theory CLK ∪ CLe is satisfiable, there

is a path through K which obeys the transition relation and

falsifies ϕ. The value of each variable v of K at each time step

is represented using new boolean variables vi (0 ≤ i ≤ k),

called timed variables.

The transition relation can be represented symbolically by

a propositional formula over the variables V and primed vari-

ables V ′ (which represent the variables in the next state). For

example, in the model in Fig. 1(a), the transition relation is

represented by the formula R = (p ∧ ¬q ∧ ¬p′ ∧ q′) ∨ (¬p ∧
q ∧ ¬p′ ∧ q′). The path constraint is obtained by substituting

the timed variables Vi for V in R, and replacing V ′ by the

timed variables for the next step, Vi+1. This is repeated for

each 0 ≤ i < k, and the resulting propositional formulas are

conjoined along with a formula representing the initial state [7].

In Fig. 1(a), if k = 1,

CLK = (p0 ∧ ¬q0) ∧ ((p0 ∧ ¬q0 ∧ ¬p1 ∧ q1)

∨(¬p0 ∧ q0 ∧ ¬p1 ∧ q1))

CLe is encoded according to a recursive procedure which re-

moves the temporal and logical operators from the property [7],

e.g., the algorithm encodes ϕ = Gp, where p is a propositional

variable, expanded up to k = 2, by the formula ¬p0∨¬p1∨¬p2.

After the boolean formulas for the path and error constraints

are calculated, they are converted to Conjunctive Normal Form

(CNF) before being passed to a SAT solver. If the solver reports

that CLK ∪ CLe is unsatisfiable, it means that there is no

length-k counterexample to ϕ; otherwise, a satisfying assign-

ment is returned. When a DPLL-based SAT solver processes

an unsatisfiable theory, a resolution derivation of false (or the

empty clause) is implicitly constructed [11], [12]. This resolu-

tion proof is used to verify that false can indeed be derived from

CLK ∪ CLe [13].

B. Resolution Proofs

Resolution is an inference rule that is applied to proposi-

tional clauses to produce logical consequences. A clause is

a disjunction of boolean variables and their negations. For

example, (v1 ∨ ¬v2 ∨ v5) is a clause stating that at least

one of v1,¬v2 or v5 must be true. The resolution rule takes

two clauses, where one contains a variable v and the other –

its negation ¬v, and produces a clause containing the union

of the two clauses minus v and ¬v. For example, resolving

(v1∨¬v2∨v5) and (v2∨v6) produces the resolvent (v1∨v5∨v6).
A resolution proof Π is a directed acyclic graph whose nodes

are labeled by propositional clauses. Π represents a tree of

resolutions between the clauses labeling its nodes. Its roots are

the nodes with no parents; otherwise, all nodes have exactly

two parents. The nodes with no children are called the leaves.

For example, the roots of resolution proof Π in Fig. 1(b) are

Roots(Π) = {(¬r0), (r0∨p0), (¬p0∨q0), (¬p0∨¬q0), (p0)},
and the leaf of Π is the empty clause,i.e., Leaf (Π) = false.
Given a non-root node labeled by the clause c, and the la-

bels of its parents, c1 and c2, c is the resolvent since it has

been produced by resolving c1 and c2 on some variable v.

A resolution proof Π is a proof of unsatisfiability of a set of

clauses A if and only if all roots of Π belong to A, and one

of the leaves of Π is the empty clause. For example, Fig. 1(b)

shows a resolution proof of the unsatisfiability of Roots(Π). If

a propositional theory in CNF is unsatisfiable, an UNSAT core

is an unsatisfiable subset of its clauses.

Given two disjoint sets of clauses A and B, a variable v is

said to be local to A if and only if v appears in A but does

not appear in B, and v is said to be global if it appears in both

A and B. In Fig. 1(b), if Roots(Π) = A ∪ B, where A =
{(¬r0), (r0 ∨ p0), (¬p0 ∨ q0)} and B = {(¬p0 ∨ ¬q0), (p0)},
then r0 is local to A, and the rest are global.

III. DEFINING VACUITY

This paper uses the following definition of vacuity.

Definition 1 Let K be a Kripke structure, ϕ be a formula

satisfied by K (i.e., K |= ϕ), and p be a variable. Then, ϕ
is p-vacuous in K iff ϕ[p ← x] is satisfied by K, where x is a
variable not occurring inK or in ϕ.

We use ϕ[p ← x] to indicate that all occurrences of p in ϕ

are replaced by x.

Similarily, it is possible to define vacuity in the BMC setting.

Definition 2 Let K be a Kripke structure, ϕ be a formula s.t.

K |=k ϕ, and p be a variable. ϕ is k-step p-vacuous iff K |=k

ϕ[p← x], where x is a variable not occurring inK or in ϕ.

If ϕ is k-step p-vacuous, we call p a k-step vacuous variable.

A property ϕ is k-step vacuous if and only if ϕ contains a k-step

vacuous variable. Therefore, our techniques aim to find the k-

step vacuous variables of ϕ. The qualifier “k-step” is omitted in

the remainder of the paper but should be understood implicitly

in the BMC context.

In the remainder of the paper, we avoid referring to k-vacuity,

focusing instead on those variables p that are used to prove that

a property is k-vacuous. When we say that a property ϕ is p-

vacuous in BMCk(K, ϕ), it means that ϕ is k-vacuous, and p is
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s0 s1

{p} {q}

(a) (b)

(¬r0) (r0 ∨ p0) (¬p0 ∨ q0) (¬p0 ∨ ¬q0) (p0)

(p0)

(q0)

(¬p0)

()
(c)

(p0) (¬p0, q1) (x1,¬q1) (¬x1)

q1 ¬q1

()

Fig. 1. (a) A Kripke structure; (b) A resolution proof for EXAMPLE 2; (c) A resolution proof for EXAMPLE 1.

such that K |=k ϕ[p ← x], where x is a new unconstrained

variable of K.

Def. 1 suggests a sound and complete algorithm for vacuity

detection: for each propositional variable p in ϕ, run BMC on

ϕ[p ← x], where x is a variable that does not appear in K and

ϕ. If K |=k ϕ[p ← x] for some p, then ϕ is k-step vacuous.

We refer to this algorithm as naive. Its drawback is that it may

require as many model-checking runs as there are propositional

variables in ϕ. Defs. 1 and 2 can be generalized to vacuity in

arbitrary (not necessarily atomic) subformulas. This follows

from the fact that a subformula is vacuous iff it is mutually

vacuous in all of its atomic propositions [14, Th. 9], and that

the definitions can be easily extended to mutual vacuity. For

example, if ϕ contains subformula θ = p ∧ q, and p and q are

mutually vacuous, then we can deduce that θ is vacuous as well.

