
Distributed cognition in software engineering research:
Can it be made to work?

Jorge Aranda
University of Toronto

10 King’s College Road
Toronto, Ontario, M5S 3G4, Canada

1-416-946-8878

jaranda@cs.toronto.edu

Steve Easterbrook
University of Toronto
40 St. George Street

Toronto, Ontario, M5S 2E4, Canada
1-416-978-3610

sme@cs.toronto.edu

ABSTRACT
Distributed cognition is a theoretical and methodological
framework that considers social groups, their artifacts, and their
contexts as a single cognitive entity working towards the solution
of a shared problem. In this paper we briefly describe the
framework and consider its strengths and weaknesses as a
theoretical foundation for software engineering research. We
propose a series of techniques to address the methodological
problems that the application of the framework entails in our
research field. Finally, we present an ongoing exploratory case
study that aims to evaluate the adaptability of the framework and
of the techniques we propose here.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management – programming
teams, software process models.

General Terms
Documentation, Experimentation, Human Factors, Theory.

Keywords
Distributed Cognition, Social Networks Analysis, Artifact
Analysis, Empirical Software Engineering.

1. INTRODUCTION
Research of software engineers at work –of their team structures,
interactions, and dynamics– has been largely performed as a
butterfly collection exercise: We have many interesting bits of
results, but we do not have a theoretical framework that links the
separate phenomena we observe, unifies our perspectives of the
domain, and allows us to generate testable predictions of software
projects and software teams. As a consequence, our findings are
not exploited to their full potential; and our research effort is often
spent exploring unviable or shallow hypotheses [6].

For illustration purposes, consider the extensive literature on
design and code inspections [7]. Although there have been dozens
of studies testing the phenomenon, they provide little insight as to
why it occurs, how can its beneficial effect be amplified, and what
could possibly be the consequence of performing inspections in
ways that have not been empirically tested. The reason, we claim,
is that until recently inspection studies were not designed over a
theoretical foundation that predicted their effects and addressed
these issues. If inspection researchers had a theory to guide their
work, they could have spent their efforts validating it and probing
its predictive power, yielding even stronger findings for our
domain.

The inspections literature is the norm, not the exception, when it
comes to theory building and theory validation in the software
engineering realm. To address this problem, we are evaluating the
capabilities of a theoretical framework (distributed cognition) and
its applicability to software engineering in an exploratory case
study. In this paper we present the gist of the distributed cognition
theory, its strengths and weaknesses with regards to software
engineering research demands, and the adaptations we feel are
necessary for such a framework to be convenient for our research.
We also briefly describe the case study we are conducting and the
roadmap we intend to follow in the near future.

2. DISTRIBUTED COGNITION
Distributed cognition is an interdisciplinary theoretical framework
designed to study cognition as it occurs in socially situated
contexts. Its unit of analysis is the functional system of people and
artifacts in charge of executing a cognitive task. That is, for a
distributed cognition researcher, the functional system is a single
cognitive entity, and although no element within this entity may
know how to solve the cognitive task, the full range of
interactions and transformations of information within the group
produce a workable solution to the cognitive problem at hand
[11]. Perhaps the classic example of distributed cognition research
is Hutchins’ study of sea navigation [4], where each person in the
navigation team of a ship performs a set of simple tasks based on
their role and the information available to them, and although no
person in the team has a full knowledge of the situation, the end
result is a calculation of the ship’s position in the world.

Although the distributed cognition framework is too extensive to
be summarized here, there are several properties about it worth
mentioning. First, it centers on the study of situated cognitive
activities, as opposed to artificial laboratory settings. According to

the theory, cognitive performance should not be analyzed in
constrained settings, since much of people’s real cognitive work is
done by the interaction among them and with their context.

Second, artifacts are viewed as embodied knowledge –they store
rules and processes that simplify the cognitive tasks of their users.
Therefore, analyzing the artifacts people use is an essential aspect
of the framework.

Third, identifying the paths that chunks of information follow to
reach the persons that need them is a key consideration of
distributed cognition work. Team members that work on a
cognitive problem start up with different bits of knowledge, and
an important step towards solving the problem is to share and
transform them, through mediated or direct communication, until
they reach the person who needs them.

Finally, the framework studies cognitive work on two different
levels: In the short term, it focuses on the actual resolutions of
cognitive problems; while in the long term, it analyzes the
learning and structuring activities that take place in teams.

Since its original formulation, the framework has been used to
examine a wide variety of groups and contexts, including
navigation [4], aviation [5], hotline centres, rescue teams, and, in
one occasion, software developers performing maintenance tasks
[1]. Unfortunately, so far there have only been a few teams
applying the framework and producing this research –most
notably Hutchins’ own research group at San Diego.

