
Anchoring and Adjustment in Software Estimation
Jorge Aranda

University of Toronto
10 King’s College Road

Toronto, Ontario, M5S 3G4, Canada
1-416-946-8864

jaranda@cs.toronto.edu

 Steve Easterbrook
 University of Toronto
 40 St. George Street

 Toronto, Ontario, M5S 2E4, Canada
 1-416-978-3610

 sme@cs.toronto.edu

ABSTRACT
Anchoring and adjustment is a form of cognitive bias that affects
judgments under uncertainty. If given an initial answer, the
respondent seems to use this as an ‘anchor’, adjusting it to reach a
more plausible answer, even if the anchor is obviously incorrect.
The adjustment is frequently insufficient and so the final answer is
biased. In this paper, we report a study to investigate the effects of
this phenomenon on software estimation processes. The results
show that anchoring and adjustment does occur in software
estimation, and can significantly change the resulting estimates,
no matter what estimation technique is used. The results also
suggest that, considering the magnitude of this bias, software
estimators tend to be too confident of their own estimations.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management – time estimation,
cost estimation.

General Terms
Management, Economics, Experimentation.

Keywords
Effort estimation, cognitive bias, anchoring and adjustment,
empirical software engineering

1. INTRODUCTION
Anchoring and adjustment is a widely observed and documented
phenomenon in cognitive psychology. Its effects consist of
biasing the answer to a complex question towards an anchor (an
initial, possible answer). We seem to adjust this anchor to reach a
more plausible answer, but the adjustment tends to be insufficient,
and our answer biased. Since software estimation is performed by
people, under uncertainty, it is subject to cognitive biases such as
this. If that is the case, then this heuristic deserves a deeper
consideration than it has had to date.

We conducted an experiment to test the effects of this form of bias
on software estimates. Participants were given a detailed project
description, and asked to estimate the time needed for a specific
team to complete the project. In two conditions, the participants
were given an initial estimate, one very low, the other very high.
In a third, control condition, no initial estimate was given.
Participants were asked to provide both an estimate, and a
confidence interval for their estimate.

Section 2 presents fundamentals and related work on the two
subjects of this paper: Software estimation and anchoring and
adjustment. Sections 3 through 5 describe the design and
execution of the experiment. Finally, sections 6 and 7 provide the
experiment results and conclusions.

2. FUNDAMENTALS AND RELATED
WORK
There is a lack of research relating the work in Cognitive
Psychology on anchoring and adjustment with the research in
Software Engineering on software estimation. However, there is a
wealth of information on each field separately.

2.1 Anchoring and Adjustment
Anchoring and adjustment is a cognitive bias observed when
people must make choices under uncertainty, and is particularly
evident when the result of the choice can be expressed as a
number in a range. If judgment of the matter is difficult, we
appear to grasp an anchor, that is, a tentative and possibly
unrelated answer to the problem; and adjust such answer up or
down according to our intuition or experience to reach the final
result. The adjustment applied to the initial anchor is frequently
insufficient to compensate for the negative effects of the anchor.
Anchors, then, have the effect of attracting answers towards them
and away from the correct result.

Tversky and Kahneman [24] first reported this phenomenon with
the following experiment: Participants were individually
presented a wheel of fortune with numbers from 0 to 100. The
experimenter spun the wheel in front of the participant, and after
it stopped in an evidently random position, he questioned the
participant to estimate various quantities, stated in percentages.
For example, participants were asked to give the percentage of
African countries that were members of the United Nations.
Participants were first asked to indicate if the correct answer to
the question was higher or lower than the random number that
came up in the roulette, and then to estimate the correct value by
moving upward or downward from the random number.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ESEC-FSE’05, September 5–9, 2005, Lisbon, Portugal.
Copyright 2005 ACM 1-59593-014-9/05/0009...$5.00.

Tversky and Kahneman report that the arbitrary initial numbers
obtained from the roulette had a marked effect on estimates: the
median estimate for the African countries question was of 25 for
people that received a 10 as their anchor, and 45 for those who
received a 65. The researchers summarized the phenomenon as
“different starting points yield different estimates, which are
biased toward the initial values”.

Since then, the phenomenon has been studied thoroughly, and
although the cognitive processes involved in it have not been
singled out, its existence is now rarely questioned. It has been
shown to occur in situations as diverse as general knowledge
issues, probability estimates, legal judgment, pricing decisions
and negotiation [21].