We now review some of the alternative definitions of vacuity

and their algorithms. The first attempt to formulate and auto-

mate vacuity detection is due to Beer et al. [2]. They consider a

property ϕ to be vacuous if ϕ contains a subformula ψ such that

replacing ψ by any other formula does not affect the satisfaction

of ϕ. Applying this definition directly would require an infinite

number of subformula replacements, precluding a practical im-

plementation. However, Beer et al. show that to detect vacuity

w.r.t. a single occurrence of a subformula ψ in w-ACTL, it is

sufficient to replace ψ with only true and false. This was later

extended to CTL* by Kupferman and Vardi [3]. Purandare and

Somenzi [4] showed how to speed up subformula vacuity by

analyzing the parse tree of a CTL property.

Armoni et al. [5] generalized the above syntactic defini-

tion of vacuity by introducing universal quantification, i.e.,

∀x · ϕ[ψ ← x]. Based on the domain of x, three notions of

vacuity are obtained, the most robust of which being trace

vacuity. Gurfinkel and Chechik [15] extended Armoni’s def-

inition of vacuity to CTL*, thus uniformly capturing CTL

and LTL. Armoni et al. also analyzed the syntactic structure

of the property in order to avoid checking the operands of

subformulas that are known to be vacuous. Such optimizations

complement our techniques, which focus on detecting vacuous

atomic subformulas.

Namjoshi [16] defines a somewhat different notion of vacu-

ity, also based on a proof derived from a successful model

checking run. According to Namjoshi, a property should only

be considered vacuous if every proof of why it holds on the

model exhibits vacuity. This definition of vacuity coincides with

the definition of [5], [15] for a subset of LTL. Our methods

efficiently examine proofs derived from model-checking runs,

but are able to detect vacuity as defined by [2], [5], [15], [17].

Finally, we cannot empirically compare our techniques, since

no experimental results are provided in [16].

Our definition of vacuity is syntactic, and in this respect, it

is similar to the original definition of Beer et al. [2]. However,

Def. 1 is stronger, and is equivalent to the semantic definition

of Armoni et al. [5], as shown by Gurfinkel and Chechik [15].

IV. EXPLOITING RESOLUTION PROOFS

In Sec. III, we discussed the existence of a sound and com-

plete vacuity detection algorithm for BMC, which requires as

many model-checking runs as there are propositional variables

in the property being checked. We propose a new vacuity

detection strategy: first detect partial vacuity using inexpensive

techniques and then complete the analysis using extra model-

checking runs. Since we are interested in replacing expensive

model-checking runs by inexpensive partial vacuity detection

methods, we limit ourselves to considering the output of the

original model-checking run on BMCk(K, ϕ), i.e.,CLK ∪CLe.

This run provides us with a single resolution proof to analyze,

but in general, there may be many ways to derive the empty

clause from different subsets of BMCk(K, ϕ). Any method that

only examines one of these derivations is inherently incom-

plete, in the sense that a property may be p-vacuous but there

is no way of determining this based on a given resolution

proof. For example, consider a model that is composed of

two completely disjoint sub-models, running in parallel, i.e.,

K = K1 ‖ K2. Suppose that K1 satisfies Gp, K2 satisfies

Gq, and that both do so non-vacuously. Then the property

ϕ = Gp ∨ Gq holds on K p-vacuously and q-vacuously.

However, one of the possible resolution proofs showing that ϕ

holds proves that Gp holds non-vacuously on K1. Thus, it is

impossible to determine that ϕ is vacuous in p from this proof.

Any method based on examining only one resolution proof

cannot prove the absence of vacuity, since another resolution

proof, showing the property to be vacuous, might exist.

In this section, we introduce three algorithms of increasing

precision for partial vacuity detection, based on examining

the UNSAT core (irrelevance and local irrelevance) and the

resolution proof produced by BMC (peripherality).

A. Examining UNSAT cores

Given a resolution proof that BMCk(K, ϕ) is unsatisfiable,

we can sometimes cheaply determine that the similar theory

BMCk(K, ϕ[p← x]) is also unsatisfiable, and therefore, that

the property is p-vacuous. In this section, we consider how to

determine that BMCk(K, ϕ[p← x]) is unsatisfiable given that

BMCk(K, ϕ) is unsatisfiable, using only an UNSAT core.

1) Irrelevance: Intuitively, any variable that does not appear

in the UNSAT core does not contribute to the reason why ϕ

holds on K, so it can be considered irrelevant.
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Definition 3 LetK be a model, and ϕ an LTL formula. Assume

thatΠ is an UNSAT core of BMCk(K, ϕ) witnessing thatK |=k

ϕ. Then, p is irrelevant with respect to BMCk(K, ϕ) and Π iff pi

does not appear in Π for any time instance i.

If a variable is irrelevant, it is also vacuous, as shown by the

following theorem. The proofs of this and other theorems are

given in Appendix A.

Theorem 1 If p is irrelevant with respect to BMCk(K, ϕ) and

Π, then ϕ is k-step p-vacuous.

Def. 3 provides an algorithm to detect some vacuous vari-

ables. However, a variable can appear in the UNSAT core and

still be vacuous, as demonstrated by the following example.

EXAMPLE 1. Consider a Kripke structure K with variables p

and q given by the constraints Init = p ∧ q, R = p ⇒ q′,

which mean that the initial state is labeled by {p, q}, and the

transition relation is expressed by the propositional formula

p⇒ q′ over unprimed and primed variables. Let ϕ = X(p∨ q)
be the property to check. ϕ is p-vacuous since it is satis-

fied simply because q is true in any successor of the initial

state. The CNF encoding of the one-step BMC problem is

CLK = {(p0 ∧ q0), (p0 ⇒ q1)} = {(p0), (q0), (¬p0, q1)},
CLe = {(¬p1), (p1,¬q1)}. In this case, the unique minimal

UNSAT core contains all of the clauses of the problem except

for (q0). Thus, all pi appear in the UNSAT core, and p cannot

be determined vacuous using irrelevance. �

This example shows that even if we are to look at every

UNSAT core of a BMC problem, irrelevance is still unable to

detect existing vacuity.

2) Local Irrelevance: Variables which do not appear in the

UNSAT core are vacuous. The converse is not true: vacuous

variables may also appear in the UNSAT core. Intuitively, these

variables are not the central reason why ϕ holds on K. For

example, the clauses of CLK may resolve against each other,

representing some simplification and unification of parts of the

model, before resolutions with CLe clauses are performed. If a

variable is resolved upon using only the CLK clauses or only

the CLe clauses, it is potentially vacuous. By looking at the

UNSAT core, it is possible to anticipate whether a variable will

not be involved in resolutions betweenCLK andCLe using the

following definition.

Definition 4 LetK be a model, and ϕ an LTL formula. Assume

that Π is an UNSAT core of BMCk(K, ϕ) witnessing K |=k ϕ.

Then, p is locally irrelevant with respect to BMCk(K, ϕ) and Π
iff for each time instance i, either pi does not appear in Π or pi

is local to either CLe ∩Π or CLK ∩Π.

