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Software estimation research is normally concerned with designing models 

and techniques that help estimators reach accurate effort calculations. 

However, since software estimation involves human judgment, we should also 

consider cognitive and social factors that have been observed in psychological 

studies on judgment. A potentially relevant factor is the anchoring and 

adjustment cognitive bias. It takes place if, when attempting to respond a 

complex question, the respondent is given a possible –though quite likely 

incorrect- answer. The respondent adjusts it internally to reach a more 

plausible answer, but the adjustment is frequently insufficient. 

This thesis presents the results of an experiment about anchoring and 

adjustment in software estimation. Results show that anchoring and 

adjustment changes the outcome of software estimation processes. They also 

suggest that estimators tend to have too much confidence in their own 

estimations. 
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Chapter 1 

 

Introduction 
 

 

Software estimation is a problem that has attracted a considerable amount of research within 

software engineering, but it has so far failed to provide either a consensus on the best approach to 

estimation or a clear process to produce consistently accurate effort estimates [Kem87], [BAC00]. 

A possible reason for this lack of powerful, satisfactory techniques is that software estimation is 

frequently approached with the assumptions that it is, in essence, a technical or mathematical 

problem [Dol01], that it can be automated, or at least standardized [DeM82], that vital, unknown 

pieces of information can be accurately approximated at the early stages of a project’s lifecycle 

[Boe81] and that the estimation process can be kept separate from organizational politics, marketing 

or business cycles and external influences. 

Estimation can, and should, be approached from another angle as well: from the human 

judgment branch of psychology. Software estimation is, after all, performed by humans, and it is 

concerned with human activities; it is done under uncertainty and within a social setting that alters 

the behaviour and performance of those involved. Several studies [Jør04] strengthen the validity of 

exploring software estimation as an inherently human activity, subject to cognitive and social 

effects. 

Adopting the psychological approach, this thesis is interested in the effects of judgmental bias, 

and specifically of anchoring and adjustment bias, in software estimation tasks. Anchoring and 

adjustment is a widely observed and documented phenomenon [MS01] that occurs when people 
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face choices under uncertainty and the result of the choice can be expressed as a number within a 

range. If judgment of the matter is difficult, we tend to grasp an anchor, which is a tentative, even if 

unlikely, answer; and  we adjust it up or down according to our intuition and experience to reach the 

final result. The adjustment, however, is frequently insufficient to compensate for the biasing 

effects of the anchor, and the final answer is distorted due to this influence. 

If the effects of anchoring and adjustment are observed in software estimation processes, then 

this heuristic deserves a deeper consideration than it has had in the software estimation field. This 

possibility motivated an experiment that consisted of a software estimation exercise designed to 

detect anchoring and adjustment effects in estimators, which is documented in this thesis. 

The thesis is structured as follows. Chapter 2 surveys the field of software estimation research, 

and explores the nature of software estimation as a human judgment activity. Chapter 3 provides a 

similar survey of the field of judgmental bias, and specifically of anchoring and adjustment and of 

research relating human judgment and software estimation. These two chapters together provide the 

fundamentals and related work necessary to frame the findings of the thesis within research in both 

fields. 

The research questions that motivated the study are detailed in Chapter 4. Chapter 5 describes 

the design of the experiment, and Chapter 6 describes its execution. Results and analysis can be 

found in Chapter 7. Finally, Chapter 8 closes with a discussion based on the findings of the 

experiment and concludes the thesis. 
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Chapter 2 

 

Software Estimation Fundamentals and Related Work 
 

 

Time, cost and effort estimation for software projects has been a thorn in the side of software 

engineering since its beginnings [Bro95], [Sta94]. On one hand, software projects frequently need 

concrete estimation numbers on their early stages in order to take proper managerial decisions; on 

the other hand, reliably obtaining those numbers at that time is still risky and technically unfeasible. 

Boehm et al. [BCH+95] report that estimating a project on its very first stages yields estimates that 

may be off by as much as a factor of 4. Even at the point when detailed specifications are produced, 

professional estimates are expected to be wrong by +/-50%. 

Significant research has been devoted within software engineering to design estimation 

techniques that increase estimates reliability. Numerous publications have addressed this issue, 

proposing mathematical models for estimation, attempting to understand the mental processes that 

are involved in the minds of experts, and questioning whether it is even possible to obtain accurate 

estimates early in the software development lifecycle. 

This chapter explores fundamental work on software estimation. It does not intend to be a 

complete survey of the field, but to present some basic findings and categorizations, and to set the 

ground for the following discussion on biases in human judgment. 
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2.1 – Nature of Estimation 

 

Before reviewing any software estimation techniques, we should set a definition for 

“estimates”. Interestingly, most published papers assume an agreement on the meaning of estimates, 

but there are reasons to believe this assumption is unjustified. Grimstad et al. [GJM04], for 

example, call for further clarity in estimation discussions, and give several possible meanings to the 

concept. 

On its most basic sense, an estimate is a prediction of how much effort, time or cost is 

necessary to complete a task. Software estimates, particularly, are complicated because the 

variability involved in software development prevents from giving accurate and precise predictions. 

It is best to think of estimates as possibilities. Consider the distribution curve in Figure 2.1. For 

every development task there must be an absolutely minimum possible time it takes to be completed 

[Arm02], it is impossible to reduce it further. It is also safe to assume that, unless the task is 

impossible, a reasonable upper bound can be given for its completion. From the lower to the upper 

bound, all points are possible durations for the task. 
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Figure 2.1 – Completion Probability Distribution 
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Considering this curve, DeMarco [DeM82] believes that the default definition of estimate 

among professionals is “the most optimistic prediction that has a non-zero probability of coming 

true”, that is, a quantity that is just above the lower bound of the range of possibilities previously 

discussed. Most developers aim for this figure when estimating, ignoring risks and external 

influences. DeMarco argues that a correct definition of an estimate should be “a prediction that is 

equally likely to be above or below the actual result”, that is, the point at which the probability of 

having completed the task is 50%. This seems to be the concept most researchers have in mind 

when they talk of estimation. If this was the meaning we assign to estimates, about half of software 

projects should be completed before the estimate, and half would be overtime. This definition, 

however, is not likely what managers have in mind when they ask for an estimate, since the 

business risk of a 50% probability of missing a deadline may be too high. Managers would look for 

a more reliable figure, something around the 80% probability, or higher. 

Estimates are not always thought of as probability predictions. Frequently, estimates are 

cognitively equivalent to development budgets [GJM04]. This is unfortunate: if financial plans are 

made based on estimates and, as discussed above, 50% of software projects are completed after 

their estimates, then all of them will be over budget, and some will be probably cancelled due to 

lack of funds. 

Yet one more meaning of estimate turns the definition around. There is an allotted amount of 

effort (or time, or cost) allowed, so what is estimated is the development plan [Jør04b]. 

Up to this point we’ve assumed the result of an effort estimation process is a number, in work 

hours, months or cost, and not an interval. However, prediction intervals are a better reminder of the 

uncertainty involved in estimation [Jør04]. Interval estimates transmit the idea that the prediction 

may still be too vague on the early stages of a project, and intervals narrow down as certainty 

increases and the project progresses [BCH+95]. Estimate intervals can be expressed as a [minimum, 

maximum] pair or as a base estimate with a +/- percentage margin of error. 
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Summarizing, estimates can be thought of as predictions of minimum effort, predictions of 

average effort, risk control mechanisms, budgets and development plans. Estimates can be single 

numerical points or intervals. In this thesis we will use the meaning of estimates as predictions of 

average effort, that is, predictions that are technically just as likely to be above  or below the real 

outcome; and we will explore both the single numerical point and the interval representation of 

estimates. 

If we consider estimates as predictions, we should explore the prediction process that estimators 

follow. How do humans reach predictions, how do they estimate? We should turn to the behavioural 

sciences for the answer, but the matter has been studied there without much success: “Psychological 

research on real-world quantitative expert estimation has not culminated in any theory of 

estimation, not even in a coherent framework for thinking about the process” [BS93]. 

It is not surprising, considering the difficulty of producing a theory of estimation based on 

human judgment, that computer scientists prefer to create mathematical estimation models. But as 

we will discuss in the next section, the efficacy of models, at least size-based models, is doubtful. 

The LOC–effort relationship does not hold well enough [Dol01] and estimators are better at 

estimating effort than size –which cancels the benefit of size-based estimations [HH91], although 

they generally do not seem to be very good at either. 

Moreover, estimators do not think of program size naturally. In a survey of estimation practice, 

Hihn and Habib-agahi concluded that all estimators attempt to predict effort, but only 49% of them 

estimate size [HH91]. Furthermore, only 22% use size estimates as part of their estimation process 

(the remaining 27% estimate size because they are required to by their companies, and do not 

incorporate that estimation into their results). 

The same survey reports that model-based estimation is very rarely used by professional 

estimators. Only 7% of respondents use models as their primary estimation method. An additional 

11% use models secondarily. Apparently, estimating experience appears to be a factor on the 

preference of estimation techniques. The less experienced software estimators have a greater 
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likelihood of using models as their primary method. More experienced software estimators tend to 

switch to analogy and expert-based techniques. 

Finally, any discussion of estimates should consider that they are part of a soft and complex 

system in which subtle factors may alter the outcomes considerably. One notorious factor is the 

variation in productivity of developers. According to some studies [DL99] the best programmers are 

10 times more productive than the worst programmers, and 2.5 times better than the median. 

Programming teams also have widely diverse performances. Estimation techniques and models 

attempt to account for productivity variations, but they commonly fail to reflect upon the impact of 

this factor on the general results of a project. 

Another elusive factor lies upon the field of requirements engineering. Badly stated, missing 

and changing requirements can increase a project’s effort to several times its expected value. 

Software requirement issues account for half of the top ten risks for software projects, with the 

potential of extending a project to several times their intended time and budget. Estimation 

techniques rarely include such considerations explicitly in their processes. 

Even seemingly unrelated events and simple observations produce changes in performance. 

According to Abdel-Hamid and Madnick [AM86], estimates themselves are a factor in the real 

effort of software projects. That is, estimates may become self-fulfilling prophecies as developers 

struggle to meet the results that are expected from them. If this is true, and there is no indication on 

the contrary, a low or a high estimate (which, we should remember, intends to be only a prediction) 

may influence the project’s development in unexpected ways. 

We should remember that software development is an activity that needs a high degree of 

creativity, inventiveness and social interaction. It is extremely difficult to simplify such abstract and 

subtle elements to a satisfactorily precise estimation model. The next section describes the most 

relevant attempts to address this problem. 
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2.2 – Estimation Techniques 

 

In this section we will survey most currently accepted software project estimation techniques. 

This survey is not exhaustive, and is provided to help locate the types of estimation performed in 

the experiment this thesis addresses within an estimation techniques framework. 

We will base this survey in Boehm, Abts and Chulani estimation techniques classification 

[BAC00]. 

 

2.2.1 – Model-based Techniques 

 

Judging by the amount of research devoted to them, model-based techniques are probably the 

most popular approach among academics. The number of papers proposing, refining and 

reinventing model-based estimation techniques is overwhelming, although the principles behind 

them are consistent and relatively simple. 

The core of model-based techniques lies in the assumption that a reliable mathematical model to 

calculate the effort necessary to develop software may exist. Research in model-based techniques 

focuses on attempts to discover such a model [Dol01]. 

The size of the software being developed is generally considered to be the primary factor for the 

effort it takes to develop it: a small application naturally demands less effort than a large one. Size 

is normally calculated a a number of lines of code or functions needed in the system. However, size 

is not the only factor for effort, so other drivers need to be accounted for. A common basis for a 

model for software estimation is the equation: 

 

Effort = A SizeB 
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In  the equation, A and B are constants obtained after considering factors such as development 

experience, reliability requirements and domain knowledge. The exponent B is generally higher 

than 1, so the equation indicates exponential growth, although B does not normally stray too far 

from 1. 

It is worth noting that this equation is not universally accepted [Dol01], and that even within 

techniques that use the equation, the means to define A and B vary. The meaning of Size is 

sometimes discussed as well. 

Some of the most widely known model-based estimation techniques are explained below. 

• SLIM – Software Life-cycle Model:  Developed by Putnam and Myers [PM92]. It is 

based on the application of the Rayleigh distribution curve to determine the effort needed in 

a software project, which varies during its lifecycle. Although SLIM was one of the first 

accepted estimation models, it is not commonly used these days. 

• ESTIMACS: This proprietary model-based technique, exposed by Rubin [Rub83], follows 

a business model approach. The input to the model is a set of answers to 25 questions 

referring to several cost drivers. Its proprietary status prevents a greater spread in its use. 

• COCOMO: The Constructive Cost Model was developed by Barry Boehm [Boe81] and it 

is arguably still the most popular and referenced estimation model published. It is based on 

the equation stated above, as most pure model-based techniques, and it has three complexity 

levels. They differ in the detail given to the calculation of factors that modify the exponent 

of the equation. The Size of the application to be developed is expressed in lines of code 

(LOC). Boehm warned that his model may need to be calibrated to reflect the details of the 

estimator organization, and according to third-party validations [Kem87], calibration is vital 

for even passable estimates with COCOMO. The model was created when the waterfall 

lifecycle for software development was considered the standard methodology for software 

projects, and is therefore outdated in its original form. There has been research in trying to 

evolve the model along with current software development approaches. For example, 
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Benediktsson et al. [BDR+03] present a COCOMO-based model for iterative and 

incremental developments, and Boehm updated his model to obtain COCOMO II. 

 

One of the common arguments against COCOMO –and all LOC-based models– is that lines of 

code are not a proper measure of the magnitude of the effort needed to develop software [Arm02]. 