For example, [7] indicates that anchoring occurs in legal
applications, and suggests that “plaintiffs would do well to request
large compensation awards” to bias awards granted by jurors. [22]
demonstrated that professional real estate pricing decisions are
also subject to anchoring biases, altering the pricing decisions of
both experienced and inexperienced real estate professionals.

Initial anchors do not even need to be recognized as starting
points for a solution. [2], for example, affirms that the duration of
a criminal sentence partially depends on numbers that are fresh in
the mind of the sentencing judge. However, semantic anchoring
effects are more potent than purely numeric effects; that is, the
anchor is more effective if it is regarded as a possible, meaningful
solution to the problem at hand [21].

Finally, a series of experiments by Wilson, Houston and Brekke
[25] indicate that (a) anchoring occurs if people pay sufficient
attention to the anchor value, (b) knowledgeable people are less
susceptible to anchoring effects, and (c) anchoring appears to
operate unintentionally: it is difficult to avoid even when people
are forewarned.

2.2 Software Estimation
Effort estimation for software projects has proven to be an elusive
and expensive problem in software engineering. On one hand,
stakeholders expect precise estimates in the early stages of a
project; on the other hand, reliably producing those numbers is
extremely difficult and may well be technically infeasible. Boehm
et al. [5] report that estimating a project in its first stages yields
estimates that may be off by as much as a factor of 4. Even at the
point when detailed specifications are produced, professional
estimates are expected to be wrong by ±50%.

This precision problem is compounded with the confusion
surrounding the term ‘estimate’. While managers and clients make
their plans assuming that software projects are likely to be
finished at, or close to, the estimated time, developers tend to
produce estimates that only work for a best-case scenario.
According to DeMarco [8], the default definition of estimate
among professionals is “the most optimistic prediction that has a
non-zero probability of coming true”. He argues that a better
definition is “a prediction that is equally likely to be above or
below the actual result”, which seems to be the definition that
most software estimation researchers use (although it is still too
risky for most real business plans).

If estimates are predictions, we should explore the psychology of
human prediction processes. But unfortunately, according to
Brown and Siegler [6], “psychological research on real-world

quantitative expert estimation has not culminated in any theory of
estimation, not even in a coherent framework for thinking about
the process”. It is not surprising then that software engineers
prefer to create mathematical estimation models than to explore
the intricacies of human judgment applied to software estimation.

The Constructive Cost Model (COCOMO, [4]) is probably the
most widely known method for software estimation. In its original
incarnation, its core effort equation uses lines of code (LOC) as an
input, and the equation can be adjusted to account for particulars
of each software project. Boehm claims that the intermediate
version of the model renders results that are within 20% of actual
numbers 68% of the time. However, other empirical validations
suggest that the performance of the model is much worse,
especially if it has not been carefully calibrated for the
organization in charge of the project [20, 14].

There are several arguments against the use of COCOMO and
other LOC-based models. One of the most powerful is that they
require the estimator to predict the number of lines of code the
future system will have, a quantity that is as unknown to the
estimator as the time it will take to produce them, but even less
intuitive. Estimators are better at estimating effort than size, which
cancels the benefits of size-based models (although they generally
do not seem to be very good at either) [12]. Critics argue that
COCOMO disguises the guesswork of estimating, but it does not
eliminate it [15]. Furthermore, an analysis of the reported project
data of several empirical validations of estimation models shows
that the size-effort correlation is not evident and size may not be
the primary determinant of project effort [10]. It is the creative
content and the quality imbued in the code, not its number of
lines, which determines the required effort for an application.

Another popular set of estimation techniques is based on function
points (FPs) [15]. FPs remove many of the inconveniencies of
LOC metrics since they are based on the required functionality of
the desired software product.

However, there are still factors that make FPs an inaccurate
technique. One is the variation in the productivity of developers.
For example, it has been found that the best programmers are 10
times more productive than the worst, and 2.5 times better than
the median [9]. Team performance variations are also extremely
wide. Another factor is an incomplete or defective specification.
Badly stated requirements can increase a project’s time and cost to
several times its intended values. And finally, software
development needs a degree of creativity, inventiveness, and
social interaction that is extremely difficult to capture in an
estimation model.