In Example 1, p is locally irrelevant since p1 only occurs

in the clauses of U taken from CLe, while p0 only appears

in U within CLK clauses. Moreover, the UNSAT core

of the original problem can be converted to an UNSAT

core of the new theory, thus proving that p is vacuous.

Specifically, U = {(p0), (¬p0, q1), (¬p1), (p1,¬q1)} is the

UNSAT core of the original problem, so substituting

x for p in the clauses of U that came from CLe gives

U ′ = {(p0), (¬p0, q1), (¬x1), (x1,¬q1)}. This is a subset of

BMC1(K, ϕ[p← x]) = {(p0), (q0), (¬p0, q1), (¬x1), (x1,¬q1)},
so it is a candidate for the new UNSAT core. The substitution

may have prevented the resolutions necessary to derive the

empty clause. However, Fig. 1(c) shows a proof that U ′ is also

unsatisfiable. In this case, it was possible to substitute xi for

pi in the clauses coming from CLe in the original UNSAT

core and create an UNSAT core for BMCk(K, ϕ[p← x]). In

fact, this observation applies to all cases of local irrelevance by

Theorem 2. Therefore, Def. 4 specifies an algorithm to detect

some vacuous variables.

Theorem 2 If p is locally irrelevant with respect to

BMCk(K, ϕ) and Π, then ϕ is k-step p-vacuous.

Unfortunately, if a variable p is not locally irrelevant in an

UNSAT core, the formula can still be p-vacuous, as shown by

the following example.

EXAMPLE 2. Consider a Kripke structure with atomic propo-

sitions r, p and q whose initial state is given by the constraint:

Init = ¬r ∧ p ∧ q. The formula ϕ = ¬p ∨ q is p-vacuous in

the initial state. Let us assume that the zero-step BMC problem

is encoded in CNF as follows:

CLK = (¬r0)(r0 ∨ p0)(¬p0 ∨ q0)

CLe = (p0)(¬p0 ∨ ¬q0)

There are several resolution proofs that can establish unsatis-

fiability of CLK ∪ CLe; one such proof is shown in Fig. 1(b).

In none of the proofs is p locally irrelevant with respect to CLe

and CLK . �

The problem with local irrelevance is that it is impossible to

tell if a variable is going to be used in a resolution joining CLK

and CLe clauses based on the UNSAT core alone.

B. Peripherality

In Sec. IV-A, two vacuity detection methods based on ex-

amining the variables in the UNSAT core were found to fall

short of completeness. It was seen that even if every possible

resolution proof could be analyzed, irrelevance and local irrele-

vance still might fail to detect existing vacuity. Here, we extend

the analysis to the resolution proof’s structure. The resulting

peripherality algorithm is superior, since it guarantees vacuity

will be found if all possible resolution proofs are considered.

The limitations of detecting vacuity based only on the UN-

SAT core were demonstrated in Example 2. By examining the

resolution proof in Fig. 1(b), we see that although p0 appears

both in CLK clauses and in CLe clauses, it is always resolved

“locally”. That is, if we resolve two clauses c1 = (..., pi, ...)
and c2 = (...,¬pi, ...), pi and ¬pi must have been preserved

from their original source in some set of root clauses. If all the

originating root clauses belong to CLK or all belong to CLe,

then pi is being resolved on locally. In this case, we can replace

pi in either set of clauses without affecting their unsatisfiability.

For example, in Fig. 1(b), p0 can be replaced in CLe by a new

unconstrained variable x0. This intuition is formalized below.

Given a resolution proof Π, a variable l, and a clause c, we

denote by S(l, c) the set of all root clauses that have contributed

the variable l to c. S(l, c) is defined recursively as shown in

Fig. 3. A root clause cr is an element of S(l, c) if it contains

6



L(c) : clause c, variable p → {‘∅’, ‘A’, ‘B’, ‘AB’}

• if c ∈ Roots(Π) then

L(c) =







‘∅’ if p 6∈ c

‘A’ if p ∈ c ∧ c ∈ A

‘B’ if p ∈ c ∧ c ∈ B

• else if c is a clause resulting from resolving c1 and c2 on variable v, i.e., c = ∃v · c1 ∧ c2, then

– if v 6= p, then

L(c) =















‘∅’ if L(c1) = L(c2) = ‘∅’

‘A’ if ∃i, j · L(ci) = ‘A’ ∧ L(cj) ⊆ {‘A’, ‘∅’}

‘B’ if ∃i, j · L(ci) = ‘B’ ∧ L(cj) ⊆ {‘B’, ‘∅’}

‘AB’ otherwise

– else if v = p, then

L(c) =

{

‘∅’ if L(c1) = L(c2)

‘AB’ otherwise

Fig. 2. Labeling function for the peripherality algorithm.

S(l, c) =















∅ if l 6∈ c

c if c ∈ Roots(Π) ∧ l ∈ c

S(l, c1) ∪ S(l, c2) if c1 and c2 are parents

of c ∧ l ∈ c

Fig. 3. Definition of S(l, c).

a variable l and there exists a path from cr to c that does not

contain a resolution on l. We can now define peripherality of

variables, which captures the conditions when a global variable

may not be central to the reason why ϕ holds on K.

Definition 5 Let A and B be disjoint sets of clauses such that

C = A ∪B is unsatisfiable, and Π be a resolution proof estab-
lishing unsatisfiability of C. Then a variable l is peripheral with

respect to A and B iff for every resolution on l between clauses

c1 and c2, S(l, c1) ∪ S(l, c2) ⊆ A or S(l, c1) ∪ S(l, c2) ⊆ B.

Within the BMC setting, we have the following definition:

Definition 6 Let K be a model, ϕ be an LTL formula,

BMCk(K, ϕ) be a CNF encoding of a BMC problem for K |=k

ϕ, and Π be a proof of unsatisfiability of BMCk(K, ϕ). p is

peripheral in ϕ iff for each time instance i, pi is peripheral in Π
with respect to CLe and CLK .

If a variable is peripheral, it is vacuous by Theorem 3.

Theorem 3 LetΠ be a proof of unsatisfiability of BMCk(K, ϕ).

If a variable p of ϕ is peripheral in Π, then ϕ is k-step p-
vacuous.

In Fig. 1(b), although p is not locally irrelevant in ϕ, it is

peripheral, and therefore ϕ is p-vacuous. This also demon-

strates that peripherality is a strictly stronger notion than local

irrelevance. Theorem 4 shows that under our constraints this is

the strongest result that we can hope to establish.

Theorem 4 Assume ϕ is k-step p-vacuous in K. Then, there

exists a resolution proof Π of unsatisfiability of BMCk(K, ϕ)

such that p is peripheral in Π.

This is one of the main contributions of this paper: if a

variable appears in all proofs, but is detected as peripheral in at

least one of these proofs, it is vacuous. Conversely, if a variable

appears in all proofs but is not peripheral in any of them, it is

definitively not vacuous.