The distributed cognition framework is still far from being
generally accepted by any research community. In the CSCW
literature, a response by Bonnie Nardi to a paper on theories for
CSCW [3] critiques several theoretical and practical problems of
the framework [10]. She points out how its insistence on
ethnographic methods, and in particular of ethnomethodology,
causes an “anemic theoretical development”, which, she warns,
leads to “a withering of community in any field of study.” She
also notes that distributed cognition, as proposed by Hutchins and
in parallel to ethnomethodology, is suspicious of conceptual
elaboration, undermining communication and comprehension
efforts in the research community.

3. DISTRIBUTED COGNITION IN
SOFTWARE ENGINEERING
3.1 Applicability of the theory: Benefits and
drawbacks
The idea of conceptualizing software development as a socially
distributed, artifact-intensive cognitive activity is compelling, and
we believe the software engineering field could reap important
benefits by adopting this view. Here are some of the advantages
that result from appropriating this theoretical foundation:

• A systemic view of software teams, which includes the social
aspects of team collaboration and the study of the interactions
between humans and their artifacts. All software development
practices, documents, and tools, can be re-interpreted and
explored within this view.

• An abstraction of all interactions and uses of artifacts as
transformations of representational states across
representational media [4], which allows for evaluating the

effectiveness of alternative transformations by interpreting
software development techniques (such as code reviews, pair
programming, and prototyping) as transformations and
representations of information with particular coordination-
and communication-related strengths and weaknesses.

• An emphasis on analyzing artifacts both as embodied
knowledge and as communication media, leading to insights
about new and modified proposals for tools and languages to
capture and transfer that knowledge.

• A consideration of individual and organizational learning, role
specialization dynamics, and the context in which these
phenomena take place, which may prove to be a fruitful
perspective for software project management research.

Both in general, as a paradigm of the software development field,
and in particular, as a collection of techniques for improving the
context and tools in which cognitive-intensive activities take
place, distributed cognition seems to be a useful perspective to
adopt for software engineering research. However, if it is to
become a theoretical foundation for this research, it will need to
undergo significant methodological alterations to achieve
practicality.

We think software engineering research cannot be built over an
ethnomethodological foundation. Ethnomethodological studies
are necessarily constrained to the analysis of particular, detailed
phenomena, and the amount and variability of such phenomena in
software projects is overwhelming, even for small-scale projects.
It boggles the mind to consider how a comprehensive
ethnomethodological study, of the kind performed in the
distributed cognition literature, could be carried out in a large-
scale, geographically distributed, multi-year development project.

To turn the framework into a feasible alternative for this type of
research, we need methods that abstract away some of the details
of day-to-day phenomena and focus on detecting the essential
patterns of communication, team structure, and artifact use in
software projects. Before proposing any methods, however, we
must address the question of whether such departures from
ethnomethodology are compatible with the core ideas of
distributed cognition or, alternatively, ethnomethodological detail
is an essential component of the framework.

It seems to us that ethnomethodology is, though valuable,
accidental to the theory; a result of the background of the original
distributed cognition researchers. Just as it might be desirable for
cognitive scientists (but impractical under our technological and
practical circumstances) to examine every synapse in the brain,
analyzing every utterance of a problem-solving group is not
essential to the conceptualization of such group as a distributed
cognitive entity.

What, then, is essential? To get a basic picture of a distributed
cognitive system, at least the following elements need to be
analyzed:

• Group structure and patterns of group interaction

• Artifacts (tools, documents), and patterns of artifact use

• Nature and frequency of tasks

• Development of shared understanding, breakdowns and
recoveries

There are techniques, both from distributed cognition and from
other disciplines, to study these types of information. In the next
subsection we propose some of the most promising ones.

3.2 Social Network Analysis (SNA)
Sociologists have developed a collection of methods to analyze
the structural and dynamic qualities of social groups [13]. We do
not have the space to describe them in detail, but we would like to
mention a short list of them. To start, social network graphs and
simple SNA measurements such as centrality and density provide
an initial overview of the structure of a group. More elaborate
techniques, such as blockmodelling (for clustering nodes based on
their similarities in several networks) and positional analysis (for
simplifying the information in network data sets), among others,
complete the picture of group structures. Finally, other SNA-
inspired concepts, such as knowledge transfer and social capital,
add fruitful perspectives to the study of group interactions.