Model-based estimation is not the only alternative available for
software engineers, nor the most widely adopted [12]. Learning-
based techniques [23], for example, help estimators to establish
analogies between the project at hand and previous experiences,
and they are helpful when performed in a familiar, predictable
environment.

The most commonly used estimation method, which can be called
expert-based estimation, is arguably the method with the worst
standing among software engineering researchers. Although there
are ways to structure this technique, such as the Delphi process
[11] or work breakdown structure analyses [3], its basic feature is
the lack of a mechanical process to estimate. Instead, experts are

assigned the responsibility of reaching an estimate by whichever
means they see reasonable. However, for all its fuzziness, it is not
clear that other methods are more effective than expert-based
techniques, as empirical validations provide conflicting results on
the superiority of any technique [16].

Even though much research has focused on software estimation, it
is still an ambiguous process. This is relevant for us because
ambiguous and uncertain thought processes are prime candidates
to be victims of judgmental biases.

The relevance of human thought processes is present in all
estimation techniques, even model-based, where humans need to
define the input parameters that models require.

There is a growing amount of research exploring software
estimation as a primarily human activity [16]. It has been found,
for example, that the confidence estimators have in their own
estimates is unjustifiably high, that they do not seem to
distinguish between several degrees of confidence in an estimate
[17], and that experience is not a good indicator of expertise when
it comes to software estimation [13]. Of most relevance for this
paper, it has also been recently found that anchoring and
adjustment affects estimates on coursework for computer science
students [19], and that customer expectations affect estimates of
short software tasks when using work breakdown structure
analyses [18].

Although these studies hint that it is reasonable to expect
anchoring and adjustment biases in software estimation, we are
not aware of any empirical study explicitly exploring this effect in
the estimation of software projects. Considering the economical
and personal impact that incorrect estimations carry, it is
important to inquire experimentally the influence of this cognitive
bias on the matter.

3. RESEARCH QUESTIONS
Software estimation is essentially a human judgment activity, and
as such it is subject to judgmental biases. Efforts to standardize
estimation, although successful in giving shape to such an
activity, do not eliminate or reduce the effect of human bias.

In order to find out if software estimation is affected by anchoring
and adjustment, we set the following as our research questions:

• Does the phenomenon of anchoring and adjustment take
place in software estimation processes?

• Is the influence of anchoring and adjustment weaker for
estimators that have had previous experience estimating
software projects?

• Is the influence of anchoring and adjustment stronger
for estimators that rely solely on expert-based
estimation, as opposed to estimators that use a model-
based technique?

• Does the confidence (or lack thereof) estimators have in
their answers compensate for possible anchoring and
adjustment biases?

The experiment reported here provides some answers to all of
these.

4. EXPERIMENT PLAN AND DESIGN

4.1 Experiment Design
The experiment consisted of a software estimation exercise that
participants worked on individually. They were asked to estimate
the time it would take for a specific development team to deliver a
particular software application. The application, a fictional
software project for international commerce statistics based on a
real project developed by one of the authors, was described in a
ten-page requirements document and a three-page project setting
document [1]. The requirements document stated the functionality
necessary for the system to be developed, as well as notes for
relevant non-functional requirements. The project setting
document gave participants informal data on two areas: the client
organization (their work culture, hierarchy, and “quotes” from
interviews with them) and the development team in charge of the
project (their language experience, previous projects performance
and team dynamics).

Participants were given as much time as necessary to produce
their estimates, but most of them reported taking around two
hours to complete the exercise. Participants had complete freedom
on their choice of estimation techniques, as long as they worked
on the exercise by themselves. They could use software estimation
tools to aid their judgment if they desired.

Once participants performed their calculations, they were given a
questionnaire. The two most relevant questions were:

• “Give your estimate for the duration of the project
described in the attached documentation, in months, to
the nearest integer”, and

• “I think that if this project was really developed, my
estimate might be off by as much as ___%”

Additionally, participants were asked to give a justification for
their estimates, to describe their previous estimation experience,
and to rate the information they read in the documentation.

Each participant was paid $10 for their involvement in the study.

The experiment had three conditions. The only difference between
them was a paragraph in the second page of the project setting
document. In a box with quotes from a middle manager of the
client organization, a sentence was altered in each group:

For the experiment’s control condition, the manager was quoted
as saying: “I’d like to give an estimate for this project myself, but
I admit I have no experience estimating. We’ll wait for your
calculations for an estimate.”