Peripherality of a variable can be detected by traversing the

resolution proof from the roots to the leaf, keeping track of the

source of the variable in each clause. If Π is a resolution proof

whose root clauses are divided into two disjoint sets, A ∪ B,

then the labeling function L is defined recursively as shown

in Fig. 2, where c is used to represent a clause. This labeling

function defines an algorithm for detecting peripherality.

A CNF variable v is peripheral iff the label of the empty

clause is not ‘AB’. Thus, to detect whether a formula ϕ is p-

vacuous, we need to check that all CNF variables pi corre-

sponding to p (see Sec. II) are peripheral. This can be done

by applying the labeling function described in Fig. 2 with

A = CLK , and B = CLe for each pi (for details, see [8]).

It is also possible to simultaneously keep track of the labels for

all CNF variables so that only a single pass through Π is needed.

The time complexity of the peripherality algorithm is linear in

the size of the resolution proof.

Theorem 5 For a resolution proof Π that BMCk(K, ϕ) is un-

satisfiable, determining which variables of ϕ are peripheral can

be done in time linear in the size of Π.

In this section, we defined three methods of detecting vacuity

based on examining the UNSAT core and the resolution proof

produced by BMC. Our evaluation of these algorithms w.r.t.

precision and execution times can be found in Sec. V.

V. PRACTICAL EXPERIENCE

The techniques reported in this paper have been implemented

in a tool called VaqTree (see [8] for a description of this tool).

The inputs to VaqTree are a model (encoded using the language

of NuSMV [10]) and an LTL property. The tool returns the

vacuity status of each variable in the property. Vacuity detec-

tion in VaqTree proceeds in two phases: a “partial pass” that

applies one of our methods, and a “model-checking pass” that

completes the analysis using additional model-checking runs.

We have run VaqTree on two benchmark suites. To evaluate

the overall performance of the tool and the effectiveness of our

partial vacuity detection methods, we have created a benchmark

suite SA using various models and properties from the NUSMV

distribution. To evaluate the scalability of the tool to industrial

models, we have created a benchmark suite SB from the mod-

els in the IBM Formal Verification Benchmarks Library [18].
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These models came with rather simple properties (one temporal

operator), and (as expected from an industrial benchmark) did

not exhibit a high degree of vacuity. Thus, we used this suite to

measure the “worst-case” behavior of the tool, i.e., the amount

of overhead incurred by our methods when no vacuity is found.

In the benchmarks, each test case consists of a model M , a

property ϕ, and a bound k such thatM |=k ϕ. Note that finding

an appropriate bound k is orthogonal to k-vacuity detection,

which explains why our evaluation does not consider the time

needed to find k. The experiments were performed on a Linux

machine with a 2.8GHz P4 CPU, and 1GB of RAM, with

up to 700MB of RAM available to each process. Currently,

VaqTree is limited to proofs with up to 2.5 million resolutions.

In SA, this corresponds to a test case from the asynchronous

abp4 model (roughly 30 boolean variables, with k = 19). A

sample of our experimental data is available in Appendix B,

and the full results – in [19]. Below, we discuss results obtained

with each benchmark individually.

A. Results obtained with SA
This benchmark suite consists of 5 models: abp4,

msi wtrans, pci, and prod-cell from the NUSMV distribution

(107 properties) and toyFGS04 from [20] (14 properties). On

average, the properties in the suite have 2 temporal operators

(from the set G, F, U and X), with a maximum of 4 operators,

and include both liveness and safety. 99 of the properties exhibit

vacuity, and 22 do not.

Scatter plots in Fig. 4 compare the execution times of

VaqTree (parametrized with irrelevance, local irrelevance, and

peripherality), with naive detection for this benchmark. Execu-

tion times for naive detection include CNF theory generation

and satisfiability testing for each variable of the property. Ex-

ecution times for VaqTree include the time for the partial pass

and the subsequent model-checking pass. Each point in the plot

represents a single test case. The X-axis represents the time

(in seconds) taken by naive detection. The Y-axis represents

the time (in seconds) taken by VaqTree when parameterized

by each of our methods. Points below the diagonal indicate

where VaqTree was faster than naive detection; points near the

diagonal indicate cases where the partial pass found a small

percentage of the vacuous variables.

Fig. 5 shows that on SA, VaqTree with irrelevance finds

the fewest vacuous variables among our partial methods, as

expected from the discussion in Section IV. Although Fig. 4(b)

and (c) look similar, the numbers (see Appendix B and [19])

show that local irrelevance is faster than peripherality in 96%

of the cases. This is consistent with the additional work pe-

ripherality must perform to analyze the proof tree. A detailed

comparison of local irrelevance and naive detection shows that

VaqTree with local irrelevance was faster or comparable to

naive detection in 95% of the test cases. VaqTree with local

irrelevance was faster than naive detection in 70 (58%) of the

test cases, out of which 30 cases were twice as fast, and 20 cases

were faster by an order of magnitude. In the remaining 51 cases,

local irrelevance was at most 3% slower in 86% of these cases.

There are 10 cases where VaqTree with peripherality took

much longer than naive detection. All of these cases are from

the abp4 model, and while they have the largest resolution

proofs of the benchmark suite (between 300,000 and 2M

clauses), other 300,000-clause test cases did not yield poor

performance. We conjecture that the poor performance is due to

a low clause/variable ratio [21] which favours naive detection

in cases where vacuity is not present. Intuitively, a low ratio

indicates that the SAT instance is underconstrained, and so a

solution (if it exists) can be found quickly. On the other hand,

finding a proof of unsatisfiability in a model with few con-

straints can be more difficult. Naive detection on a non-vacuous

property requires solving satisfiable SAT instances, since re-

placing variables falsifies the property. However, peripherality

on a non-vacuous property requires time linear in the size of

the resolution proof obtained from the original model-checking

run. If all of these SAT instances have a low clause/variable

ratio, naive detection can be much faster than peripherality.

This situation was only observed on the abp4 model, with

clause/variable ratio of 1.5-1.8 – significantly lower than any

other test case with large proofs and without vacuity.

We now turn to measuring the effectiveness of our meth-

ods, using the number of vacuous variables found during the

partial pass as a metric (see the scatter plots in Fig. 5). This

number indicates how many additional model-checking runs

are needed to complete vacuity detection. Since our partial

methods can be ordered by increasing precision, Fig. 5(a)

compares irrelevance and local irrelevance, Fig. 5(b) – local

irrelevance and peripherality, and Fig. 5(c) – peripherality and

naive detection. Each point in the plot represents a set of test

cases – a larger point means a larger set. The axes show the

number of vacuous variables detected by each method. Points

below the diagonal indicate where the X-axis method detects

more vacuous variables than the Y-axis method. The plots show

that local irrelevance is clearly more effective than irrelevance.