Some kinds of software projects are particularly amenable to SNA
methods –those for which communication takes place almost
exclusively in electronic form, such as most open source projects
[9]. In these cases, a full record of interactions is available to the
researcher, and one can track the proposal of new ideas, the types
and frequency of contributions, and the transfer of information
among project members. For other projects, particularly those in
which participants are collocated, many exchanges of information
and much knowledge of the social structure of the group is not
recorded electronically or in the project’s documentation, and
must be extracted directly from participants.

However, an important advantage of SNA methods for our
purposes is that the data they require are relatively easy to collect.
Conducting case studies to understand the full structure of
software development teams becomes feasible, and surveys of
wide ranges of software houses are also possible.

On the other hand, SNA methods were designed for sociological
goals, and they are often concerned with topics that are not of
immediate relevance to software engineering, such as power
relations, social support, and the job market. To our knowledge,
no study has yet analyzed in detail the implications of applying
the methods of SNA to the software engineering field.

3.3 Artifact analysis
Some of the most satisfying results from distributed and external
cognition studies are their analyses of artifacts people use to
perform their tasks. Through these analyses we discover how
cognitive activities are simplified by representing information and
rules “in the world”, rather than in people’s heads [15], and by re-
representing complex information in ways that simplify its
understanding [12].

For software development projects, artifact analyses may provide
insight into the efficacy and dynamics of document and tool use.
For documents (a category in which we include, for instance,
specifications, models, and emails), the researcher may find what
information flows among people, how expressive, efficient, and
useful are the representations, how quickly do they become
obsolete or out of sync with the world, and what are the skills
necessary to create them, modify them, and read them.

The thorough study of all documents used in a project is not
practical. But collecting data on the frequency with which
different types of documents are used and their relevance for each
group member provides us with useful patterns of interactions and
of team dynamics. It will also point to particularly relevant
documents, which may be studied with the more careful detail that
traditional distributed cognition literature displays.

For tools, of which every programming language, IDE, project
website, and debugger are examples, the researcher may uncover
cognitive benefits provided by new and existing proposals based
on the computational effort they demand from their users.

Tool analyses are detailed and time-consuming. However, once
performed, their findings are applicable for projects that use the
same tools under similar settings, paying off the investment
considerably.

3.4 Other approaches
We are evaluating the utility and practicality of other approaches
to support distributed cognition in software engineering;
approaches that in principle can be effective complements to SNA
and artifact analysis, but whose empirical validity is still not clear.

One such alternative is conceptual sketching [2], which may
provide rich details about the networks, perceptions, and mental
models of participants of a software team. Conceptual sketching,
however, may also be prone to misinterpretations and vague
results, which are, of course, undesirable characteristics in
software engineering research.

4. CASE STUDY
To test the viability of the distributed cognition framework and
the methodological adaptations we propose, we are conducting a
pilot case study on the release team of a software division at IBM.
This work feeds upon other studies of developers, such as that of
LaToza et al. [8], and other attempts to conciliate software
engineering and distributed cognition [14].

The release team is a high-impact, high-interaction volume group
within the division. It oversees product development and serves as
a bridge between “technical” and “business” people. This bridge
role requires from them, in addition to advanced project
management skills, a familiarity with at least two different
professional cultures, vocabularies, and goals. They are focal
enablers of shared understanding in the division, in the sense that
they are the main point of contact for developers to learn project
requirements, and for managers to learn their projects’ status.

For these reasons, the people at the release team have experienced
the need to create roles, team dynamics, and processes that help
them handle their responsibilities and coordinate the efforts of the
full division towards shipping their releases. We think the analysis
of these roles, dynamics, and processes, with a distributed
cognition lens, should be particularly insightful.

We designed our case study to explore these phenomena. We
decided to interview every member of the team with a structured
questionnaire that probes the techniques we described above. Our
interview has four main sections. First, we ask participants to
draw conceptual sketches of their team, of their interactions with
other teams, and of their division within and outside the company.
Second, we collect social network data, focusing on several types

of personal networks (information consumers and producers,
collaborators, mentors, and informal networks). Third, we ask
participants to describe the main activities they perform according
to their role, and to list the artifacts (documents and tools) that
they use to perform each of these activities. Finally, we ask them
open-ended questions about the goals of their role and their team,
success criteria, success factors, and an overall description of their
position in the company.

Each section of the interview will first be analyzed separately, and
their findings will later on be put together to detect patterns
among them. We designed the questionnaire in a way that allows
us to evaluate both the team itself and the methods we chose to
use, so we can refine them for future larger-scale case studies.

We are, at the moment of writing, in the data collection phase of
our case study. We have collected the data of nine participants,
with five more to go. We will proceed to analyze their conceptual
sketches and their social networks data separately, and to identify
the most relevant tools and documents they use in order to
perform an artifact analysis on them.