For a second, “2 months” condition, the quote was modified to
include an anchor. It read as follows: “I admit I have no
experience with software projects, but I guess this will take about
2 months to finish. I may be wrong of course, we’ll wait for your
calculations for a better estimate.”

Finally, a third, “20 months” condition, had another anchor in the
manager’s statement. It was exactly the same as the second group,
except for a change from “…I guess this will take about 2 months
to finish...” to “…I guess this will take about 20 months to
finish…”. The conditions were equal in all other aspects.

There are several issues worth noting at this point: First, the
difference among anchors is of an order of magnitude. This
difference is quite large, but for early stages of a software project,
not completely far-fetched [5]. Second, the anchor given to
participants is semantically linked to the answer they are asked to
provide. According to Mussweiler and Strack [21], semantic
anchors are more powerful than simple numeric anchors. Third,
the manager does not push for his guess to be considered as a
starting point for negotiation. He admits that he has no experience
with software projects, that he may be wrong, and labels his own
quantity as a guess. And fourth, participants did not hear the
individual saying this sentence, they did not meet him in person,
and the sentence was not highlighted in the document.
Participants are thus less likely to be socially influenced and to try
to please the manager by giving a final estimate that confirms his
guess than if they had actually sat with him in an interview and
were told just that. Attempting to please is also a judgmental bias,
but of a social, not cognitive, nature [2]. The research questions of
this study focus on cognitive aspects, and therefore it was
important to limit the influence of social biases in the
experimental design.

4.2 Variables
The following variables were recorded:

Independent Variable: The only independent variable was the
anchoring statement discussed in the previous section. It had three
values: “2 months” anchor, “20 months” anchor, and no anchor.

Controlled Variable: While assigning participants to each
condition, we attempted to reach a similar number of experienced
participants in all conditions. Experience was classified in three
levels: Experience in large/medium software projects estimation;
experience in small software projects estimation; and only
academic experience. Experience was self-assessed; each
participant’s definitions of project size, involvement in estimation,
and amount of time dedicated to learning estimation processes
were not probed.

Dependent Variables: Three dependent variables were considered
of relevance for this study: (a) the actual estimate as given by
participants, which is a positive integer representing a number of
months; (b) confidence range, expressed as a percentage that can
be added or subtracted from an estimate to reach an acceptable
range of results; and (c) estimation method. Participants were not
asked to name the estimation method that they used, but they were
asked to provide a justification for their estimate. These
justifications were analyzed to classify the estimation technique as
being either model-based or expert-based. Further classifications
within each subgroup were LOC-based or FP-based (for model-
based techniques) and WBS (work breakdown structure) or
unstructured process (for expert-based techniques). If a participant
used more than one technique, an assessment of their primary
technique was performed.

4.3 Hypotheses
The following are the null hypotheses for this experiment:

H0, LOW-HIGH: Estimates of participants given a low (“2 months”)
anchor are not statistically different from estimates of participants
given a high (“20 months”) anchor.

H0, LOW-CONTROL: Estimates of participants given a low (“2
months”) anchor are not statistically different from estimates of
participants given no anchor at all.

H0, HIGH-CONTROL: Estimates of participants given a high (“20
months”) anchor are not statistically different from estimates of
participants given no anchor at all.

A similar set of hypotheses was generated for analyzing the results
of experienced participants, model-based techniques users and
expert-based techniques users.

To address our last research question, regarding the confidence of
estimators in their own results, one additional hypothesis was
generated:

H0, MaxLow-MinHigh: The maximum estimates of participants given a
low (“2 months”) anchor are not statistically different from the
minimum estimates of participants given a high (“20 months”)
anchor.

4.4 Threats to Validity
The following discussion on threats to validity is based on the list
of threats proposed by Wohlin et al. [26].

Conclusion validity: The group of participants that performed the
software estimation exercise was relatively heterogeneous,
consisting of software industry professionals and computer
science graduate students. We have no way of assessing whether
these participants are a representative sample of the broader
population of estimators. Another aspect of this threat is that some
participants (43%) had only academic experience of software
estimation (through coursework and self-learning) and had not
been asked to produce an estimate in a real-world software project
previously. However, all participants had at least basic
qualifications to perform real software estimation; that is, they all
were potential software estimators with enough authority, either
because of background, academic formation or a combination of
both, to produce estimates in real software development projects.
For this reason they may be regarded as part of the same group,
and this threat is reduced.