According to Armour, “using (lines of code) as a measure of knowledge quantity is pretty much like 

weighing a book to figure out how much knowledge it contains”. Capers Jones [Jon96] argues that 

not only lines of code are not the best metric –they are downright misleading: they tend to hide 

productivity gains, inhibit code reuse and cause bad development practices. However, the best 

argument against the use of lines of code as a basis for software effort estimation is that 

professionals estimate lines of code with less accuracy than estimates of effort [HH91]. 

A different metric –function points, FPs – was developed at IBM [Alb79] with the goal of 

addressing these issues. Function points represent the functionality of a program, and they seem to 

be more intuitive than lines of code [Jon96]. 

Two examples of model-based techniques with FPs are: 

• Checkpoint: Checkpoint is a proprietary tool from Software Productivity Research (SPR) 

developed by Capers Jones [Jon96]. It is based on a calculation of FPs (inputs, outputs, 

displays, queries, files) for the software to be developed, which is modified with a factor 

that considers experience, productivity and several other project characteristics. 

• COCOMO II: Although COCOMO II [BCH+95] is not exclusively FP-based, one of its 

most notorious changes from the original COCOMO is the possibility of estimating effort 

based on the functionality of the program to be developed, instead of on lines of code. Most 

of the characteristics of the original COCOMO are still featured in this later incarnation, 

such as the three estimation complexity classifications and the set of project drivers that 

modify the pure FPs estimate. 
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Most of the models discussed so far were developed using statistical regressions from project 

data, but have rarely been properly validated in real use. In one of the first studies attempting to 

validate the performance of model-based techniques, Kemerer [Kem87] reviewed the results of 

estimates produced with SLIM, COCOMO, a generic function points model and ESTIMACS. He 

gave his own study an advantage that practitioners do not have: he knew beforehand the size, in 

lines of code, of the software he was estimating, and he used it as an input to his calculations. 

Practitioners must estimate this input to reach a result. Even with this advantage, he found that, 

without calibration, models have a disproportionately bad performance. Depending on the model 

used, average results were from 103% to 772% off from reality. Another, more recent validation 

study [JRW00] produced similar conclusions.  

There is another aspect of working with model-based techniques: the question of whether 

estimates from the model should be modified by estimators according to their experience or if they 

should be left untouched. Subramanian and Breslawski [SB95] conducted a study that concluded 

that estimates that are generated from models and subsequently modified according to experience 

are more accurate than if they were left unmodified. 

Dolado addresses the issue of the existence and possible nature of a software effort function 

[Dol01]. According to Dolado, academics have proposed linear, quadratic and exponential functions 

to explain their software effort data without having a theoretical background justifying any of those 

alternatives. In his study, data reported for twelve software estimation studies are merged to attempt 

to identify if those data correspond to a clear mathematical equation. Results show that, although 

there apparently is a relation between size and effort, the spread is so marked that it is not advisable 

to treat program size as a defining factor of development effort. In his words: “Regardless of the 

method, the basic size-effort relationship does not show satisfactory results.” He concludes: “The 

present state of the art in software estimation does not provide a theory that explains all the data 

available”. 
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2.2.2 – Learning-oriented Techniques 

 

It is dubious whether learning-oriented techniques form a category by themselves, since it is 

hard to separate them from expert-based techniques (which are explored in the next section): 

Experience and learning are intertwined. However, at least one learning-oriented technique is 

concerned with representing learning through artificial neural networks, and another technique has a 

standard approach to the incorporation of past experiences in estimating decisions; therefore, the 

learning-oriented category is considered worthy of attention as a separate category. Learning-

oriented techniques are based on the assumption that past performance is a good indicator of future 

results. They generally produce satisfying results when the project being estimated resembles 

previous projects, but bad results when it deals with new applications, domains or practices. 

The following two are the most common learning-oriented techniques for software effort 

estimation: 

• Analogy-based estimations: Shepperd and Schofield [SS97] propose using data from 

previous projects to estimate how much effort will the next demand. This approach is 

especially recommended if the development team has dealt with projects with similar scope 

and/or domain. The technique has room for computerized intervention: If there is enough 

data from in-house projects, the use of computerized tools would detect which previous 

projects are better suited as analogies to any new project with defined characteristics. Using 

such tools would help reduce human bias when picking sources of analogy. But in an 

empirical study, Walkerden and Jeffery [WJ99] compared analogy-based estimations with 

and without the aid of computerized tools. Results indicate that people choose sources of 

analogy better than tools; which suggests that either human bias is better than automated 

processes, or that present day tools need refinement. 
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• Neural networks: There have been at least two attempts to approach the problem of 

software estimation using neural networks ([GM96] and [FWD97]). Neural networks are 

attractive in software estimation because the impact of each relevant factor in a software 

project is not known, and it might be best to allow a neural net to adapt to data as it 

becomes available in order to improve estimates quality. However, Boehm et al. [BAC00] 

point out that neural networks in software estimation are still an immature approach, and 

more time will be necessary in order to assess their true efficacy. 

 

2.2.3 – Expert-based Techniques 

 

Expert-based techniques are, at the same time, the most widely used estimation methods 

[HH91] and the ones with arguably the worst standing among academics [Hug96]. Most research in 

software estimation deals with proper models to perform estimations, not with an analysis of the 

way experts reach their conclusions. Three notable expert-based techniques are: 

• Delphi: Named after the Greek Oracle, this technique depends on the work of a group of 

experts that attempt to reach a converging estimate. In its basic form [Hel66], the Delphi 

technique has a group of experts working separately to produce an effort estimate. Their 

individual results are made known to the others, and they are subsequently allowed to 

review their own estimate. If no agreement is reached after the second estimate, the average 

of their individual estimates is taken as the final result of the process. A modified Delphi 

technique, called Wideband Delphi [Boe81] allows the individual experts to communicate 

among themselves to share the reasoning behind their results, ideally being able to better 

adapt them. Supporting the Delphi technique, there is evidence that group estimation 

decisions are better than individual decisions. For example, Moløkken-Østvold and 

Jørgensen [MJ04] report that groups of estimators are generally less optimistic than 
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individuals, and therefore we should expect longer –perhaps more realistic- estimates from 

them. 

• Work breakdown structure: Also called bottom-up estimation, a work breakdown 

structure (WBS) estimates the effort needed to develop a project by adding the time it takes 

to develop each of its components [Bai89]. It is supported by the ideas that it is easier to 

estimate the effort necessary to perform a simple task than a complex task, and that errors in 

small estimates are balanced and cancel each other when considering concentrated 

estimates. WBS is generally considered a variation of the next estimation technique. 

• Freeform expert estimation: It is clear that expert estimation is used in the great majority 

of software estimation processes. As was mentioned before, Hihn and Habib-Agahi [HH91] 

report that 83% of the Jet Propulsion Laboratory estimators use informal analogies as their 

primary estimation technique. In contrast, models are used as the primary technique by only 

7% of estimators. Other studies confirm this tendency. Heemstra and Kusters [HK91] found 

“intuition and experience” as the basis for 62% of estimates of the projects they studied, 

and 16% of estimates were based on formalized models. The percentage of expert 

estimation use in [Pay96] is 86%, 72% in [KPM+02], and 84% in [Jør97]. There are reports 

of large companies where the percentage of model-based estimations is zero [HTA00]. 

Expert estimation has been found to be the most commonly used estimation technique in 

both [HH91] and [Hug96]; although some researchers do not call it a technique, but merely 

“guessing”. Indeed, its basic feature is that there is no defined process or approach to 

perform an estimate. Experts are assigned the responsibility of reaching an estimate by 

whichever means they see reasonable. The criteria to call estimators “experts” is quite 

loose. An expert estimator could be someone with only academic knowledge of software 

engineering, or it could be a person with years of experience and knowledge to draw from. 

Incidentally, the amount of experience that estimators have is not a good indicator of their 

accuracy [JS04]. As was mentioned before, expert estimation is commonly shunned by 
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academia, possibly because of its lack of sophistication. In an extensive survey, Jørgensen 

[Jør04] points that there are few published studies about expert estimation in the field of 

software development –although it is a topic common in the behavioural sciences. The 

scarcity of papers about expert estimation should not be considered an indication of their 

effectiveness, or lack thereof. In the same survey Jørgensen points that in the 15 studies 

found comparing expert estimation with model-based approaches, models outperformed 

experts in 5 occasions, experts were more accurate in 5 more, and there was no clear 

preferred technique in the remaining 5. Therefore, the possibility exists that expert 

estimation is being underestimated as a valid technique. 

 

 

2.3 – Estimation as a Human Activity 

 

As was discussed previously, expert estimation has an unfavorable standing among researchers, 

but wide acceptance among practitioners. In this section we will delve deeper into this subject, 

exploring whether expert judgment –or, more appropriately, human judgment- can truly be 

separated from estimation processes. 

There are several opinions as to what does it mean to perform “expert estimation”, and on what 

it is to be an expert. Jørgensen [Jør04] uses a rather broad definition for expert estimation: it is the 

result of applying estimation strategies in the interval from unaided intuition (“gut feeling”) to 

structured estimation (supporting expert judgment with historical data, process guidelines and 

checklists). The defining characteristic of expert estimation is, according to Jørgensen, that “a 

significant part of the estimation process is based on a non-explicit and non-recoverable reasoning 

process, i.e., ‘intuition’.” 
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Other researchers favor a narrower meaning of expert estimation, attempting to restrict who can 

be an expert or defining a basic set of semiformal processes experts need to follow, such as the 

Delphi technique [Hel66]. 

However, it is worth questioning, as Hughes does [Hug96], if there actually exists, or can exist, 

an estimation technique that does not rely on human judgment. Most accepted estimation 

techniques, with the exception of model-based techniques, depend heavily on the judgment of 

estimators. Analogy-based estimation relies on experts choosing proper sources of analogy. Hybrid 

approaches and work breakdown structure analyses are inherently judgment based. 

Model-based techniques attempt to hide their reliance on expert judgment, but not to eliminate 

it. At the heart of a COCOMO estimation, for example, lie two judgmental decisions that are 

needed every time an estimate is produced: an approximation of the number of lines of code that the 

software will have, and the subjective weights assigned to several cost drivers that will modify the 

outcome of the estimation equation. A human needs to take those decisions, therefore, human 

judgment is deeply involved in model-based techniques as well. 

According to Pengelly [Pen95], the efficacy of formal software estimate models is dependent on 

the good judgment of the estimators, since they require expert estimates of important input 

parameters. This reliance on expert estimation is not exclusive of software development; it has been 

observed and naturally accepted in a variety of settings [BH90]. 

Software estimation’s reliance on human judgment is frequently understated. Mathematical 

models for effort estimation convey the idea that forecasting is a clean, defined process with little 

interference from psychological and social factors. But human judgment in effort estimation exists, 

and plays a vital role in every particular estimate. Understanding the implications of this reliance on 

judgment should be a primary objective of software estimation researchers. 
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Chapter 3 

 

Anchoring and Adjustment Fundamentals and Related 

Work 

 

 

Anchoring and adjustment is a cognitive bias, and to explain it we should connect to research in 

psychology, and specifically to the area of judgmental bias. In this chapter we will explore what are 

judgmental biases, and then we will focus on anchoring and adjustment concretely. After a brief 

survey of both topics we will cover work that relates the areas of human judgment and software 

estimation. 

 

3.1 – Judgmental Bias 

 

Judgmental bias is considered to be any deviation from reality that prevents the objective 

consideration of a situation [Hog80]. Although this simple definition carries some important 

philosophical assumptions –mainly that there is one, unique reality and that it is possible to consider 

it objectively- it is useful to think of bias using this definition in the following discussion. 

Several types and sources of bias in human thought have been identified, and in order to 

classify them it is helpful to consider a conceptual model of judgment provided by Hogarth 

[Hog80], which is depicted in Figure 3.1. 
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Figure 3.1 - Hogarth’s conceptual model of judgment 

 

Hogarth situates the person under analysis, and the person’s schema, inside a task environment. 

In this model, a person acquires information from the environment, processes it, and outputs a 

resulting action. This action produces some sort of feedback that affects the environment and the 

person’s future actions. 

Using this model helps to discuss the types of bias humans are subject to. We can locate the 

possibility of bias in the Acquisition, Processing, Output and Feedback conceptual stages. The 

following subsections list and explain the types of bias that may occur in each of them. Note that 

the lists and most of the discussion in this section are adapted from Hogarth [Hog80] and 

Kahneman, Slovic and Tversky [KST82]. While studying these lists it may be helpful to maintain 

software engineering, and specifically software estimation, in mind to see if and how these biases 

are likely to present themselves in such domains. 
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3.1.1 – Information acquisition biases 

 

The problems of bias in information acquisition generally refer to the saliency of the 

information that is acquired. Recent, representative and/or believable data, for example, is recalled 

and acquired with greater ease than the rest. It is important to note that memory is not an accurate 

recording of previous events: different persons may have completely different memories from the 

same event depending on the things each was biased to perceive. Some of the common biases in 

information acquisition are: 

• Availability: Tversky and Kahneman [TK82] have shown that humans tend to estimate the 

likelihood of an event and the frequency of occurrences of a class by assessing the ease with 

which the relevant mental operation of retrieval, construction or association can be carried 

out. Classic examples of this heuristic are that people estimate that the letter R appears more 

frequently in the first than in the third position of English words, which is incorrect; and that 

after studying a list of names where the persons of one gender are more famous than those of 

the other gender (which in turn are more numerous in the list), people think that the former 

list is longer than the latter. 

• Risk perception: This is a specific subclass of availability bias. Slovic et al. [SFL82] 

proved that people tend to assign a greater probability of risk to more publicized and recent 

dangers while greater but silent risks are underestimated. 