Contrary to our expectations, peripherality performed exactly

as local irrelevance in all but 5 cases. Thus, local irrelevance

appears to be more cost-effective. Fig. 5(c) shows that our

techniques are effective when compared with naive detection:

peripherality reduced the number of extra model-checking runs

by 40% in 54 out of 99 cases that exhibited vacuity.

B. Results obtained with SB

This benchmark suite consists of 13 models from the IBM

Formal Verification Benchmarks Library [22] (18 properties).

The properties have a single temporal operator (G or F), and

include both safety and liveness. 12 of the properties exhibit

vacuity, and 6 do not. evaluate the scalability of VaqTree to

industrial models, we must first bound such that M |=k ϕ. For

this benchmark, we picked depth k = 20, which is in line with

the bounds used for analyzing these models in [22, Sec. 2]. At

this depth, only 13 models from the benchmark were suitable

for our experiments. We report on the experiments below. At

this k, some of the models where too large to analyze using

VaqTree, and some of the properties did not hold. This is why

we only report data for 13 models from this benchmark.

Table I, which includes full results for SB, shows that proof

sizes for this benchmark can be handled by VaqTree. Interest-
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Fig. 4. SA: Comparison of execution times. Where applicable, all times include times for both the partial and model-checking passes.
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Fig. 5. SA: Comparison of the number of vacuous variables detected by partial pass. Larger points represent more test cases than the smaller points.
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Fig. 6. SB: Comparison of execution times. Where applicable, all times include times for both the partial and model-checking passes.

ingly, these are in the same range as proof sizes for SA. This

could be explained by the fact that even though these models

are more complex, properties are simpler.

Scatter plots in Fig. 6 compare the execution times of

VaqTree parametrized with local irrelevance and peripherality,

with naive detection for this benchmark. Execution times are

measured as described in Section V-A, and the graphs are

interpreted in the same way as those in Fig. 4. Since SB had

low vacuity, we did not expect our techniques to find it without

the help of naive detection. However, graphs in Fig. 6 show

that our techniques do in fact detect vacuity, as indicated by the

points that appear below the diagonal. Both local irrelevance

and peripherality detect the same amount of vacuity in SB, but

local irrelevance is slightly faster than peripherality.

Surprisingly, peripherality introduces a low overhead in this

benchmark – points over the diagonal are near it, unlike what

we see in Fig. 4. To explain this behavior, we hypothesized that

in non-vacuous cases with low clause/variable ratios and large

proofs, peripherality is much slower than naive detection. In

SB, we found that 15 of the test cases have a clause/variable

ratio between 2.62-3.66, much higher than the ratios encoun-

tered in SA. The remaining three cases had ratios in the same

range as the abp04 model. However, two of these produce

trivial proofs, and the last one exhibits vacuity. These results

empirically support our hypothesis.

C. Conclusions

In summary, we observed that local irrelevance performs best

out of our proposed partial methods, finding most vacuity in

the least amount of time. In 95% of both benchmark suites,

we found VaqTree with local irrelevance to be at most 3%

slower, and usually much faster, than the naive detection. In

several tests of the SA benchmark, peripherality was notice-

ably slower than naive detection. On the industrial benchmark

SB, the overhead produced by peripherality was negligible.

Interestingly, this suggests that peripherality may be a viable

alternative to local irrelevance on industrial models. We plan

to investigate this further in the future. Thus, we believe that

both local irrelevance and peripherality can be used to replace

naive detection. We plan to enhance our methods by developing

a heuristic based on the clause/variable ratio and proof size

that indicates when naive detection should be applied instead.

Finally, VaqTree outputs the vacuity results for each timed

variable pi as a byproduct of its partial pass. This information

gives an explanation of non-vacuity, indicating which time

steps have been important for deciding whether a given variable

was vacuous, thus facilitating debugging.

VI. SUMMARY AND RELATED WORK

In this paper, we showed how to exploit the UNSAT core

and resolution proof produced by a successful run of BMC for

vacuity detection. We introduced three vacuity detection meth-

ods that can be applied with little overhead after one model-

checking run in order to quickly identify vacuous variables and

reduce the number of additional model-checking runs required.

Two of these methods, irrelevance and local irrelevance, exploit

the UNSAT core, and the third, peripherality, is based on

analyzing the resolution proof. We built a tool VaqTree, which

9



is based on these methods, and showed that it is effective for

speeding up vacuity detection.

Related work on vacuity detection has been described in

Section III. Additionally, our work is related to research in

declarative modeling. In particular, our use of the UNSAT core

to detect vacuity was inspired by [23], which addresses the

problem of identifying overconstraint in declarative models.

While similar in spirit to vacuity detection in model checking,

declarative models have no explicit transition relation; instead,

transitions are expressed with constraints [24], [25]. An over-

constraint occurs when the model satisfies a safety property

because all violations of the formula have been accidentally

ruled out by the declared constraints. In order to detect such

overconstraints, [23] introduces the idea of core extraction:

declarative models are reduced to SAT instances, from which

an UNSAT core can be extracted if the property holds. If a

constraint’s clauses do not appear in the UNSAT core, the

constraint is called irrelevant, and is a source of overconstraint

(similar to Def. 3). The cone-of-influence technique [1] is also

similar to Def. 3. However, as both of these techniques are

model-based, neither can be used to detect vacuity.

Our experiments show that local irrelevance and periphera-

lity can detect more vacuous variables than irrelevance. There-

fore, detecting overconstraint in declarative models may also

benefit from methods that analyze the structure of the resolution

proof. In the future, we propose to investigate how a notion

equivalent to peripherality can be defined in the declarative

setting. Another goal of future work is to increase the power of

resolution proof-based vacuity detection methods. In this paper,

we restricted ourselves to using results of only one BMC run,

and to methods with linear time complexity in the size of the

resolution proof or better. However, it is possible that the most

optimal trade-off between speed and effectiveness of vacuity

detection algorithms lies in the domain of multiple resolution

proofs, where we can find the minimal UNSAT core [26] or

reduce the resolution proof using interpolation [27].

McMillan [6] uses interpolation to prove that a particular

bound is sufficient to imply the unbounded satisfaction of a

BMC problem. We intend to combine our techniques with

this algorithm in order to prove that bounded vacuity for the

correct k implies that the property also holds vacuously in the

unbounded case.

Interpolation can also be used to detect vacuity. Given two

sets of clauses, A and B, such that A ∪ B is unsatisfiable, an

interpolant C is a set of clauses whose variables appear in both

A and B, such that B ∪ C is unsatisfiable and A ⇒ C [28].

Intuitively, if C is minimal, then C is the reason why A ∪ B
is unsatisfiable. This intuition suggests that if an interpolant of

CLK and CLe could be found, then all variables not appearing

in it could be considered vacuous. However, we did not include

this technique in our empirical evaluation, as our interpolant

generator was comparatively slower.