It is also possible that the task might not have been representative
of real estimation tasks. For example, it may be unusual to require
that estimates be provided in months, or to estimate a project for
an organization with which the estimator has had no direct
contact. However, we think our study replicates real estimation
tasks adequately, within the restrictions of a controlled
experiment.

Internal validity: Respondents might be reacting to a social bias
rather than the intended cognitive bias. Furthermore, it is possible
that participants might have put even more importance on the
anchor than we intended, interpreting it as a hint about available
resources. However, as discussed previously, we tried to minimize
these possibilities with the way our anchor was presented. The
opposite is also possible: respondents might fail to notice the
sentence with the manager’s estimate. We believe that if this was
the case it would lead to very different results than the ones we
obtained.

Construct validity: This experiment might suffer from a mono-
operation bias, since it used only one set of project specification
documents. It would have been interesting to perform it with

several (at least two) different software projects and to see if the
relations between conditions are replicated among them.
Economical limits and a difficulty to find participants prevented
the study from going in that direction.

External validity: Our participants were volunteers who
responded to an invitation. However, volunteers are especially
motivated, and are therefore not representative of the whole
population [26]. This was a necessary evil, since hiring a
significant number of professional estimators and paying them
their usual fees for their services was not economically feasible.

Another threat to external validity lies in the fact that real software
estimation carries consequences that may be suffered for a long
time by the people involved, potentially altering their career paths.
Participants in this study knew that they would not be held
accountable for their answers, and this difference between the
experiment and real estimation experiences may affect the results.
This, unfortunately, is a consequence of performing a controlled
experiment. The alternative would be to observe real software
estimations within their natural environments.

5. EXPERIMENT EXECUTION
Our experiment took place during the second half of 2004.
Participants were recruited through email invitations sent to
graduate computer science students and software developers.
After candidate participants expressed their interest they were
visited at the time and place of their choice and they were given
their documentation package.

Participants were not told the purpose of the study. They were
told that they were participating in a software estimation
experiment, without going into further detail. All participants
signed a consent form and were guaranteed anonymity.

Participants were allowed to work on the study whenever they
wanted, although most of them reported having finished within
three days of being visited. They could use software tools and
reference books if they wished.

23 people participated in the study. The majority of them (78%)
were graduate students in Computer Science, the remaining 22%
were professionals from the software industry. 57% of participants
declared they had been involved in real software estimation
activities before (22% were involved in medium to large software
projects, 35% only in small projects). 43% had only academic
experience in the area.

An even distribution among conditions was intended. The final
number of respondents, however, was variable among conditions
due to participation cancellations. The “2 months” condition
received 9 responses, the control condition, 6 responses, and the
“20 months” condition, 8 responses.

Each participant’s answers were recorded, and their estimates
were analyzed using independent t-tests for each hypothesis.

6. DATA ANALYSIS AND
INTERPRETATION OF RESULTS

6.1 General Results
The responses presented a very wide range of estimates: from 3 to
28 months. The average estimate was 10.9 months. Participants

gave their estimates a confidence interval of ±26% on average
(minimum 10%, maximum 60%).

Two types of estimation techniques were used: model-based and
expert-based estimation. 31% of estimators chose primarily a
model-based technique (22% LOC-based, 9% FP-based). The
remaining 69% used an expert-based technique (39% with work
breakdown structures, 30% unstructured process).

Figure 1, on the next page, presents all estimates. The chart is
divided in three areas. The lower area corresponds to the “2
months” condition, the middle area to the control condition and
the higher area to the “20 months” condition. For each estimate
the graph includes the confidence interval of its estimator. The
graph also shows the mean estimate for each group and the
anchors for the “2 months” and “20 months” conditions.

Although the patterns on each condition are visible on the chart,
the following numbers help to clarify it. The “2 months”
participants had a mean estimate of 6.8 months. The control
condition has a slightly higher mean estimate, at 8.3 months; and
the “20 months” condition’s mean estimate is 17.4 months.

Within each group there is a considerable variation as well. The
“2 months” condition’s greatest estimate is 4.33 times higher than
its lowest. The corresponding proportion is 3.75 for the control
condition and 2.80 for the “20 months” condition.