• Selective perception: People tend to perceive information they expect to perceive, and 

downplay or disregard conflicting evidence. 

• Concrete information: We tend to remember information that was concretely given to us 

(for example, face to face) better than abstract information (like statistical base rates). For 

example, when considering to buy a certain car model we will likely give more thought to 
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the direct advice of a friend than to each of the 100 respondents to a survey in a specialized 

magazine. 

• Data presentation: The way people receive information biases its acquisition. The first and 

last items in a sequential presentation tend to be given greater relevance than the rest. Also, 

apparently thorough and complete information blinds people to critical omissions in its 

exposition. 

 

3.1.2 – Information processing biases 

 

Information processing biases are caused by the decision making mechanism people use. It is 

probably the judgmental stage in which most types of bias occur. Most of the problems in 

processing information arise from the complexity of the data to process, the unwillingness to spend 

mental effort and the lack of consistency in judgment. The following list expands these concepts: 

• Anchoring and adjustment: Please see the description in section 3.2 for a discussion on the 

topic of anchoring and adjustment. 

• Inconsistency: Most people are unable to apply a consistent judgmental criterion over a 

repetitive set of cases. 

• Conservatism: People have been shown to fail to adapt or revise their opinions in the face 

of new information. 

• Non-linear extrapolation: We have an inability to extrapolate exponential growth 

processes or to calculate the conjunctive probability of several events, which we tend to 

overestimate. 

• Habits and rules of thumb: This may be classified as a subclass of availability biases. A 

previously tried “good enough” choice may cause the automatic elimination of every other –

possibly better- alternative in subsequent events. 
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• Representativeness: Kahneman et al. [KST82] say that humans tend to mix 

representativeness with probability: When classifying a piece of information, we are likely 

to assign it in a class on which we believe it typically belongs, not in the class on which it 

statistically belongs more often. For example, people predict that an intelligent, shy, science 

fiction fan student is enrolled in computer science, even when they have previously shown 

that they know that, according to student enrollment distribution, it is more likely for any 

student to be enrolled in a humanities or education program, regardless of personality traits. 

• Worthless data: Having no specific data on a subject is better than having worthless data 

[KT82]. When there is no specific data, people rely in base rate information. When there is 

worthless data, people ignore base rates and try to give meaning to what they have. 

• Law of small numbers: This is probably one of the best known heuristics discovered by 

Tversky and Kahneman [TK82b]. Characteristics of a small sample are expected to be 

representative of the population from which they were drawn. (So six consecutive coin 

tosses resulting in “heads” are classified as weird and non-random). 

• Justifiability: According to Hogarth, when provided with an apparently rational argument 

people may simply accept and get along with it, even if it is rationally inappropriate. 

• Regression: Statistical regression is not a bias, but failing to attribute exceptional cases to it 

is. Kahneman and Tversky [KT82] narrate a case of inability to understand regression. In an 

army, flight instructors held the belief that the performance of their students improved after 

every reprimand, and worsened after rewards. Hence, the instructors held the opinion that 

students should not be rewarded, and that indeed they should be punished even for trivial 

reasons in order to improve their performance. Their belief, being in contradiction with 

psychological motivation theories, was in fact proven correct after an analysis of pilot 

performance and reinforcements’ data. However, what lay behind this finding (which 

contradicted motivational theories) was statistical regression: after an exceptionally bad 

flight it is likely that the next performance will be closer to the mean, that is, better; and after 
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an exceptionally good flight, the next one will likely be less surprising, that is, worse than 

the last. Statistically, this behavior would hold without instructor intervention. The 

instructors had discovered statistical regression, but had assigned it to the wrong cause, with 

unpleasant consequences. 

• Complexity of the decision environment: Several factors can add up to the complexity of 

the environment: too much information, time pressure and distractions cause bad judgments 

and heavier reliance on dangerous heuristics. 

• Emotional stress: Even when the source of emotional stress is unrelated to the present 

situation, it reduces the care with which people select and process information, and it may 

precipitate them to make panic judgments. 

• Social pressures: People may try to please or confront other people. It is important to note 

that this is not a cognitive bias, its nature is motivational: it stems from our desire of 

recognition and acceptance, or from our fears. 

• Group think: The phenomenon by which a group takes a decision which no (or almost no) 

group member would have taken individually. 

• Consistency of information sources: This may be better stated with the phrase “If 

everyone says so, it must be true”. Singer [Sin82] shows how some “mythical numbers”, 

that is, factual numbers frequently repeated by authority figures and the media, are proven 

incorrect with even the simplest calculations. 

 

3.1.3 – Output biases 

 

The way that people are asked to express their judgment may itself be a source of bias, 

independently of the processing of information that led to their original judgment. Some examples 

of this type of bias are: 
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• Scale effects:  The scale on which a person is asked to give his answer may affect the 

answer he gives. For example, people assign probabilities differently on a percentage scale 

than when x:y odds are used. 

• Illusion of control: According to Hogarth, activities such as planning or forecasting induce 

feelings of control over the uncertain future. This is most evident in sports predictions and 

bets. 

 

3.1.4 – Feedback biases 

 

Without feedback to actions, learning is impossible. The natural cycle of actions and their 

feedback, however, is not always at reach: in some situations, feedback is unavailable, inconsistent, 

ambiguous or delayed. Thus we may relate causes with the wrong effects, or confuse randomness 

with determinism. Some specific examples of feedback bias are: 

• Overconfidence: Oskamp [Osk82] affirms that practice or familiarity, when there is lack of 

proper feedback, causes people’s confidence in their accuracy to increase, but their actual 

accuracy remains constant –or even worse, decreases. 

• Gambler’s fallacy: This is an inability to perceive randomness for what it is. After 

observing a sequence of coin tosses with “heads” outcomes people tend to believe that 

“tails” is a more likely outcome the next time. 

• Success/failure attributions: Ross and Anderson [RA82] show how people are inaccurate 

at assessing the causes of their own successes and failures: we tend to attribute success to 

our own skill, and failure to chance or circumstances. 

• Logical fallacies in recall: If people cannot recall details about an event they may produce a 

fictitious, but logical, reconstruction of its facts. This is known to happen with eyewitness 

testimonies. 
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• Hindsight bias: Also known as the “I knew it all along” bias. According to Fischhoff 

[Fis82], in retrospect people don’t seem to be surprised about some situation’s outcome and 

can easily produce arguments that explain such outcome convincingly, although before its 

occurrence they were quite uncertain of what would happen. 

 

3.1.5 – Severity and quantity of biases 

 

The previous lists and discussion may cause either amusement or frustration. It seems there are 

too many sorts of biases, and through them human judgment is seriously unreliable. Hogarth argues, 

however, that in the majority of situations these biases are harmless, and that perhaps they are the 

result of evolutionary tradeoffs in human cognition that help us to successfully save time and effort 

in most natural circumstances. It may be better to have problems differentiating between 

representativeness and probability, than to require a complex mental computation to correlate a 

representative example with the class it came from. 

What should be concluded is not that human thought is fundamentally flawed, but that it relies 

on some heuristics and motivations that, while being generally beneficial, are the source of 

constant, repeating and predictable errors. 

 

3.2 – Anchoring and Adjustment 

 

Anchoring and adjustment is a phenomenon observed when people face choices under 

uncertainty, and is particularly notorious when the result of the choice can be expressed as a number 

within a range. If judgment of the matter is difficult we appear to grasp an anchor, that is, a 

tentative, even if unlikely, answer; and we adjust such answer up or down according to our intuition 

or experience to reach the final result. 
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The reason why anchoring and adjustment is considered a bias is that the adjustment humans 

commonly apply to the initial anchor is frequently insufficient to compensate for the negative 

effects of the anchor. Anchors, then, have the effect of attracting answers towards them and away 

from the correct number. 

Tversky and Kahneman [TK82] first reported this phenomenon by describing the following 

experiment: Participants were individually presented a wheel of fortune with numbers from 0 to 

100. The experimenter spun the wheel in front of the participant, and after it stopped –in a position 

evidently random- he questioned the participant to estimate various quantities, stated in percentages. 

For example, participants would be asked to give the percentage of African countries in the United 

Nations. Participants were first asked to indicate if the correct answer to the question was higher or 

lower than the random number that came up in the roulette, and then to estimate the correct value by 

moving upward or downward from the random number. 

Tversky and Kahneman report that the arbitrary initial numbers obtained from the roulette had a 

marked effect on estimates: the median estimate for the African countries question was of 25 for 

people that received a 10 as their anchor, and 45 for those who received a 65. The researchers 

summarized the phenomenon as “different starting points yield different estimates, which are biased 

toward the initial values”. 

Since then, the phenomenon has been studied thoroughly, and although the cognitive processes 

involved in it have not been singled out, the existence of the heuristic is now rarely questioned. It 

has been shown to happen in situations far more ordinary than the experiment described above, such 

as in general knowledge issues, probability estimates, legal judgment, pricing decisions and 

negotiation [MS01]. 

For example, [CB96] indicates that anchoring occurs in legal applications, and suggests that 

“plaintiffs would do well to request large compensation awards” to bias the awards granted by 

jurors. [NN87] demonstrated that professional real estate pricing decisions are also subject to 
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anchoring biases, altering the pricing decisions of both experienced and inexperienced real estate 

professionals (although with a stronger impact on inexperienced professionals). 

Initial anchors do not even need to be recognized as starting points for the solution. [AWA02], 

for example, affirms that the duration of a criminal sentence partially depends on numbers that are 

fresh in the mind of the sentencing judge. However, [MS01] reports that semantic anchoring effects 

are more potent than purely numeric effects; that is, the anchor is more effective if it is regarded as 

a possible, meaningful solution to the problem at hand. 

A series of experiments by Wilson et al. [WHB93] provide interesting insights on the anchoring 

and adjustment phenomenon. Their results indicate that (a) anchoring occurs if people pay sufficient 

attention to the anchor value, (b) that knowledgeable people are less susceptible to anchoring 

effects, and (c) that anchoring appears to operate unintentionally –it is difficult to avoid even when 

people are forewarned. 

 

3.3 – Judgmental biases in software estimation 

 

Software estimation is frequently approached as a technical problem with clear specifications 

and a correct answer. This is probably the result of designing models and techniques with data from 

projects previously developed, for whom there is a set of metrics and all problems and risks 

eventually surfaced and were recorded. Applying such models to future projects involves an amount 

of foresightedness that is highly unrealistic, and therefore judgment has to be made under 

uncertainty. 

Although most research in software estimation is technical and concerned with refining models 

or adapting them to new lifecycles and development dynamics, there has been a growing field 

within software estimation that attempts to discern predictable elements of human behaviour from 

software estimation processes. 
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The following studies have contributed in attracting attention to software estimation as a 

primordially human activity, deeply related to thought processes. 

On the topic of estimator overconfidence, [JTM04] describes an empirical study which found 

confidence of estimators in their own estimates was unjustifiably high. Furthermore, estimators do 

not appear to handle well different estimation confidence percentages. No distinction seems to be 

made between 50%, 75%, 90% and 99% confidence in an estimate. 

On estimator experience, Hill et al. [HTA00] affirm that “a study of six software project 

leaders’ estimates over a period of three years showed no significant learning effect”. These results 

may be explained by a lack of a proper feedback loop to the thought processes involved in software 

estimation, or by the continuously changing environment in which software projects take place. 

Two studies address the issue of expectations in estimates, and one even raises a link between 

anchoring and adjustment and estimation [JS01], even if the type of estimation the study is 

concerned with is not related to software, but to student coursework. According to this empirical 

study, when asked to perform a work breakdown structure (WBS) of activities to be performed for 

an undergraduate course, and if given a low or a high anchor, students will correspondingly produce 

unrealistically low or high WBS estimates. 

The second study has several similarities to the one described in this thesis. [JS04b] reports an 

empirical study where customer expectations were directly stated to estimators of a short software 

task. Participants were instructed to estimate the task using a WBS analysis. These expectations 

were found to cause an impact in the final estimates. 

Another study explores performance evaluations that managers assign to estimators [Jør04]. 

Managers have been found to prefer estimators that produce narrow (and wrong) estimates over 

those who produce wide (and correct) estimates. Subjectively, they seem to believe that estimators 

that give narrow answers are more knowledgeable than their complements, and if they are wrong it 

may be because they had a run of bad luck. 
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Finally, an interesting paper by Abdel-Hamid and Madnick [AM86] reports that estimates are 

likely to be a factor in the real effort of projects. That is, estimates may be self-fulfilling prophecies, 

where low estimates are matched with short projects by compromising and eliminating unnecessary 

features, and high estimates are matched with long projects that take a more detailed approach, 

gold-plate features and tolerate a greater amount of requirements creep. 

In summary, these results taken together lead to the conclusion that software estimation is a 

field that benefits from being studied with a psychological perspective, and they call for further 

efforts in this direction. 
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Chapter 4 

 

Research Questions 

 

The underlying assumption of this study is that software estimation is essentially a human 

judgment activity, and that as such it is subject to judgmental biases. The previous discussion on the 

nature of software estimation supports this view, and efforts to automate estimation, although 

successful in giving shape to such a freeform activity, do not eliminate or reduce the intervention of 

human judgment. 

Software estimation, being subject to judgmental biases, is a prime candidate to suffer the 

effects of anchoring and adjustment. The main reasons are: 

• Judgment under uncertainty: The complexity of software development, the magnitude of 

factors that can speed it up or down, and the enormous variation in impact most of these 

factors have, collaborate in the uncertainty involved in estimation. Documented failures of 

software estimates, mainly in the form of schedule overruns [Sta94], stand as witnesses to 

the difficulty of accurately predicting the amount of effort required in software projects. 