Another means of speeding vacuity detection for BMC is

to iteratively check the k-step vacuity of each variable starting

with k = 0. Since K 2k1
ϕ[p ← x] implies K 2k2

ϕ[p ← x]
for all k2 > k1, if a variable is proven non-vacuous at some

step k, then it can be omitted from subsequent checks of higher

k. This method is orthogonal to our techniques, and the vacuity

detection at each step could be carried out by VaqTree.
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APPENDIX

A. Proofs of Theorems

Proofs of selected theorems are given. Additional proofs can

be found in [8, Appendix A2].

Theorem 2 If p is locally irrelevant with respect to

BMCk(K, ϕ) and Π, then ϕ is k-step p-vacuous.

Proof: Let BMCk(K, ϕ) = CLK ∪ CLe and U be the

UNSAT core of Π. Assume that p is locally irrelevant in

BMCk(K, ϕ). So for all pi, either pi does not appear in U , or

pi is local to CLe ∩ U = Ue or to CLK ∩ U = UK by Def. 4.

Let Ue′ be Ue with each occurence of pi replaced by xi. Since

each pi that has been replaced is local to Ue, and UK ∪Ue = U

is unsatisfiable, then UK ∪ Ue′ is also unsatisfiable. Since

Ue′ ⊆ CLe[p ← x], the set of clauses CLK ∪ CLe[p ← x]
is unsatisfiable as well. Therefore, K |=k ϕ[p← x] holds, so ϕ

is p-vacuous.

Theorem 3 LetΠ be a proof of unsatisfiability of BMCk(K, ϕ).

If a variable p of ϕ is peripheral in Π, then ϕ is k-step p-
vacuous.

Proof: Let BMCk(K, ϕ) = CLK ∪ CLe and U be the

UNSAT core of Π. Assume that p is peripheral in BMCk(K, ϕ).

Let Ue′ be the result of replacing each pi with xi in CLe ∩ U .

Then (CLK ∩ U) ∪ Ue′ is still unsatisfiable, since every

resolution on xi must be local to CLe∩U , and every resolution

on pi must be local toCLK∩U by the peripherality of pi. Since

Ue′ ⊆ CLe[p ← x], CLK ∪ CLe[p ← x] is unsatisfiable as

well. Therefore, K |=k ϕ[p← x], and ϕ is p-vacuous.

Theorem 4 Assume ϕ is k-step p-vacuous in K. Then, there

exists a resolution proof Π of unsatisfiability of BMCk(K, ϕ)

such that p is peripheral in Π.

Proof: Assume that ϕ is p-vacuous. Then, the BMC

problem BMCk(K, ϕ[p← x]) = CLK ∪ CLe[p ← x] is

unsatisfiable, and there exists a resolution proof Π establishing

this. We must show that this proof can be transformed to a proof

of unsatisfiability of BMCk(K, ϕ) = CLK∪CLe in which each

pi is peripheral with respect to CLK and CLe.

If Π does not contain a clause that has both pi and xi for some

i, then for Π′ obtained from Π by replacing each occurrence

of xi by pi, (a) Π′ is a well-formed resolution proof, and (b)

Roots(Π′) ⊆ CLK ∪ CLe. That is, Π′ is a resolution proof

establishing that BMCk(K, ϕ) is unsatisfiable.

We now show how such a proof can be constructed from an

arbitrary proof Π of unsatisfiability of BMCk(K, ϕ[p← x]). Let

UK = Roots(Π) ∩ CLK , and CLe′ = CLe[p ← x]. Then, if

pi occurs in any clause of UK , it is local to UK . Let L be the

set of all local variables of UK , C = ∃L · UK be a formula

resulting from existentially eliminating these local variables,

and CNF(C) be the CNF encoding of C. For any i, pi does not

appear in C. Furthermore, the set of clauses CNF(C)∪CLe′ is

unsatisfiable. Thus, there exists a resolution proof Π′ establish-

ing this such that Roots(Π′) ⊆ CLe′ ∪CNF(C). Finally, since

UK ⇒ C, for each clause c ∈ C there exists

a resolution proof Πc such that Leaf (Πc) = c and

Roots(Πc) ⊆ UK . By combining the proofs {Πc | c ∈
CNF(C)} and Π′, we obtain a proof of unsatisfiability of

UK ∪ CLe′ that does not contain a clause with variables xi

and pi.

B. Experiments

Table I shows detailed results of our experiments. In this

table, column “Benchmark” indicates the benchmark the test

case belongs to; “Test case” is the case’s unique identifier

inside the benchmark, “Model” is the SMV model tested; “#

var. in M” is the number of variables in the model; “k” is

the number of steps used to run BMC; “op. in ϕ” shows the

property operators (e.g., 2G means that two G operators appear

in the property); “# var. in ϕ” is the number of atomic variables

present in the property; “# vac. vars.” is the number of vacuous

variables; and “# resol. in Π” is the number of resolutions in the

resolution proof. The next three columns report the time needed

for model-checking: “Gen. CNF” is the time NuSMV took to

generate the corresponding CNF theory; “Test SAT” and “Gen.

Π” are the time MiniSat took to test satisfiability and generate

the corresponding resolution proof respectively; and “Total” is

the sum of the previous three columns.

For the naive method, we report the total times for the CNF

theory generation (“Gen. CNF”) and for satisfiability testing

(“Test SAT”). One CNF theory is produced per each atomic

variable. For irrelevance, local irrelevance and peripherality, we

report how many vacuous variables were found by the partial

pass (“# vac. vars. found”), how long VaqTree took to do

the corresponding analysis (“Anal.”) and how much time was

needed to do the completeing pass (“Extra runs”).

For example, test case 8 analyzes a five-variable, two tem-

poral operator (G,U) property of the pci model (which has

40 variables). Only three of these variables are vacuous. The

resolution proof generated when k = 13 has 4,283 resolutions.

This property was checked in 5.59 seconds. Naive vacuity de-

tection required five model-checking runs, taking 25.85 seconds

to generate the corresponding CNF theories and 2.89 seconds

to test their satisfiability, requiring a total of 28.74 seconds.

Irrelevance took 0.27 seconds to find two of the vacuous

variables during the partial pass. It then took 17.60 seconds

to carry out the completing pass, so the total time required by

irrelevance to find all three vacuous variables is 17.87 seconds.

Local irrelevance took 0.28 seconds to analyze the resolution

proof, finding the same two vacuous variables as irrelevance.

Thus, it also takes 17.60 seconds to run the completing pass,

so the total time required by local irrelevance is 17.88 seconds.

Finally, peripherality took 0.47 seconds to execute the partial

pass and found the same two vacuous variables; it also required

17.60 seconds to run the completing pass, taking a total of 18.07

seconds to produce complete results for test case 8.

VaqTree, the complete experimental results and some test

cases are available at [19].
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TABLE I: Statistics for vacuity detection experiments on NuSMV distribution and other examples.