After refining our techniques with findings of this case study, we
plan to conduct at least two other studies in the same
organization. The first is an extension of our current study –
including data from the technical and business groups that interact
with the release team we are analyzing. The second is a replication
of our initial study, for a different release team, in an effort to
detect the patterns that arise from two divisions with different
cultures within the same corporation.

As an end result of these empirical studies we expect to obtain
two types of benefits: For the organization, we should be able to
produce recommendations for tool, document, and process
improvements. For our research team, we will have data regarding
the viability of the methodological approaches we describe in this
paper, and the adaptations we find necessary for their successful
implementation by our research community.

5. CONCLUSIONS
Distributed cognition is a fruitful foundation to support research
of software engineers at work, but if it is to be used for this
purpose, we need to overcome its methodological constraints with
alternatives such as the ones discussed in this paper. We believe
that, by rejecting the notion that we can (or should) capture and
analyze every detail of the interactions of developers, software
engineering research can benefit greatly from the perspectives the
theory provides while allowing studies of the social side of
software development to remain feasible.

We think that the methods and techniques we described above can
support empirical studies of this kind by substituting the
ethnomethodological studies of traditional distributed cognition
with workable solutions that still enable us to make key findings.
However, we do not have any data to back up these claims yet.
Our pilot case study, and possible subsequent studies, will allow
us to make an evaluation of which of the techniques we propose
are off the mark, which need some adaptation, and which work
well for our field.

6. ACKNOWLEDGMENTS
We would like to thank and acknowledge the financial support
from Bell University Labs at U of T. We are also very grateful to
IBM for supporting and cooperating with our study.

7. REFERENCES
[1] Flor, N.V., and Hutchins, E. Analyzing Distributed

Cognition in Software Teams: A Case Study of Collaborative
Programming During Adaptive Software Maintenance. In
Koenemann-Belliveau, J., Moher, T., and Robertson, S.
(Eds), Empirical Studies of Programmers: 4th Workshop,
1992.

[2] Goel, V. Sketches of thought. Cambridge, MA: MIT Press.
1995.

[3] Halverson, C.A. Activity Theory and Distributed Cognition:
Or what does CSCW need to DO with theories? Computer
Supported Cooperative Work, 11, 243-267, 2002.

[4] Hutchins, E. Cognition in the Wild. MIT Press, Cambridge,
MA, 1995.

[5] Hutchins, E. How a Cockpit Remembers Its Speeds.
Cognitive Science, 19, 265-288, 1995.

[6] Jørgensen, M., and Sjøberg, D. Generalization and Theory-
Building in Software Engineering Research. Proceedings of
the Workshop on Empirical Assessment in Software
Engineering (EASE’04), 2004.

[7] Laitenberger, O., and DeBaud, J.M. An encompassing life
cycle centric survey of software inspection. Journal of
Systems and Software, 50, 1, 2000.

[8] LaToza, T., Venolia, G., and DeLine, R. Maintaining Mental
Models: A Study of Developer Work Habits. Proceedings of
the International Conference on Software Engineering
(ICSE’06). (Shanghai, China, May 20-28, 2006).

[9] Madey, G., Freeh, V., and Tynan, R. The Open Source
Software Development Phenomenon: An Analysis Based on
Social Network Theory. 8th Americas Conference on
Information Systems, 2002.

[10] Nardi, B.A. Coda and Response to Christine Halverson.
Computer Supported Cooperative Work, 11, 269-275, 2002.

[11] Rogers, Y., and Ellis, J. Distributed Cognition: an alternative
framework for analysing and explaining collaborative
working. J. of Information Technology, 9, 2, 119-128, 1994.

[12] Scaife, M., and Rogers, Y. External cognition: how do
graphical representations work? International Journal of
Human-Computer Studies, 45, 185-213, 1996.

[13] Wasserman, S., and Faust, K. Social Network Analysis:
Methods and Applications. Cambridge U. Press, 1994.

[14] Ye, Y. Supporting Software Development as Knowledge-
Intensive and Collaborative Activity. Proceedings of the 2nd
Intl. Workshop on Interdisciplinary Software Engineering
Research (WISER’06). (Shanghai, China, May 20-28, 2006).

[15] Zhang, J., and Norman, D. Representations in Distributed
Cognitive Tasks. Cognitive Science, 18, 87-122. 1994.

	INTRODUCTION
	DISTRIBUTED COGNITION
	DISTRIBUTED COGNITION IN SOFTWARE ENGINEERING
	Applicability of the theory: Benefits and drawbacks
	Social Network Analysis (SNA)
	Artifact analysis
	Other approaches

	CASE STUDY
	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