When faced with an estimation task, estimators need to handle uncertainty and ambiguity in 

the form of vague and missing requirements, assessments on the experience and skill of 

developers, rigour of non-functional requirements, customer expectations, and a whole 

range of unforeseeable outside events that can alter the time and effort needed to finish the 

project. It has been demonstrated [KST82] that heuristics and biases occur when humans 
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are faced with such uncertainty; therefore, it is natural to expect them to occur in software 

estimation activities. 

• Quantitative estimates: A specific requirement for the anchoring and adjustment bias is 

that the answer that subjects must provide should be in the form of a number, not of a 

subjective statement or a binary decision. Software effort estimates, commonly stated with 

units such as man-months, weeks, months or dollars, fulfill this requirement. 

• Natural use of anchors among managers and developers: In the software development 

field anchors are produced and communicated within the development team and customers 

almost unconsciously. Phrases like “Do you think you’ll finish by mid February?” are 

common and expected in the software industry –there is no concern for the effect that such 

questions may have upon the accuracy of the response. 

• Lack of solid framework for software development: Although there are several efforts to 

standardize the software development process with a considerable number of adherents 

[Hum89], it is still largely an immature and unexplored discipline. New and sensible 

methodologies are proposed all the time, but a clearly superior technique has not yet been 

found –nor, for that matter, has it been proven that there may be a technique that would be 

superior to any other for all types of software projects. This lack of a standard framework 

for software development increases the uncertainty of estimation and makes it difficult to 

explore in detail the consequences of changing methods and practices in a development 

team. 

 

The following questions were formulated to help identify whether anchoring and adjustment is 

indeed an effect worth considering while estimating software projects. 
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4.1 – Existence of anchoring and adjustment effect 

 

We should first be concerned with defining if an anchoring and adjustment effect is observed in 

an empirical study. The first research question is therefore: Does the phenomenon of anchoring and 

adjustment influence software estimation processes? 

To answer this question the empirical study should be designed in such a way that a variation in 

anchors is the only relevant difference among estimators. The following chapters describe the study 

that was designed and executed to address this issue. 

Although this is the main research question of the thesis, there are three other significant topics 

worth exploring. The answer to them stems from the results of this question. 

 

4.2 – Variation in the effect between experienced and inexperienced 

estimator subgroups 

 

It has previously been observed that anchoring and adjustment effects are weaker for 

knowledgeable, or expert, participants [NN87]. However, within software estimation research, it 

has been found that estimation experience is a bad indicator of estimation accuracy, that is, 

experience does not seem to lead to reliability within software estimation [JS04]. This combination 

of results makes it hard to predict whether experienced software estimators will be as influenced by 

anchors as their inexperienced colleagues. 

For these reasons, our second research question is: Is the influence of anchoring and adjustment 

weaker for estimators that have had previous experience estimating software projects? 
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4.3 – Variation in the effect between users of model-based 

techniques and expert-based techniques 

 

Since research in model-based techniques and expert-based techniques has not yet provided 

strong evidence of the superiority of either type of technique [Jør04] it would be interesting to see if 

either method provides an advantage over the other as far as anchoring and adjustment effects are 

involved. Our third research question can be formulated as follows: Is the influence of anchoring 

and adjustment stronger for estimators that rely solely on expert-based estimation, as opposed to 

estimators that use a model-based technique? 

 

4.4 – Compensation of anchoring effects by confidence ranges 

 

It is unrealistic to expect that an estimate expressed as a number will have much accuracy. 

Ranges of estimates, either expressed as an interval or as a central point with a confidence range in 

percentage, help to frame an estimate within a timescale and give an opportunity to estimators to 

express the amount of uncertainty they may have in their own answers. 

If estimators are allowed to express their estimates with a confidence range, they should be able 

to compensate for the ambiguity and judgmental biases inherent in estimation processes. 

The fourth question we are concerned with is therefore: Does the confidence (or lack thereof) 

estimators have in their answers compensate for possible anchoring and adjustment biases? 

This question is relevant because the effect of anchors could be irrelevant if estimators are 

realistic about their own performance and give wide confidence ranges. However, if this is not the 

case, even giving estimators the advantage of stating their results with intervals may not be enough 
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to counteract the judgmental biases involved in software estimation, and other steps should be taken 

to compensate for them. 
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Chapter 5 

 

Experiment Plan and Design 

 

 

An empirical study in software estimation was designed to answer the research questions posed 

in the previous chapter. This chapter contains the description of the experiment, its design, 

variables, hypotheses and threats to its validity. 

 

5.1 – Experiment Design 

 

The experiment consisted of a software estimation exercise that consenting participants worked 

at individually. They were given the problem of estimating how long they think it would take to 

deliver a specific software application. 

The application was described in a ten-page document named “Software Requirements Initial 

Report” (see Appendix 3). The client for the application lies within a hypothetical foreign trade 

agency, and the main task of the application was to process, analyze and report statistics on foreign 

trade in the area the agency deals with. Two reasons were relevant to choose this domain: 

• Lack of familiarity of any participant with domain: Having a percentage of participants 

familiar with the domain would give them an advantage over other participants and would 

bias the experiment. For this reason, foreign trade statistics analysis was preferred over 

more common domains such as e-commerce applications, CRM or ERP tools. 
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• Previous experiment designer experience: The designer of the experiment had previously 

worked in a project similar in its domain, but different in its scope, and could point to 

peculiar requirements in the domain and reasonable choices for anchor values (see below). 

 

The format for this document was adapted from the IEEE Recommended Practice for Software 

Requirements Specifications [IEEE98]. 

The requirements report was complemented by another document, named “Project Setting” (see 

Appendix 4). This document, three pages long, discussed particularities of the client organization 

and of the development team in charge to develop the application. It included information such as 

experience of the developers, insights into their team dynamics, expectations of future users of the 

system and some subtle, non-functional requirements. This document, along with the requirements 

report, was the only information participants were given on the application domain and its 

environment. 

Participants worked on this problem individually. They could take as much time as they 

desired, and although their performance was not timed, the majority of them reported taking from 

one to two hours in the exercise. 

All participants had total freedom on their choice of estimation techniques, as long as they 

worked on the exercise by themselves. They could use software estimation tools to aid their 

judgment if they desired. 

Once they finished their estimation they needed to answer a questionnaire (see Appendixes 2 

and 5). The most relevant questions in it were: 

• Give your estimate for the duration of the project described in the attached documentation, 

in months, to the nearest integer 

• I think that if this project was really developed, my estimate might be off by as much as 

___% 
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• Justify your estimation. Try to justify it in such a way that a reader may understand and 

follow your reasoning and probably reach the same conclusion. 

 

That is, they were required to submit their estimate, a confidence range, and a justification for 

their answers. 

The rest of the questions in the questionnaire were included in case they would give additional 

insights to the estimation process and to assess the quality of the experiment documentation. They 

were: 

• I think the estimation I performed was… (answer was given in a scale from 1 to 7, 1 being 

“very unreliable” and 7 “very reliable”) 

• My previous estimation experience includes (check all that apply). (Options included 

involvement in estimation of medium to large projects, estimation of small projects, courses 

that had estimation as a topic, witnessing software estimation processes, and self-learning) 

• I felt the documentation was… (answer was given in a scale from 1 to 7, 1 being “very 

uninformative” and 7 “very informative”) 

• Explain your strategy to estimate software development projects 

 

The estimation experience question was the only means by which estimator experience was 

assessed in this study. There were no attempts to probe this self-assessment, nor any definitions of 

what does each participant mean by, for example, “medium to large projects”. 

All participants signed a consent form and were paid $10 as a token of gratitude for their 

involvement in the study. 

 

There were three different conditions in the experiment. Each participant was assigned to one 

condition, with the intention of having each condition a similar proportion of participation and 

experienced subjects as the others. The only difference among the three conditions was a paragraph 
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in the second page of the Project Setting document. In a box with quotes from a middle manager in 

the client organization, one of the sentences was altered in each group. 

For the experiment’s control condition, the manager was quoted as saying: 

“I’d like to give an estimate for this project myself, but I admit I have no 

experience estimating. We’ll wait for your calculations for an estimate.” 

 

For a second, “2-months” condition, the quote was modified to include an anchor. It read as 

follows (emphasis added here): 

“I admit I have no experience with software projects, but I guess this 

will take about 2 months to finish. I may be wrong of course, we’ll 

wait for your calculations for a better estimate.” 

 

Finally, a third, “20-months” condition, had a high anchor in the manager’s statement. The 

statement was (emphasis added): 

“I admit I have no experience with software projects, but I guess this 

will take about 20 months to finish. I may be wrong of course, we’ll 

wait for your calculations for a better estimate.” 

 

All other data were identical among conditions. 

 

There are several issues worth noting at this point: 

• The difference among anchors is an order of magnitude. This difference is quite large, but 

sensible. According to [BCH+95], reasonable estimates on the very first stages of project 

development may differ with a proportion of as much as 16:1. 

• The anchor given to participants is semantically linked to the answer participants are asked 

to provide. This is relevant since, as Mussweiler and Strack note [MS01], semantic anchors 
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are more effective than simple numeric anchors. Furthermore, a numeric anchor without a 

semantic link to the estimate was not feasible in this experiment since there are several 

numbers in the documentation (performance goals and years of experience, for example) 

that could be taken as numeric anchors as well. 

• The quoted individual is not pushing his guess as a starting point for negotiation. He 

acknowledges his own lack of experience in estimation and labels his number as a guess. 

• Participants did not hear the individual saying this sentence, they read about it. For this 

reason, they may be less likely to attempt to please him by giving a number close to the 

anchor. Attempting to please is also a judgmental bias, but of a social, not cognitive, nature. 

The research questions of this study are cognitively oriented, and therefore it is important to 

limit the influence of social biases in its design. 

 

5.2 – Variables 

 

A formal breakdown of the variables recorded for this experiment should be described. All of 

the following variables were monitored: 

 

5.2.1 – Independent variables 

 

Only one independent variable was used: the anchoring statement discussed in the previous 

section. As was mentioned, it could take three values, named “2 months”, “20 months” and 

“control” conditions. 

 

5.2.2 – Controlled variables 
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In addition to the independent variable, while assigning participants to each condition an initial 

assessment of their experience was obtained, in order to reach a balance of experienced participants 

in all conditions. Estimating experience could take three values in this study: (a) Experience in 

estimation of medium to large software projects; (b) experience in estimation of small software 

projects; and (c) only academic experience (through coursework or self learning). As has been 

previously discussed, estimator experience was determined by each participant, and their definitions 

of project size, involvement in estimation and amount of time dedicated to self learning, for 

example, were not explored. 

 

5.2.3 – Dependent variables 

 

Three dependent variables were considered of high importance for this study. They were: 

• Estimate: This is the actual estimate as given by participants. It can only take the form of a 

positive integer representing the number of months that the estimator considers as the most 

likely possible duration for the project. Participants were asked to round their estimates to 

the nearest integer; no other types of numbers were received. 

• Confidence Range: Expressed as a percentage that can be added or subtracted from an 

estimate to reach an acceptable confidence range. For example, a 10 months estimate with 

30% confidence range would consider all points between 7 and 13 months as a probable 

duration for the software project. 

• Estimation Method: Participants were not asked to name the estimation method they used. 

However, they were asked to provide a justification for their estimate. These justifications 

were analyzed to classify the estimation technique in one of two general subgroups: Model-

based and expert-based. Further classifications within each subgroup were LOC-based or 

FP-based (for model techniques) and WBS (work breakdown structure) or intractable 
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process (for expert techniques). If a participant used more than one technique, an 

assessment of what was the main technique used was required –each participant was 

considered to have used only one primary technique, even though the use of secondary 

techniques changed the original estimate. 

 

The questionnaire that participants answered included other questions that required additional 

monitoring. These answers are represented by the following variables: 

• Subjective reliability of estimate (in a number from 1 to 7) 

• Quality of the information in the documentation (in a number from 1 to 7) 

• General strategy for estimating software projects (unrestricted text) 

 

5.3 – Hypotheses 

 

Hypotheses for the study were formalized. The following are the general null hypotheses for the 

experiment: 

• H0, LOW-HIGH: Estimates of participants given a low (“2-months”) anchor are not statistically 

different from estimates of participants given a high (“20-months”) anchor. 

• H0, LOW-CONTROL: Estimates of participants given a low (“2-months”) anchor are not 

statistically different from estimates of participants given no anchor at all. 

• H0, HIGH-CONTROL: Estimates of participants given a high (“20-months”) anchor are not 

statistically different from estimates of participants given no anchor at all. 

 

Each null hypothesis has an alternate hypothesis rejecting it. 

A similar set of hypotheses was generated for analyzing the results from experienced 

participants (considering as “experience” the self-assessed involvement in estimation processes of 
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software projects of any size). The following are the null hypotheses for such participants; alternate 

hypotheses rejecting them were also generated but are not included here: 

• H0, LOW-HIGH, Experienced: Estimates of experienced participants given a low (“2-months”) 

anchor are not statistically different from estimates of experienced participants given a high 

(“20-months”) anchor. 

• H0, LOW-CONTROL, Experienced: Estimates of experienced participants given a low (“2-months”) 

anchor are not statistically different from estimates of experienced participants given no 

anchor at all. 

• H0, HIGH-CONTROL, Experienced: Estimates of experienced participants given a high (“20-months”) 

anchor are not statistically different from estimates of experienced participants given no 

anchor at all. 