Bench-Test Model (M ) # var. k op. # var.# vac. # resol. Model Checking Naive Irrelevance Local Irrelevance (LI) Peripherality (P)

mark case inM in ϕ in ϕ vars. inΠ Gen. Test Gen. Total Gen. Test Total #

vac.

Anal. Extra Total #

vac.

Anal. Extra Total #

vac.

Anal. Extra Total

CNF (s)SAT (s)Π (s) (s) CNF (s)SAT (s) (s) vars. (s)runs (s) (s) vars. (s)runs (s) (s) vars. (s)runs (s) (s)

found found found

SA 1 pci 40 13 G,U 4 1 19792 4.69 0.23 5.9 10.82 20.66 2.77 23.43 0 0.34 23.43 23.77 0 0.34 23.43 23.77 0 0.81 23.43 24.24

SA 2 pci 40 13 G,U 4 3 1649 5.13 0.14 5.64 10.91 11.75 1.30 13.05 3 0.26 0 0.26 3 0.26 0 0.26 3 0.37 0 0.37

SA 3 pci 40 13 G,U 4 3 1649 5.09 0.13 5.32 10.54 12.03 2.14 14.17 3 0.26 0 0.26 3 0.25 0 0.25 3 0.37 0 0.37

SA 4 pci 40 13 G,U 3 1 7725 4.80 0.18 5.65 10.63 12.68 1.73 14.41 0 0.29 14.41 14.7 0 0.29 14.41 14.70 0 0.50 14.41 14.91

SA 5 pci 40 13 G,U 3 1 7555 4.76 0.18 5.55 10.49 12.36 1.56 13.92 0 0.28 13.92 14.20 0 0.28 13.92 14.20 0 0.50 13.92 14.42

SA 6 pci 40 13 G,U 4 3 1705 4.66 0.12 5.68 10.46 11.66 1.19 12.85 3 0.25 0 0.25 3 0.26 0 0.26 3 0.39 0 0.39

SA 7 pci 40 13 G,U 4 3 1705 4.67 0.14 5.42 10.23 11.68 1.40 13.08 3 0.25 0 0.25 3 0.26 0 0.26 3 0.37 0 0.37

SA 8 pci 40 13 G,U 5 3 4283 4.95 0.22 5.59 10.76 25.85 2.89 28.74 2 0.27 17.60 17.87 2 0.28 17.60 17.88 2 0.47 17.60 18.07

SA 66 prod-cell 39 10 G,F 6 6 5275 0.88 0.04 1.25 2.17 5.55 0.18 5.73 6 0.28 0 0.28 6 0.28 0 0.28 6 0.49 0 0.49

SA 67 prod-cell 39 10 G,F 5 5 5320 1.02 0.04 1.41 2.47 4.81 0.16 4.97 5 0.28 0 0.28 5 0.29 0 0.29 5 0.47 0 0.47

SA 68 prod-cell 39 10 G,F 4 4 3798 0.91 0.03 1.27 2.21 3.57 0.12 3.69 2 0.27 1.86 2.13 2 0.27 1.86 2.13 2 0.43 1.86 2.29

SA 69 prod-cell 39 10 G,F 8 8 2764 0.99 0.03 1.26 2.28 7.52 0.23 7.75 1 0.26 6.78 7.04 1 0.26 6.78 7.04 1 0.42 6.78 7.2

SA 70 prod-cell 39 10 G,F 5 5 5232 1.20 0.04 1.33 2.57 4.63 0.15 4.78 1 0.28 3.82 4.10 2 0.28 2.86 3.14 2 0.48 2.86 3.34

SA 71 prod-cell 39 10 G,F 4 4 4068 1.35 0.03 1.27 2.65 3.87 0.10 3.97 2 0.27 2.16 2.43 3 0.27 0.95 1.22 3 0.44 0.95 1.39

SA 72 prod-cell 39 10 G,F 4 4 2756 0.96 0.03 1.27 2.26 3.64 0.13 3.77 1 0.26 2.82 3.08 1 0.26 2.82 3.08 1 0.40 2.82 3.22

SA 73 prod-cell 39 10 G,F 6 6 4425 0.84 0.04 1.30 2.18 5.47 0.19 5.66 2 0.28 3.74 4.02 2 0.28 3.74 4.02 2 0.46 3.74 4.2

SA 74 prod-cell 39 10 G,F 5 5 3802 0.92 0.04 1.28 2.24 4.55 0.17 4.72 4 0.27 1.01 1.28 4 0.28 1.01 1.29 4 0.43 1.01 1.44

SA 75 prod-cell 39 10 G,F 5 5 2802 0.91 0.03 1.44 2.38 4.53 0.14 4.67 2 0.26 2.80 3.06 2 0.26 2.80 3.06 2 0.41 2.80 3.21

SA 76 prod-cell 39 10 G,F 8 8 3732 1.16 0.03 1.36 2.55 7.72 0.21 7.93 5 0.28 2.96 3.24 6 0.27 1.98 2.25 6 0.46 1.98 2.44

SA 77 prod-cell 39 10 G,F 9 9 3010 1.50 0.03 1.28 2.81 8.93 0.22 9.15 6 0.27 3.12 3.39 7 0.27 1.94 2.21 7 0.45 1.94 2.39

SA 78 prod-cell 39 10 G,F 5 5 2585 0.86 0.03 1.25 2.14 4.98 0.14 5.12 2 0.26 2.93 3.19 2 0.26 2.93 3.19 2 0.40 2.93 3.33

SA 79 prod-cell 39 10 G,F 5 5 2556 1.06 0.03 1.30 2.39 4.70 0.12 4.82 2 0.26 2.98 3.24 2 0.26 2.98 3.24 2 0.40 2.98 3.38

SA 80 prod-cell 39 10 G,F 4 4 5317 1.26 0.04 1.27 2.57 3.53 0.12 3.65 4 0.29 0 0.29 4 0.29 0 0.29 4 0.46 0 0.46

SA 81 prod-cell 39 102G,2F 10 10 2497 3.15 0.06 1.29 4.5 9.68 0.27 9.95 3 0.26 6.97 7.23 4 0.26 4.94 5.20 4 0.42 4.94 5.36

SA 82 prod-cell 39 10 G,F 8 8 2348 0.88 0.033 1.25 2.16 7.52 0.22 7.74 3 0.27 4.84 5.11 3 0.26 4.84 5.10 3 0.41 4.84 5.25

SA 83 abp4 13 19 G,F 1 0 1289374 2.79 10.7334.14 47.66 2.93 1.79 4.72 0 5.51 4.72 10.23 0 5.72 4.72 10.44 0 98.62 4.72103.34

SA 84 abp4 13 19 G,F 3 2 1050234 3.14 6.4529.43 39.02 8.43 20.76 29.19 0 5.07 29.19 34.26 0 5.22 29.19 34.41 0 67.54 29.19 96.73

SA 85 abp4 13 19 G,F 3 2 2246095 2.99 19.0349.63 71.65 8.81 26.43 35.24 0 8.23 33.78 42.01 0 8.22 33.78 42 0 412.30 33.78446.08