 

Two more sets of hypotheses were generated for the subgroups of estimators that used primarily 

a model-based technique and those who used primarily an expert-based technique. These 

hypotheses are similar in structure to the previous. For the model-based techniques users the null 

hypotheses are: 

• H0, LOW-HIGH, Model-Based: Estimates of participants who used primarily a model-based 

estimation technique and were given a low (“2-months”) anchor are not statistically 

different from estimates of participants who also used a model-based estimation technique 

and were given a high (“20-months”) anchor. 

• H0, LOW-CONTROL, Model-Based: Estimates of participants who used primarily a model-based 

estimation technique and were given a low (“2-months”) anchor are not statistically 

different from estimates of participants who also used a model-based estimation technique 

and were given no anchor at all. 

• H0, HIGH-CONTROL, Model-Based: Estimates of participants who used primarily a model-based 

estimation technique and were given a high (“20-months”) anchor are not statistically 
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different from estimates of participants who also used a model-based estimation technique 

given no anchor at all. 

 

And for the expert-based techniques users, these are the relevant null hypotheses: 

• H0, LOW-HIGH, Expert-Based: Estimates of participants who used primarily an expert-based 

estimation technique and were given a low (“2-months”) anchor are not statistically 

different from estimates of participants who also used an expert-based estimation technique 

and were given a high (“20-months”) anchor. 

• H0, LOW-CONTROL, Expert-Based: Estimates of participants who used primarily an expert-based 

estimation technique and were given a low (“2-months”) anchor are not statistically 

different from estimates of participants who also used an expert-based estimation technique 

and were given no anchor at all. 

• H0, HIGH-CONTROL, Expert-Based: Estimates of participants who used primarily an expert-based 

estimation technique and were given a high (“20-months”) anchor are not statistically 

different from estimates of participants who also used an expert-based estimation technique 

and were given no anchor at all. 

 

To address the fourth research question, dealing with the confidence of estimators in their own 

answers, an additional set of null hypotheses was generated: 

• H0, MaxLow-MinHigh: The maximum estimates of participants given a low (“2-months”) anchor 

are not statistically different from the minimum estimates of participants given a high (“20-

months”) anchor. 

• H0, MaxLow-CONTROL: The maximum estimates of participants given a low (“2-months”) anchor 

are not statistically different from the base estimates of participants given no anchor at all. 
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• H0, MinHigh-CONTROL: The minimum estimates of participants given a high (“20-months”) 

anchor are not statistically different from the base estimates of participants given no anchor 

at all. 

 

For all these sets of null hypotheses, alternative positive hypotheses rejecting the originals were 

also generated. 

 

5.4 – Threats to Validity 

 

It is important to explore the threats to the validity of this experiment. The following discussion 

on threats is based on the list proposed by Wohlin et al. [WRH+00]. 

 

5.4.1 – Conclusion validity 

 

The group of participants that performed the software estimation exercise was relatively 

heterogeneous, consisting of Computer Science graduate students and software industry 

professionals. A wide diversity in background and experience among participants would make it 

difficult for conclusions of this study to be applicable to the specific group of software estimators. 

Another aspect of this threat is the fact that some participants had only learned about software 

estimation through coursework and self-learning, and had never been required to produce an 

estimate in a real-world software project. 

However, it should be considered that all of the participants had at least the basic qualifications 

to be required to perform real software estimation; that is, they all were potential software 

estimators with enough authority, either because of background, academic formation or a 
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combination of both, to produce estimates in real software development projects. For this reason 

they can be regarded as part of the same group, and the influence of this threat is reduced. 

 

5.4.2 – Internal validity 

 

Participants to this study were volunteers who responded to an invitation. According to 

[WRH+00], volunteers are specially motivated, and are therefore not representative of the whole 

population. This was a necessary evil, since the alternative of hiring a significant number of 

professional software estimators and paying them their usual fees for their services was not 

economically feasible for this study. 

 

5.4.3 – Construct validity 

 

A flaw of this experiment is that it uses only one set of project documents, that is, it may be 

suffering from a mono-operation bias. It would have been interesting to perform it with several (at 

least two) different software projects and see if the relations between anchors and control groups are 

replicated among them. Economical limits and a difficulty to find willing participants prevented the 

study from going in that direction. 

Another threat for construct validity was the set of expectations that the experimenter had on 

the outcome of the study. Planning and designing the study was done by a single person, and an 

unconscious bias in favour of those expectations may have taken place. Although steps were taken 

to avoid this possibility, the only way to truly neutralize it would have been the involvement of 

additional experimenters without expectations in the outcome of the study, which was not feasible 

in the environment it took place. 
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5.4.4 – External validity 

 

An external validity threat for this experiment consists of an interaction of selection and 

treatment [REF: Wohlin in RE2]; that is, the subject population may not be representative of the 

population to which the results should be generalized. Not all participants had been asked to 

perform an estimation task before –therefore, generalizing the results to include software estimators 

is questionable. However, the threat is reduced when we consider that every participant has the 

potential and basic qualifications, either because of industry background or academic formation, to 

be a competent software estimator.  

Another threat to external validity lies in the fact that real software estimation carries 

consequences that may be felt for a long time by the people involved, potentially altering their 

career paths. Participants in this study knew they would not be held accountable for their answers, 

and this difference between the experiment and real estimation experiences may affect the results. 

This is a consequence of performing a controlled experiment. The alternative would be to observe 

real software estimations within their natural environments, but meaningful statistical observations 

could hardly be drawn from such efforts. 
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Chapter 6 

 

Experiment Execution 

 

 

The experiment described in the previous chapter was executed during the second half of the 

year 2004. Many participants were recruited through e-mail invitations sent to graduate student 

mailing lists. Personal and indirect contacts helped to recruit the rest of the participants. 

After candidate participants expressed interest in the experiment, they were visited at the time 

and place of their choice. There they were given their set of experiment documents and instructions. 

Basic descriptions of each document and a summary of the instructions were also stated orally. 

Participants were allowed to work on the exercise as long as they wanted. They could use 

software tools and reference books if they wished. They were asked to contact the experimenter 

back when they had finished the exercise. Most of them reported having finished before three days 

had elapsed since they were visited. An informal average of the time needed to finish the exercise is 

of about one hour and a half, with some participants taking close to three hours and some finishing 

in a little less than an hour. 

Participants were not told the purpose of the study. They were told they were participating in a 

“software estimation experiment” without going into further detail. All participants signed a consent 

form and were guaranteed anonymity. 

There were 23 participants in this study (plus one participant whose answers had to be 

discarded because they were incomplete and the participant did not intend to collaborate further). 

The majority of them (78%) were graduate students in Computer Science, the remaining 22% were 
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professionals from the software industry. 57% of participants declared they had been involved in 

real software estimation activities before (22% were involved in medium to large software projects, 

35% only in small projects). 43% had only academic experience in the area. 

An even distribution among all conditions was intended. The final number of respondents, 

however, was variable among conditions due to participation cancellations. The “2-months” 

condition received 9 responses. The control condition, 6 responses; and the “20-months” condition, 

8 responses. 

Each participant’s answers were separated from their names and recorded. The estimates among 

groups of participants were analyzed using independent t-tests for each hypothesis. 
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Chapter 7 

 

Data Analysis and Interpretation of Results 

 

 

This chapter presents all results obtained from the study on software estimation. Some general 

results will be shown first, to be followed by a deeper discussion and interpretation of the most 

meaningful results. 

 

7.1 – General Results 

 

Responses obtained by this experiment presented a very wide range of estimates. The shortest 

estimate to deliver the software project was of 3 months; the longest, 28 months. This gives a 

proportion of 9.33:1 from longest to shortest. The average estimate was 10.9 months. 

When we consider the confidence limits given by estimators, the range of estimates widens 

significantly. The minimum length for the project considered by any single estimator was 2 months; 

the maximum, 44.8 months. This gives a proportion of 22.4:1 from the longest to the shortest, 

which is almost perplexing. 

Participants allowed themselves an average confidence range of +/-26% on their base estimate. 

The narrowest confidence range was of 10%; the widest, 60%. Incidentally, according to [Boe81], 

and considering the variety in estimates received, the latter is more sensible than the former, at least 

on the initial stages of a software development lifecycle. 
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As mentioned in Chapter 5, estimation techniques were classified in two groups: Model-based 

estimation and expert-based estimation. Model-based was further subdivided into LOC-based 

estimates and FP-based estimates; expert-based was subdivided into WBS (work breakdown 

structure) analyses and freeform processes. 

Using this classification scheme, the choices of estimating techniques in this study were as 

follows: 31% of estimators chose a primarily model-based approach; 69% an expert-based 

approach. Of the whole pool of participants, 22% used a LOC-based technique, 9% a FP-based 

technique, 39% a WBS analysis and 30% a freeform process. 

These results fall in line with previous surveys on use of estimation techniques, although the 

use of model-based techniques was slightly higher than expected. Other types, such as learning-

based techniques, were not feasible to use in this experiment’s setting. 

 

7.2 – General Anchoring and Adjustment Results 

 

Perhaps the best way to illustrate the general results from the experiment is through a graph. 

Figure 7.1 shows the results of the exercise. 

The chart is divided in three areas. The lower area corresponds to participants in the “2-months” 

anchor. The middle area shows the responses in the control condition. Finally, the upper area 

corresponds to the “20-months” condition. For each condition the mean value is illustrated with a 

vertical bar. For the “2-months” and “20-months” conditions, the corresponding 2-months and 20-

months lines are also shown. Each estimate shape shows the base estimate as a small diamond and 

the confidence range to the left and right of the base. 
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Figure 7.1 – All estimators data 

 

Although the patterns on each condition are visibly significant, the following numbers help to 

give numerical clarity to the chart. The “2-months” condition participants had a mean estimate of 

6.8 months. Their median estimate is 6 months, and their standard deviation 3.7. 

The control condition has a slightly higher mean estimate, at 8.3 months; a median of 7 months 

and a standard deviation of 4.4. 

The “20-months” condition’s mean estimate is 17.4 months; its median is 16 months and the 

standard deviation 5.6. 
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Within each group there is a high variation of results as well. The “2-months” condition’s 

greatest estimate is 4.33 times greater than its lowest. The corresponding proportion is 3.75 for the 

control condition and 2.80 for the “20-months” condition. 

We should now consider how these data reflect the hypotheses established for the experiment. 

There are three hypotheses significant at this point; those that refer to the basic effects of anchoring 

and adjustment in software estimation: H0, LOW-HIGH, H0, LOW-CONTROL and H0, HIGH-CONTROL. 

The first null hypothesis, H0, LOW-HIGH, states that there is no statistical difference between the 

“2-months” and the “20-months” conditions. The t-test for this hypothesis gives t = 4.273, and the 

null hypothesis is rejected (p < 0.001). 

The second null hypothesis, H0, LOW-CONTROL, says that there is no statistical difference between 

the “2-months” and the control conditions. The t-test gives t = 0.661, the null hypothesis cannot be 

rejected (p > 0.1). 

The third null hypothesis, H0, HIGH-CONTROL, states that there is no statistical difference between 

the “20-months” and the control conditions. The t-test gives t = 3.137, and the null hypothesis is 

rejected (p < 0.01). 

That is, the “2-months” and the control conditions were found to be statistically different than 

the “20-months” condition. However, a significant difference between the “2-months” and the 

control conditions was not found. 

Therefore, the anchoring and adjustment heuristic was found to take place in software 

estimation processes, at least when the effects of providing a low anchor are compared with the 

effects of providing a high anchor (p < 0.001) and when the effects of providing no anchor are 

compared with the effects of providing a high anchor (p < 0.01). The effects of anchoring and 

adjustment between a low anchor and no anchor at all are suggested by the results, but were not 

found to be statistically significant. A discussion in the next chapter suggest several reasons why 

this may be so. 
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7.3 – Experienced Participants Results 

 

We will now filter the results of the experiment to include only those participants who declared 

to have real-life experience estimating software projects; which is 57% of the total pool of 

participants. Figure 7.2 displays the results for this subset of participants. 

As can be seen in the chart, the pattern remains unchanged after removing inexperienced 

estimators, although the results are slightly weaker due to the reduced number of participants. 

 

Figure 7.2 – Experienced estimators data 

 

Within this subgroup of experienced estimators, the “2-months” condition mean estimate is 7.8 

months, the median 6 months and the standard deviation 3.2. The corresponding numbers for the 

control condition are a mean of 9.0 months, median of 9 months and standard deviation 3.3. Finally, 

for the “20-months” condition, the mean is 17.8 months, the median 16 months and the standard 

deviation 5.5. 
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Considering the three relevant null hypotheses for experienced estimators we have the 

following results: 

The first null hypothesis, H0, LOW-HIGH, Experienced, gives a t-test of t = 3.150, and the null hypothesis 

is rejected (p < 0.02). 

The second null hypothesis, H0, LOW-CONTROL, Experienced, has t = 0.425, the null hypothesis cannot be 

rejected (p > 0.1). 

The third null hypothesis, H0, HIGH-CONTROL, Experienced, gives t = 2.462, and the null hypothesis is 

rejected (p < 0.05). 

What these results state is that all effects experienced by the generality of participants were also 

suffered by experienced estimators in particular. 

 

7.4 – Expert-based Techniques Results 

 

To address the hypotheses generated for expert-based techniques users, we filtered the data to 

include only those participants that used such techniques primarily. Their results are shown in 

Figure 7.3. 

Although the general pattern maintains in this subgroup of participants, there are two 

differences between them and the previous two groups. The first is that the averages are lower 

within this subgroup than in the complete pool of participants. The second, the standard deviations 

are also lower, that is, each estimate is closer to the mean than in the two previous groups. 
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Figure 7.3 – Expert-based estimators data 

 

The particular numbers are as follows. For the “2-months” condition, the mean is 5.1 months, 

the median 4 months and the standard deviation 2.3. For the control condition, the mean is 7.8 

months, the median 7 months and the standard deviation 3.6. For the “20-months” condition, the 

mean is 15.4 months, the median 16 months and the standard deviation 2.0. 

Applying independent t-tests for each of the three relevant null hypotheses for expert-based 

estimations results in the following: 

The first null hypothesis, H0, LOW-HIGH, Expert-Based, gives a t-test of t = 7.567, and the null 

hypothesis is rejected (p < 0.001). 

The second null hypothesis, H0, LOW-CONTROL, Expert-Based, has t = 1.154, the null hypothesis cannot 

be rejected (p > 0.1). 

The third null hypothesis, H0, HIGH-CONTROL, Expert-Based, gives t = 3.358, and the null hypothesis is 

rejected (p < 0.02). 
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Again, these results show that the effects of anchoring and adjustment are felt by estimators 

who choose an expert-based approach. In fact, these results were among the most powerful of the 

whole experiment. However, an effect comparing low anchor estimates and no anchor estimates 

was not found in this subset either. 

 

7.5 – Model-based Techniques Results 

 

The complement of the previous subgroup is that of estimators who used primarily a model-

based technique to reach their results. Figure 7.4 shows their data. 

There are not enough data points to reach conclusions for model-based estimators. Only 7 

estimators chose to use models to solve the exercise, and the sample was not statistically significant 

to reach clear results. 

 

Figure 7.4 – Model-based estimators data 

 

An analysis of Figure 7.4 shows that the same patterns visible on previous subgroups start to 

appear here. The “2-months” results are noticeably lower than the “20-months” results, and the 

control condition results are also lower than the “20-months” condition’s. An anomaly here is that 
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the control condition results are lower than the “2-months” condition estimates, which may be due 

to the low number of model-based estimates received. 

The numbers for this subgroup are as follows. The “2-months” condition has a mean of 12.5 

months, median of 12.5 months and standard deviation of 0.5. The control condition’s mean and 

median is 9.5 months, and its standard deviation is 5.5. The “20-months” condition has a mean of 

20.7 months, a median of 24 months and a standard deviation of 7.7. 

The three null hypotheses concerning model-based estimators could not be rejected with 

independent t-tests (p > 0.1 in all cases). It is impossible to predict if this was due to the low number 

of participants choosing model-based techniques or due to a weaker influence of anchoring and 

adjustment effects on this subgroup. Although existing data seems to indicate the former, it is not 

conclusive enough. 

 

7.6 – Maximum-Minimum Results 

 

There is one more set of hypotheses that need to be addressed, concerning the confidence that 

estimators have in their own answers. If we consider the total pool of participants (see Figure 7.1), 

but we focus our analysis on the maximum estimate considered by estimators in the “2-months” 

condition and on the minimum estimate considered by estimators in the “20-months” condition, do 

the differences in estimates still maintain a statistical significance? That is, are low anchor 

estimates’ worst-case scenarios significantly lower than high anchor estimates’ best-case scenarios? 

The new numbers are as follows: The maximum estimates on the “2-months” condition have a 

mean of 8.7 months, median of 7 months and standard deviation of 4.8. The minimum estimates on 

the “20-months” condition have a mean of 12.8 months, a median of 13 months and a standard 

deviation of 2.2. 
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Applying independent t-tests with these data points for each of the three relevant null 

hypotheses gives the following results: 

The first null hypothesis, H0, MaxLow-MinHigh, gives a t-test of t = 2.182, and the null hypothesis is 

rejected (p < 0.05). 

The second null hypothesis, H0, MaxLow-CONTROL, has t = 0.129, the null hypothesis cannot be 

rejected (p > 0.1). 

The third null hypothesis, H0, MinHigh-CONTROL, gives a t-test of t = 2.079, and the null hypothesis is 

rejected (p < 0.1). 

Therefore, these results show that the effect of anchoring and adjustment heuristics in software 

estimation can be so high that giving estimators the opportunity of including a confidence range in 

their estimates does not compensate for the bias suffered by this heuristic. 

 

7.7 – Estimate Ranges Results 

 

Although all hypotheses for this experiment have been explored, additional insights are found if 

the data from each condition are concentrated to show the general agreement that estimators may 

have between each other. Figure 7.5 displays this information. 

For each condition, the chart shows the percentage of estimators that considered each month as 

a possible outcome of the project they estimated. An initial observation is that agreement among 

estimators is rather low. In the “2-months” condition, agreement only reaches 56%, at the 4 months 

line.  For the control condition the maximum agreement is 50%, at the 4, 5 and 11 months lines. 

Finally, the maximum agreement for the “20-months” condition is 63%, at the 16 and 17 months 

lines. 
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Figure 7.5 – Estimate ranges results, concentrated by condition 

 

However, we should remember that participants in all conditions actually estimated the exact 

same project, and it would be interesting to merge the three charts and see the general agreement 

among estimators. Figure 7.6 shows that information. 

Once that all estimators are considered, the maximum agreement is quite low (39%), and 

appears at two time points (at the 11 and 16 month lines). These results indicate that, were this 

project truly developed, at least 61% of the estimators would have been wrong in their predictions, 

a figure much lower than desired –but perhaps not perplexing considering how often estimates miss 

their targets in real software projects. 
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Figure 7.6 – Estimate ranges results, concentrated 
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Chapter 8 

 

Discussion and Conclusions 

 

 

This study demonstrated that anchoring and adjustment heuristics do take place in software 

estimation processes. When estimators are given a high anchor they are expected to produce an 

estimate significantly different than when they are given a low anchor or no anchor at all.  The 

effect is maintained across experienced estimators and users of expert-based estimation techniques. 

Not enough data were collected to determine if the same effect occurs between low anchors and no 

anchors at all. 

If we examine the nature of the observed anchoring and adjustment effect in this study, it is 

unlikely that estimates were biased toward anchors due to social reasons: participants did not need 

to comply with the anchor for either personal advancement or politics; the biasing comment was 

read instead of heard, and was labelled as a guess that should have no impact on professional 

estimators considerations. It seems therefore likely that the effect is indeed of a cognitive nature: 

Facing a complex problem, we tend to grasp a tentative solution and adjust it based on the facts we 

see. 

The effects of anchoring are too strong to be ignored. On average, estimates on the high anchor 

condition were more than twice as long as those in the low anchor condition. The effects were so 

large than even the worst-case scenario produced by estimators in the low anchor condition is 

significantly more optimistic than the best-case scenario from the high anchor condition, which 
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implies that estimators do not compensate the effect of anchoring and adjustment when given the 

opportunity to widen their estimates with confidence ranges. 

Even though these effects were found to be statistically significant in all but the model-based 

techniques data points, the strongest effects were observed for expert-based techniques users. 

The fact that no statistical difference was found between estimates in the low anchor condition 

and the control condition lead to several possible explanations for this phenomenon. There are at 

least three possible explanations: 

• Estimators may be optimistic by nature, or they may intend to please by default. Therefore, 

in the control condition, participants may have felt the need to give optimistic, low 

estimates, substituting external anchoring effects with internal bravery. 

• The value for the low anchor, 2 months, may have been chosen incorrectly. If the low 

anchor is too high, estimates in the control condition may be indistinguishable from those in 

the low anchor condition. 

• An increased number of participants may be needed for the two data sets to separate more 

noticeably from each other. 

 

This study was limited in the sense that its number of participants was relatively small, that it 

was concerned with only one software project, and that some estimators had only academic 

experience in software estimation. Its findings are therefore limited as well. However, its positive 

results produce further research questions that could be addressed with more experiments. Some of 

these future directions are: 

• Anchors with other estimation units: Estimators were asked to provide their results in 

months. The possibility that this choice of units may have biased the estimates exists. Some 

estimators may think that “two months” sounds like a small quantity, but “nine weeks”, an 

approximate equivalent, seems longer. Therefore, it would be interesting to run this 
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experiment again, but asking for the estimate in weeks and changing the conditions to “2 

weeks” and “20 weeks”, instead of months. 

• Estimates at different stages of the project lifecycle: The requirements that participants 

used to reach their estimates were not detailed, and would correspond to documents 

produced at early stages of a project. We could address the question of whether anchoring 

and adjustment biases occur as strongly with a completely detailed specification and greater 

awareness of the environment in which the system would be developed. 

• Estimates as a factor in the final effort of software projects: It has been noted that an 

estimate may influence the real effort of a project; shorter estimates causing shorter projects 

than those of longer estimates, due to resource constraints and a reduction of expectations 

[AM86]. A possible –but elaborate- experiment would attempt to measure the influence that 

an anchoring comment to an estimator early in a software project would have in the final 

product, in its number of functions and its quality. 

 

The effects of anchoring and adjustment were observed to happen in this experiment and it is 

important to explore ideas to avoid or minimize their impact in software estimation tasks. The 

following suggestions may serve to reduce the problems caused by anchoring biases: 

• Shield estimators from anchors: If possible, estimators should be protected from any 

anchor before they produce their estimates. However, this is not always feasible. Estimators 

tend to work in close contact to analysts, developers and clients, in environments where 

anchors are frequently formulated without regard for their impact. 

• Let estimators know that anchors may bias their own results: Since anchoring and 

adjustment effects exist, it may be reasonable to warn estimators of their influence and hope 

they will consciously compensate for their effects. Although this suggestion seems sensible, 

previous studies have indicated that anchoring effects take place even when participants are 

warned from them [WHB93], so the suggestion may not be very helpful. 
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• Give estimates with wide minimum-maximum ranges: There seems to be too much 

optimism in early estimates. Reasonable studies [Boe81] indicate that confidence ranges of 

about 50% or 60% are adequate at early project stages, and estimators should resist the 

temptation to narrow their estimates. A problem with this suggestion is that managers have 

been observed to have a better opinion of estimators that give narrow but wrong estimates 

than of those that give wide but correct estimates, since they seem to be more experienced 

and knowledgeable. 

• Choose a development lifecycle where estimates are less relevant or incorrect 

estimates are a risk that is acknowledged: Projects that follow a waterfall lifecycle are 

more vulnerable to incorrect estimates than projects that follow an iterative approach or a 

spiral model lifecycle. In general, to avoid the problems that incorrect estimations bring, of 

which anchoring and adjustment is only a part, less risky lifecycles should be chosen. 

 

It is perhaps ironic that the software estimation exercise presented in this thesis does not have a 

“right” answer. Even if the project was developed, project goals may be partially set by their 

estimates, and a low estimate may produce a smaller product (or one with less quality) than a high 

estimate, as was mentioned above. If this is the case, the power of a seemingly innocuous anchor 

can shape a project as forcefully as its specifications. 

Anchoring and adjustment biases may not be the biggest problems of software estimation. 

Considering that estimation is frequently done irrationally, that estimating processes tend to seem 

like bargaining matches, and that accuracy expectations of initial estimates are unreasonable, there 

are far too many more factors involved in flawed estimations that a misleading anchor. But the need 

to consider the effect of anchoring on estimates is nonetheless important if we intend to treat 

software estimation as anything more than guesswork. 

    



 64 

 
References 
 

[Alb79] Albrecht, A., “Measuring application development productivity”, Proceedings of the 

Joint SHARE/GUIDE/IBM Application Development Symposium, pp. 83-92, 1979. 

 

[AM86] Abdel-Hamid, T., and S. Madnick, “Impact of schedule estimation on software project 

behavior”, IEEE Software, 3:4, pp. 70-75, 1986. 

 

[Arm02] Armour, P., “Ten unmyths of project estimation”, Communications of the ACM, 

45:11, 2002. 

 

[AWA02] Aronson, E., T.D. Wilson and R.M. Akert, Social Psychology, Prentice Hall, 4th 

Edition, 2002. 

 

[BAC00] Boehm, B., C. Abts and S. Chulani, “Software development cost estimation 

approaches – A survey”, Annals of Software Engineering, 10, pp. 177-205, 2000. 

 

[Bai89] Baird, B., Managerial Decisions Under Uncertainty, Wiley, 1989. 

 

[BCH+95] Boehm, B., B. Clark, E. Horowitz, C. Westland, R. Madachy and R. Selby, “Cost 

models for future software life cycle processes: COCOMO 2.0”, Annals of Software 

Engineering, Special Volume on Software Process and Product Measurement, 1995. 

 



REFERENCES  65 

   

[BDR+03] Benediktsson, O., D. Dalcher, K. Reed and M. Woodman, “COCOMO-based effort 

estimation for iterative and incremental software development”, Software Quality 

Journal, 11, pp. 265-281, 2003. 

 

[BH90] Blattberg, R.C., and S.J. Hoch, “Database models and managerial intuition: 50% 

model + 50% manager”, Management Science, 36, pp. 887-899, 1990. 

 

[Boe81] Boehm, B., Software engineering economics, Prentice Hall, 1981. 

 

[Bro95] Brooks, F., The mythical man-month, Addison-Wesley, 1995. 

 

[BS93] Brown, N.R. and R.S. Siegler, “The role of availability in the estimation of national 

populations”, Memory and Cognition, 20, pp. 406-412, 1993. 

 

[CB96] Chapman, G.B., and B.H. Bornstein, “The more you ask for, the more you get: 

Anchoring in personal injury verdicts”, Applied Cognitive Psychology, 10:6, pp. 519-

540, 1996. 

 

[DeM82] DeMarco, T., Controlling software projects, Prentice Hall, 1982. 

 

[DL99] DeMarco, T. and T. Lister, Peopleware, Dorset House, 2nd Ed., 1999. 

 

[Dol01] Dolado, J.J., “On the problem of the software cost function”, Information and 

Software Technology, 43, pp. 61-72, 2001. 