SA 86 abp4 13 19 G,2F 2 0 795705 3.07 5.0421.28 29.39 5.54 6.29 11.83 0 2.69 25.64 28.33 0 2.71 25.64 28.35 0 37.21 25.64 62.85

SA 93 toyFGS04 151 18 F 6 6 297 18.88 0.26 5.27 24.41 114.78 0.76115.54 3 0.23 57.39 57.62 3 0.22 57.39 57.61 3 0.29 57.39 57.68

SA 94 toyFGS04 151 18 F 12 12 308 19.13 0.16 5.28 24.57 224.79 1.40226.19 6 0.26 132.43132.69 6 0.26 132.43132.69 6 0.33 132.43132.76

SA 95 toyFGS04 151 18 F 6 0 318 18.35 0.15 5.17 23.67 126.28 32.03158.31 0 0.22 158.31158.53 0 0.22 158.31158.53 0 0.29 158.31158.60

SA 96 toyFGS04 151 18 F 4 0 308 18.57 0.14 5.45 24.16 75.18 22.26 97.44 0 0.22 97.44 97.66 0 0.22 97.44 97.66 0 0.27 97.44 97.71

SA 97 toyFGS04 151 18 G 4 0 8072 14.14 0.21 3.3 17.65 57.91 10.60 68.51 0 0.33 68.51 68.84 0 0.33 68.51 68.84 0 0.60 68.51 69.11

SA 98 toyFGS04 151 18 G 6 0 7985 14.47 0.21 3.63 18.31 88.94 11.48100.42 0 0.34 100.42100.76 0 0.34 100.42100.76 0 0.68 100.42101.10

SA 99 toyFGS04 151 18 F 6 6 293 19.80 0.15 5.61 25.56 111.91 0.66112.57 2 0.21 75.08 75.29 2 0.22 75.08 75.30 2 0.27 75.08 75.35

SA 107 msi wtrans 30 40 G 5 3 66 21.85 0.20 8.39 30.44 120.15 65.70185.85 3 0.21 112.59112.80 3 0.20 112.59112.79 3 0.24 112.59112.83

SA 108 msi wtrans 30 40 F 5 4 66 23.53 0.20 9.15 32.88 120.16 73.28193.44 3 0.2 120.30120.50 3 0.21 120.30120.51 3 0.25 120.30120.55

SA 109 msi wtrans 30 40 F 6 4 66 21.56 0.21 8.46 30.23 156.61 93.23249.84 4 0.21 0 0.21 4 0.21 0 0.21 4 0.24 0 0.24

SB 1 IBM FV 2002 03 111 20 G 8 8 7480 4.54 0.09 3.8 8.43 36.21 0.67 36.88 7 0.35 4.67 5.02 7 0.35 4.67 5.02 7 0.74 4.67 5.41

SB 2 IBM FV 2002 04 223 20 G 4 3 45065 7.62 0.92 5.71 14.25 29.66 3.83 33.49 0 0.59 33.49 34.08 0 0.59 33.49 34.08 0 1.67 33.49 35.16

SB 3 IBM FV 2002 05 310 20 G 2 1 32776 11.82 0.6210.02 22.46 22.97 1.31 24.28 1 0.44 12.21 12.65 1 0.44 12.21 12.65 1 1.02 12.21 13.23

SB 4 IBM FV 2002 09 233 20 F 9 9 2 8.96 0.17 0 9.13 81.02 1.22 82.24 9 0.17 0 0.17 9 0.17 0 0.17 9 0.17 0 0.17

SB 5 IBM FV 2002 10 224 20 G 3 2 78523 54.23 8.4546.09108.77 165.88 93.22 259.1 0 0.7 259.1 259.8 0 0.7 259.1 259.8 0 2.33 259.1261.43

SB 6 IBM FV 2002 10 224 20 G 4 3 177536 53.3 30.2156.61140.12 219.74 199.25418.99 0 1.12 418.99420.11 0 1.12 418.99420.11 0 5.8 418.99424.79

SB 7 IBM FV 2002 10 224 20 G 4 4 9119 53.97 0.9740.84 95.78 218.45 211.21429.66 3 0.32 112.58 112.9 3 0.32 112.58 112.9 3 0.61 112.58113.19

SB 8 IBM FV 2002 10 224 20 G 2 0 155775 54.99 9.2246.75110.96 108.76 165.1273.86 0 0.99 273.86274.85 0 0.99 273.86274.85 0 3.7 273.86277.56

SB 9 IBM FV 2002 10 224 20 G 2 1 197053 54.96 65.4379.32199.71 110.2 103.82214.02 0 1.09 214.02215.11 0 1.12 214.02215.14 0 4.5 214.02218.52

SB 10 IBM FV 2002 17 1 1584 20 G 2 0 96085 38.58 1.1514.23 53.96 75.78 2.35 78.13 0 1.07 78.13 79.2 0 1.08 78.13 79.21 0 2.47 78.13 80.6

SB 11 IBM FV 2002 17 2 1583 20 G 1 0 77553 38.5 0.8613.68 53.04 38.82 1.35 40.17 0 0.88 40.17 41.05 0 0.88 40.17 41.05 0 1.74 40.17 41.91

SB 12 IBM FV 2002 17 2 1583 20 G 2 1 73790 38.47 0.823.98 63.25 77.01 1.77 78.78 0 0.89 78.78 79.67 0 0.89 78.78 79.67 0 1.98 78.78 80.76

SB 13 IBM FV 2002 19 121 20 G 1 0 35769 9.56 6.4913.31 29.36 9.65 5.52 15.17 0 0.39 15.17 15.56 0 0.4 15.17 15.57 0 0.83 15.17 16

SB 14 IBM FV 2002 21 79 20 G 1 0 25508 8.8 5.6111.98 26.39 8.68 7.61 16.29 0 0.37 16.29 16.66 0 0.37 16.29 16.66 0 0.71 16.29 17

SB 15 IBM FV 2002 22 104 20 G 1 0 53300 14.58 7.7417.84 40.16 14.78 24.42 39.2 0 0.53 39.2 39.73 0 0.53 39.2 39.73 0 1.2 39.2 40.4

SB 16 IBM FV 2002 23 103 20 G 8 8 7618 14.52 0.6911.29 26.5 115.68 2.36118.04 1 0.36 103.01103.37 2 0.35 88.41 88.76 2 0.74 88.41 89.15

SB 17 IBM FV 2002 27 43 20 G 8 6 431223 3.09 4.5415.98 23.61 24.43 25.01 49.44 0 1.77 49.44 51.21 0 1.78 49.44 51.22 0 24.5 49.44 73.94

SB 18 IBM FV 2002 31 2 227 20 G 17 17 2 9.81 0.19 0 10 168.2 2.57170.77 17 0.19 0 0.19 17 0.19 0 0.19 17 0.19 0 0.19
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