 



REFERENCES  66 

   

[Fis82] Fischhoff, B., “For those condemned to study the past: Heuristics and biases in 

hindsight”, In Judgment under uncertainty: Heuristics and biases; Kahneman, D., P. 

Slovic and A. Tversky (Eds.), Cambridge University Press, 1982. 

 

[FWD97] Finnie, G.R., G.E. Wittig and J-M. Desharnais, “A comparison of software effort 

estimation techniques: Using function points with neural networks, case-based 

reasoning and regression models”, The Journal of Systems and Software, 39, pp. 281-

289, 1997. 

 

[GJM04] Grimstad, S., M. Jørgensen and K. Mølokken-Østvold “Software effort estimation 

terminology: The tower of Babel”, Submitted to Information and Software 

Technology, 2004. 

 

[GM96] Gray, A. and S. MacDonell, “A comparison of techniques for developing predictive 

models of software metrics”, Information and Software Technology, 39, 1996. 

 

[Hel66] Helmer, O., Social Technology, Basic Books, 1966. 

 

[HH91] Hihn, J., and H. Habib-agahi, “Cost estimation of software intensive projects: A 

survey of current practices”, International Conference on Software Engineering, pp. 

276-287, 1991. 

 

[HK91] Heemstra, F.J., and R.J. Kusters, “Function point analysis: Evaluation of a software 

cost estimation model”, European Journal of Information Systems, 1:4, pp. 223-237, 

1991. 

 



REFERENCES  67 

   

[Hog80] Hogarth, R., Judgement and Choice, John Wiley and Sons, 1980. 

 

[HTA00] Hill, J., L.C. Thomas and D.E. Allen, “Experts’ estimates of task durations in software 

development projects”, International Journal of Project Management, 18:1, pp. 13-21, 

2000. 

 

[Hug96] Hughes, R.T., “Expert judgement as an estimating method”, Information and Software 

Technology, 38, pp. 67-75, 1996. 

 

[Hum89] Humphrey, W., Managing the software process, Addison-Wesley, 1989. 

 

[IEEE98] IEEE, IEEE Recommended Practice for Software Requirements Specifications (IEEE 

Std 830-1998), 1998. 

 

[Jon96] Jones, C., Applied software measurement, McGraw Hill, 1996. 

 

[Jør04] Jørgensen, M., “A review of studies on expert estimation of software development 

effort”, The Journal of Systems and Software, 70, pp. 37-60, 2004. 

 

[Jør03] Jørgensen, M., “How much does a vacation cost? or What is a software cost 

estimate?”, ACM Software Engineering Notes, 28:6, 2003. 

 

[Jør97] Jørgensen, M., “An empirical evaluation of the MkII FPA estimation model”, 

Norwegian Informatics Conference, pp. 7-18, 1997. 

 



REFERENCES  68 

   

[JRW00] Jeffery, R., M. Rune and I. Wieczorek, “A comparative study of two software 

development cost modeling techniques using multi-organizational and company-

specific data”, Information and Software Technology, 42, pp. 1009-1016, 2000. 

 

[JS04] Jørgensen, M., and D. Sjøberg “Expert estimation of software development work”, In 

Software Evolution and Feedback, Wiley, 2004. 

 

[JS04b] Jørgensen, M., and D. Sjøberg “The impact of customer expectation on software 

development effort estimates”, International Journal of Project Management, 22, pp. 

317-325, 2004. 

 

[JS01] Jørgensen, M., and D. Sjøberg “Impact of effort estimates on software project work”, 

Information and Software Technology, 43, pp. 939-948, 2001. 

 

[JTM04] Jørgensen, M., K.J. Teigen and K. Mølokken-Østvold “Better sure than safe? Over-

confidence in judgement based software development effort prediction intervals”, The 

Journal of Systems and Software, 70, pp. 79-93, 2004. 

 

[Kem87] Kemerer, C.F., “An empirical validation of software cost estimation models”, 

Communications of the ACM, 30:5, 1987. 

 

[KPM+02] Kitchenham B., S.L. Pfleeger, B. McColl and S. Eagan, “A case study of maintenance 

estimation accuracy”, Journal of Systems and Software, 64:1, pp. 57-77, 2002. 

 

[KST82] Kahneman, D., P. Slovic and A. Tversky (Eds.), Judgment under uncertainty: 

Heuristics and biases, Cambridge University Press, 1982. 



REFERENCES  69 

   

 

[KT82] Kahneman, D., and A. Tversky, “On the psychology of prediction”, In Judgment 

under uncertainty: Heuristics and biases; Kahneman, D., P. Slovic and A. Tversky 

(Eds.), Cambridge University Press, 1982. 

 

[Mad94] Madachy, R., “A software project dynamics model for process cost, schedule and risk 

assessment”, Ph.D. Thesis, University of Southern California, 1994. 

 

[MJ04] Mølokken-Østvold, K., and M. Jørgensen, “Group processes in software effort 

estimation”, Empirical Software Engineering, 9, pp. 315-334, 2004. 

 

[MS01] Mussweiler, T., and F. Strack, “The semantics of anchoring”, Organizational 

Behavior and Human Decision Processes, 86:2, pp. 234-255, 2001. 

 

[NN87] Northcraft, G.B., and M.A. Neale, “Experts, amateurs and real estate: An anchoring 

and adjustment perspective on property pricing”, Organizational Behavior and 

Human Decision Processes, 39:1, 1987. 

 

[Osk82] Oskamp, S., “Overconfidence in case-study judgments”, In Judgment under 

uncertainty: Heuristics and biases; Kahneman, D., P. Slovic and A. Tversky (Eds.), 

Cambridge University Press, 1982. 

 

[Pay96] Paynter, J., “Project estimation using screenflow engineering”, International 

Conference on Software Engineering: Education and Practice, 1996. 

 



REFERENCES  70 

   

[Pen95] Pengelly, A., “Performance of effort estimating techniques in current development 

environments”, Software Engineering Journal, 10:5, pp. 162-170, 1995. 

 

[PM92] Putnam, L. and W. Myers, Measures for Excellence, Yourdon Press Computing 

Series, 1992. 

 

[RA82] Ross, L., and C.A. Anderson, “Shortcomings in the attribution process: On the origins 

and maintenance of erroneous social assessments”, In Judgment under uncertainty: 

Heuristics and biases; Kahneman, D., P. Slovic and A. Tversky (Eds.), Cambridge 

University Press, 1982. 

 

[Rub83] Rubin, H., “ESTIMACS”, IEEE Software, 1983. 

 

[SB95] Subramanian, G.H. and S. Breslawski, “An empirical analysis of software effort 

estimate alterations”, Journal of Systems and Software, 31, pp. 135-141, 1995. 

 

[SFL82] Slovic, P., B. Fischhoff and S. Lichtenstein, “Facts versus fears: Understanding 

perceived fears”, In Judgment under uncertainty: Heuristics and biases; Kahneman, 

D., P. Slovic and A. Tversky (Eds.), Cambridge University Press, 1982. 

 

[Sin82] Singer, M., “The vitality of mythical numbers”, In Judgment under uncertainty: 

Heuristics and biases; Kahneman, D., P. Slovic and A. Tversky (Eds.), Cambridge 

University Press, 1982. 

 

[SS97] Shepperd, M. and M. Schofield, “Estimating software project effort using analogies”, 

IEEE Transactions on Software Engineering, 23:12, 1997. 



REFERENCES  71 

   

 

[Sta94] Standish Group, The, Charting the seas of information technology, The Standish 

Group, 1994. 

 

[TK82] Tversky, A., and D. Kahneman, “Availability: A heuristic for judging frequency and 

probability”, In Judgment under uncertainty: Heuristics and biases; Kahneman, D., P. 

Slovic and A. Tversky (Eds.), Cambridge University Press, 1982. 

 

[TK82b] Tversky, A., and D. Kahneman, “Belief in the law of small numbers”, In Judgment 

under uncertainty: Heuristics and biases; Kahneman, D., P. Slovic and A. Tversky 

(Eds.), Cambridge University Press, 1982. 

 

[TK82c] Tversky, A., and D. Kahneman, “Judgment under uncertainty: Heuristics and biases”, 

In Judgment under uncertainty: Heuristics and biases; Kahneman, D., P. Slovic and 

A. Tversky (Eds.), Cambridge University Press, 1982. 

 

[WJ99] Walkerden, F., and R. Jeffery, “An empirical study of analogy-based software effort 

estimation”, Empirical Software Engineering, 4, pp. 135-158, 1999. 

 

[WHB93] Wilson, T.D., C.E. Houston and N. Brekke, “A new look at anchoring effects: Basic 

anchoring and its antecedents”, Journal of Experimental Psychology: General, 125:4, 

pp. 384-402, 1993. 

 

[WRH+00] Wohlin, C., P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell and A. Wesslén, 

Experimentation in Software Engineering: An Introduction, Kluwer Academic 

Publishers, 2000. 



 72 

 

Appendix 1 

 

Participant Results 

 

 

Part. # Condition Estimate (mts.) Range (+/-) Experience Method 

1 20 months 16 20% Academic Expert 

2 2 months 10 10% Exper., med/lrg Expert 

3 20 months 18 15% Exper., med/lrg Expert 

4 2 months 4 50% Academic Expert 

5 Control 9 20% Exper., med/lrg Expert 

6 2 months 13 20% Exper., small Model 

7 20 months 10 15% Academic Model 

8 2 months 6 20% Exper., small Expert 

9 20 months 28 60% Exper., small Model 

10 Control 15 30% Academic Model 

11 20 months 12 10% Exper., med/lrg Expert 

12 2 months 4 10% Exper., small Expert 

13 20 months 15 10% Exper., med/lrg Expert 

14 2 months 12 40% Academic Model 

15 Control 4 20% Academic Expert 

16 Control 4 50% Academic Model 

17 2 months 3 20% Academic Expert 

18 20 months 16 20% Exper., small Expert 

19 Control 5 20% Exper., med/lrg Expert 

20 Control 13 25% Exper., small Expert 

21 2 months 3 25% Academic Expert 

22 20 months 24 35% Academic Model 

23 2 months 6 50% Exper., small Expert 
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Appendix 2 

 

Experiment Instructions 

 

Project Estimation Experiment 
 
Participant #: ______ 
 
 
INSTRUCTIONS 
 
Along with this sheet you will find two documents concerning a possible new software 
development project. The first of them, “Software Requirements Initial Report”, is a 
preliminary requirements document that explains the functionality expected of the system, 
without getting in too much detail. The second document, “Project Setting”, will give you 
information about the client organization and the team in charge of the project, which you 
may found relevant for the exercise as well. 
 
Your task is to read thoroughly both documents, perform any calculations you wish, use 
estimation tools if desired or needed, and respond to the two questions below. After you 
answer the questions you will be given a questionnaire about the task you performed and 
your previous experience in software engineering. 
 
 
QUESTIONS 
 
1.- Give your estimate for the duration of the project described in the attached 
documentation, in months, to the nearest integer: 
 
I ESTIMATE THE PROJECT WILL TAKE _______ MONTHS TO DELIVER. 
 
2.- Justify your estimation. Try to justify it in such a way that a reader may understand and 
follow your reasoning and probably reach the same conclusion. If you need it you can use 
the back of this paper and as many additional sheets as you want to make your point. 
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Appendix 3 

 

Requirements Specification 

 

 

 

 

 

 

 

Toronto Foreign Trade Statistics System 
Software Requirements Initial Report 
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1. Introduction 
This document describes the requirements of a system to help the Toronto Foreign Trade Agency, a municipal 

public office, to analyze and report statistics on foreign trade of Toronto- and GTA-based companies. 

 

1.1 The Project at a Glance 
The software to be produced will be named Foreign Trade Statistics System, and will be referred to as FTSS 

in the rest of this document. 

The main purpose of the FTSS is to receive, store and process federal data about foreign trade engaged by 

Toronto- and GTA-based organizations; serving as a statistics generation tool for users to analyze its 

information and produce official, municipality level foreign trade reports. 

The client organization currently owns and operates a software tool that is used for this purpose; but its age 

and its design inadequacies became evident as the database size and query complexity increased, and it is now 

obvious that it will be obsolete relatively soon. The FTSS will therefore phase out the previous system. 

The high-level goals of the new system are: 

a. To reduce the time it takes for office staff to produce and deliver standard reports; from an average 

of 1 hour to an average of 10 minutes. The following subsection has more details on standard reports. 

b. To reduce the time it takes for office staff to produce and deliver custom reports; from an average of 

12 hours to an average of 15 minutes. The following subsection has more details on custom reports. 

c. To increase the confidence of the reports; from the present 97.5% (one faulty report in forty) to 

99.9% (one faulty report in one thousand) or better. 

d. To provide a new web service that allows Internet users to post –relatively- simple queries to the 

system through the Toronto Foreign Trade Agency website. 

e. To reduce system downtime, through proper software design and a robust implementation, to at most 

an hour of downtime each three months. 

f. To allow the Statistics Staff, through the fulfillment of the previous objectives, to spend more of 

their time on statistics analysis and less on statistics production. 

Note that the system currently being used has the functionality to produce standard reports. Although the 

system is slow, the reasons why it presently takes an average of one hour to produce them are the need to 

review them thoroughly because of a history of error-prone reports, and the need to format them in the way 

upper management wants them (with neatly arranged and coloured Excel files). Note as well that the time it 

takes to deliver custom reports is so long (12 hours on average) because the present system does not provide 

the functionality to produce them at all. The statistics staff have to plunge into reams of reports and perform 

calculations by themselves to obtain the desired information, and then format it the way the Agency requires. 
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1.2 Definitions, acronyms, and abbreviations 
The following alphabetically sorted definitions may help to better understand this document and the 

specifications: 

• Custom report – A statistical report that is not part of the basic set of standard reports (see below) 

and which links any two or more relevant factors of a statistic. Non-comprehensive examples of 

custom reports are: 

o A list of the top ten countries to which there were exports from Scarborough during 2003, 

with export volumes. 

o Names of the top five companies from the GTA that imported European machinery in the 

last five years. 

o Transaction amount of exports from the GTA grouped by company size categories and 

presented a month per column, from January 2002 to date. 

o A comparison of the volume of imports processed at each official customs port, with yearly 

columns from 1999 to 2003. 

o A matrix showing the amount for the transactions made from every region of the world 

(Europe, Latin America, etc. –defined by user) to each section of the Greater Toronto Area 

for 2002. 

o A list of the 100 most exported and 100 most imported goods (from an official federal 

catalogue), based on number of transactions, during Jan-Apr 2004. 

• Exports – Commercial transaction in which goods are transferred from Canada to another country. 

• Foreign Trade – An interchange of goods and money between two companies based on different 

countries. We will be only concerned with the foreign trade between GTA-based companies and 

foreign companies. 

• FTSS – Foreign Trade Statistics System; the software product this document is concerned with. 

• Imports – Commercial transaction in which goods are transferred to Canada from another country. 

• Standard report – A statistical report that is typically produced each month with the new information 

available. It is delivered as a neatly formatted MS Excel file, and it is sent to the media and compiled 

in regional statistics books. There are 32 standard monthly reports, and 18 more standard annual 

reports. Examples of standard reports are: 

o A list of total exports grouped by country, from the beginning of this year to date, compared 

to the same period of last year. 

o A list of total imports grouped by type of goods (predefined, standard) for each month of 

the present year. 

• Toronto Foreign Trade Agency – The client organization. 
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1.3 Overview 
The rest of this document contains the required specification for the software. Section 2 presents the 

requirements of the system, and Section 3 mentions other necessary considerations. 
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2. Requirements description 

The description of the intended product is detailed in the following subsections. 

 

2.1 FTSS and its environment 
The diagram in Figure 1 explains the intended relationship of the FTSS and its environment. 

FTSS

Human
Resources

Canada

International
Trade Canada

General Public

Internal Usage

Companies data

Foreign trade
data (monthly)

Toronto's foreign
trade information
(Direct query or
through website)

Toronto Foreign
Trade Agency

 

Figure 1 – FTSS Product Perspective 

The main inputs to the FTSS come from two federal agencies. One of them, Human Resources Canada, 

provides company data regarding every organization registered in Toronto and the GTA.  The other, 

International Trade Canada, provides monthly foreign trade data of Toronto and GTA-based companies. It is 

the job of the system and its users to analyze and process the data, generate reports based on them, and deliver 

the reports to the general public or for internal usage. 

The following items are relevant to this perspective of the system: 

a. Both the companies data and the foreign trade data are received by courier, on a CD with predefined 

format files. 

b. The companies data is received whenever it is requested; typically once every two months. 

c. The foreign trade data is received monthly. 

d. The Trade Agency generates standard official reports each month (see section 1.3). These reports are 

used by other staff at the Agency, and are available through the Agency website and in print. 

e. The Agency generates custom reports as well (see section 1.3), both for the general public and (more 

commonly) for internal usage. 

f. The Statistics Office, which produces these reports, is only one of several departments of the 

Agency. Other foreign trade related departments within the Agency include: GTA Promotion, 

Foreign Trade Training and Federal Link offices. These departments need the information generated 

by the Statistics Office, and often request custom reports from it. 
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2.2 Product functions 
The main functional requirements of the system are: 

a. The FTSS shall provide an interface to receive Companies Data from a CD, detect and filter out 

inconsistencies in the CD file (which are known to happen) and update its own companies 

information. Company data include names, addresses, telephone and fax numbers, e-mails, company 

size and main businesses. This interface shall be as easy to use as executing a menu option. 

b. The FTSS shall provide an interface to receive Foreign Trade Data from a CD, which shall work in 

the same way as the Companies Data interface. Foreign Trade Data consist of one record per 

transaction, and each transaction has the fields: Date of transaction, type of transaction 

(import/export), GTA company in charge of the transaction, type of goods traded (from a catalogue), 

units and quantity, transportation method, country of origin/destination, customs office that dealt 

with the merchandise and monetary value of the transaction. Sometimes International Trade Canada 

sends transaction information that does not correspond to GTA companies. These records should be 

filtered out of the database. 

c. The FTSS shall provide the capability of obtaining standard reports in 2 minutes in average (without 

including user revision of the report, which will take about 8 more minutes approximately). Standard 

reports shall be formatted in a MS Excel file format by the system. Please see Section 1.3 for more 

details. This function should work the following way: The user will be presented a choice of all 

possible standard reports (50 options in total), will choose one of them, and select the time period for 

which (s)he wants the information. The software should obtain the necessary information and 

prepare a MS Excel file with all proper format, ready to be revised and submitted. 

d. The FTSS shall provide the capability of obtaining custom reports in 5 minutes in average (without 

including user revision of the information, which will take about 10 more minutes, approximately). 

Custom reports are presented in MS Excel files, but they do not need the fancy formatting that 

standard reports feature. Please see Section 1.3 for more details. This function should work the 

following way: The user chooses a type of report (list, cross table, etc), chooses the grouping of 

information (s)he is interested in, the time periods which should be included and any relevant 

constraints. Choices for information grouping are countries, world areas, GTA sections, types of 

goods, company size, customs offices, method of transportation, company name and postal code. 

Examples of constraints are: [Types of goods: Food]; [Company size: Not small]; [Method of 

transportation: Train or ship]; and [Postal code: {list of codes}]. Furthermore, the user should be 

given the option to save the settings of the custom report (s)he created, so that (s)he can go back to it 

later, regenerate or reprint it, or change some of the constraints to produce a different report. 

e. The FTSS shall provide a web service that allows Internet users to post queries, similar to those 

prepared by standard reports, and obtain official information on foreign trade. 

f. The FTSS shall provide database backup and restoration features. 
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g. The FTSS shall provide means to update the basic information it needs to work. This information 

shall be available to users to add new elements, update existing elements or delete no longer needed 

elements. The types of elements to be considered are: 

 Countries 

 World areas, 

 GTA sections 

 General types of goods 

 Detailed catalogue of types of goods (with more than 50,000 entries) 

 Valid trading units (kilograms, pounds, etc.) 

 Recognized customs offices 

 Means of transportation. 

h. The FTSS shall provide detailed company data. In some situations, the Agency finds that a company 

handles part of its foreign trade transactions from the GTA and part from other regions. If this is the 

case, the user should be able to update the company information, and to specify to the system that 

only (a) a percentage of the total transactions of the company, or (b) a list of detailed types of goods, 

should be considered when producing foreign trade information from that company. 

i. The FTSS shall provide user access control and permissions management, since the information it 

handles is confidential and delicate. As to this moment it has not been defined if the data will have to 

be encrypted to protect it. 
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3. Other considerations 

This section provides necessary, non-functional information on what is expected from the system and on 

characteristics of its environment 

 

3.1 Reliability of reports 
Reliability of reports has a high priority. The system should guarantee total accuracy in at least 99.9% of the 

reports it generates. Consider that the information that the Agency receives is sporadically inconsistent. If that 

is the case, the system should detect the inconsistencies and notify the users about them. 

 

3.2 Information volume 
The system should be able to handle at least 15 years of information without failing the time constraints 

expressed in the objectives section of this document. It is important to consider that 15 years of information 

may easily extend to several tens of gigabytes of memory. 

 

3.3 User interface 
The client organization expressed repeatedly that the user interface of the system should also be a priority, 

and that it should not only be friendly and agile, but elegant and adherent to the color code of the Agency. The 

software should be usable by an average user with two two-hours training sessions up to 95% of its 

functionality. The system should also provide clear and detailed online help so that a user that has had only 

two training sessions can find his way on the system by himself. 

 

3.4 User characteristics 
The intended users of the FTSS are a subset of the staff of the Agency, and the general public through the 

Agency website. The expected characteristics of the users are: 

 Familiar with the Windows operating system, which presently is the only one used in the 

Statistics Office 

 College or university educational level 

 Not familiar with any database system nor programming language 

It is expected that about 3 persons will use the software concurrently. However, the software should be 

designed to support at least 10 simultaneous users. 
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3.5 Programming language constraints 
The programming language to be used has been already selected to be Visual C++ .NET, as a contract 

condition pushed by the IT staff of the Agency. As a similar condition the backend for the database will be 

SQL Server 2000. The IT staff did not express an opinion on the choices for script languages for the web 

services required. 

 

3.6 Process requirements 
Once that the Agency and the development team agree on time and cost figures for the software, the project 

leader will need to present weekly progress reports to the statistics office manager, both in writing and in 

person. 

 



 83 

 

Appendix 4 

 

Project Setting 

 

 

Project Setting 

 

The following text is included because it may give you information that you would 

otherwise perceive about the client organization and the development team if you dealt 

with them, but that is not included in the Software Requirements document. 

 

About the client organization 

 

The Agency is a corporate-like office, with a tendency to have plenty of meetings and 

concern for hierarchical levels. Complex matters must be approved by upper 

management, and their decisions may be delayed if those who take them are 

unavailable due to travel –which happens frequently. On the other hand, office workers 

are slightly understaffed, constantly working under pressure and performing quickly so 

the office may respond to the constantly shifting international situation (and to the 

whims of upper management). 

 

Some people on the Agency relevant for the project are: 

 

Statistics Office staff (three persons) 

• Will be main users of the system 

• Are very concerned about the accuracy of the output. 

• Will be the main source of information and business knowledge. 

• Frequently work under pressure 
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• Personnel rotation is high 

 

Statistics Office manager 

• Manages the statistics staff 

• Concerned about saving face with upper management 

 

Systems administrator 

• Has answered to every question promptly, but not helpfully. 

• Is specifically concerned about the part of the project that deals with the office’s 

website. 

• Along with the IT staff, has cornered the choice of programming language and 

database engine. 

 

 

About the development team 

The project will be developed by a predefined team. Your estimate should adjust to the 

fact that only these persons will be available to work on it: 

Quotes from preliminary interviews with the staff: 

“Right now, with the system we have, I must check, double-check and check 
again the results of my calculations to avoid any errors” 
 
“The system we’re using is horribly slow, it crashes all the time and it doesn’t 
filter out bad data we receive from the federal offices” 
 
“If people from other departments come and ask for a complex statistic they 
get bothered if we tell them the answer will be ready in four or five hours – 
but right now that’s all we can offer, even putting everything else we’re doing 
aside” 
 
“One error on an official report and I lose my job!” 

Quotes from preliminary interviews with the manager: 

“I admit I have no experience with software projects, but I guess this will take 
about 2 months to finish. I may be wrong of course, we’ll wait for your 
calculations for a better estimate.” 
 
 “Your product should have a great look, really slick and professional. This is 
very important. Of course, no errors is a top priority; but if the thing looks 
ugly, or if it doesn’t stick with the Agency colour code, when the Chair sees it 
he won’t like it, and you guys and me will have a hard time trying to explain it 
does work well. They look forward to impress the people from other municipal 
foreign trade offices with this system, you know.” 
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Project leader 

• He’s an experienced developer that will perform as project leader for the second 

time (the first time his project was moderately successful – delivering a good 

amount of required functionality, on time but slightly over budget). 

• He will be the face of the development company with the client. 

• He could perform some duties as senior developer. 

• Has good experience with the required programming language and database 

system. 

 

Senior developer 

• He got his experience developing scientific software for several years, and 

afterwards shifted to custom-made applications and has participated in a couple 

of developments of the kind. 

• Has thorough experience with language and database of choice 

 

Junior developer 1 

• She was brought to the project for her interest and experience in database 

issues, which she seems to handle well. 

• She has some experience with the language of choice, though she is not an 

expert. 

 

Junior developer 2 

• He has some experience on web applications development. 

• His interests are human-computer interaction and web applications. 

• Has a very introductory-level experience with the language of choice, and will 

need to have training during the first weeks of the project. 

• He will only collaborate on this project half-time, (he is also required in a 

second project). 

 

Quality assurance / tester 

• She has been lead tester of three projects before this one. 

• Has had minor negative personal issues with the senior developer in the past, 

apparently sorted out. 

• Her tests have previously focused on software robustness and heavy database 

use. 
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• She will only collaborate on this project half-time, as she will fulfill the QA role 

in another project at the same time. 

 

No one in the team has previously worked in international trade environments; 

knowledge of the field will have to be obtained through the client organization. 
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Appendix 5 

 

Questionnaire 

 

 
Participant #: ______ 
 
 
QUESTIONNAIRE 

 

Please respond to the following questions as accurately as possible: 

 

 

1.- I think the estimation I performed was… (circle a number) 
Very unreliable -> 1 2 3 4 5 6 7 <- Very reliable 

 

2.- I think that if this project was really developed, my estimate might be off by as much as 

_____ % 

 

3.- My previous estimation experience includes (check all that apply) 

___ Involvement in estimation of medium or large software projects 

___ Involvement in estimation of small software projects 

___ Courses that included software estimation as a course topic 

___ I witnessed software estimation processes, although I was not involved 

___ Self-learning 

___ Other, specify: ____________________________________________________ 

-or- 

___ I have no previous experience on software project estimation 
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4.- I felt the documentation was… (circle) 
Very uninformative -> 1 2 3 4 5 6 7 <- Very informative 

If you answered 3 or less, please specify: 

 

 

 

5.- Explain your strategy to estimate software development projects 

 
 

 

 