The t-test results are: For hypothesis H0, LOW-HIGH, t = 4.273, the
null hypothesis is rejected (p < 0.001). For hypothesis H0, LOW-

CONTROL, t = 0.661, the null hypothesis cannot be rejected (p >
0.1). And for hypothesis H0, HIGH-CONTROL, t = 3.137, the null
hypothesis is rejected (p < 0.01).

Therefore, these results show that the anchoring and adjustment
bias takes place in software estimation processes, at least when the
effects of providing a high anchor are compared with the effects
of providing a low anchor or no anchor at all. However, no
significant difference between low anchors and no anchors was
found.

6.2 Experienced participants’ results
If we consider only the results of those participants who declared
to have real-life estimation experience (57% of the total number
of participants) we obtain Figure 2 (on next page).

As can be seen in the chart, the pattern remains unchanged after
removing inexperienced estimators, although the statistical
significance is slightly weaker due to the reduced number of
participants.

Within this subgroup of experienced estimators, the “2 months”
condition mean is 7.8 months. The control condition has a mean
of 9.0 months; the “20 months” condition is at 17.8 months.

The t-tests for the subgroup of experienced participants provide
the following results: For hypothesis H0, LOW-HIGH, Experienced, t =
3.150, null hypothesis rejected (p < 0.02). For hypothesis H0, LOW-

CONTROL, Experienced, t = 0.425, null hypothesis cannot be rejected (p
> 0.1). For hypothesis H0, HIGH-CONTROL, Experienced, t = 2.462, null
hypothesis rejected (p < 0.05).

These results indicate that the effect found in the generality of
participants was also suffered by experienced estimators in
particular.

“2 months”
condition

Control
condition

“20 months”
condition

Mean of condition
Estimate

Confidence range

Legend

Anchor of condition

10 20 305 15 25 45Estimated time
(months)

10 20 305 15 25 45

Estimated time
(months)

Figure 1. All estimators’ results

Figure 2. Experienced estimators only

6.3 Expert-based estimators’ results
As shown in Figure 3, the same general pattern appears for
estimators who used an expert-based technique, with two notable
differences: First, the averages are lower than in the complete
pool of participants. Second, standard deviations are also lower,
indicating more homogeneous results.

The particular numbers are as follows: For the “2 months”
condition, the mean is 5.1 months. For the control condition it is
7.8 months. For the “20 months” condition it is 15.4 months.
Applying independent t-tests for each of the three relevant null
hypotheses yields the following: Hypothesis H0, LOW-HIGH, Expert-

based, t = 7.567, rejected (p < 0.001). Hypothesis H0, LOW-CONTROL,

Expert-based, t = 1.154, cannot be rejected (p > 0.1). Hypothesis H0,

HIGH-CONTROL, Expert-based, t = 3.358, rejected (p < 0.02).

Again, this shows that effects of anchoring and adjustment are
suffered by estimators who choose an expert-based approach. In
fact, these results were among the most powerful of the
experiment. However, an effect comparing low anchor estimates
and no anchor estimates was not found in this subset either.

6.4 Model-based estimators’ results
The complement of the previous subgroup is that of estimators
who used primarily a model-based technique to reach their results.
Figure 4 shows their data.

Since only 7 estimators chose to use models, there are not enough
data points to reach conclusions for them. Even though the same
pattern as in previous groups is noticeable here, the sample was
not large enough to provide statistically significant results.

The numbers for this group are as follows: The mean of the “2
months” condition is 12.5 months, for the control condition 9.5
months, and for the “20 months” condition 20.7 months. The
three null hypotheses concerning model-based estimators could
not be rejected with independent t-tests (p > 0.1 in all cases). It is
impossible to know if this was due to the low number of
participants choosing model-based techniques or due to a weaker
influence of anchoring and adjustment effects on this subgroup.
Although existing data seems to indicate the former, it is not
conclusive.

“2 months”
condition

Control
condition

“20 months”
condition

Mean of condition
Estimate

Confidence range

Legend

Anchor of condition

10 20 305 15 25 45Estimated time
(months)

10 20 305 15 25 45

Estimated time
(months)

Figure 3. Expert-based techniques users

Figure 4. Model-based techniques users

6.5 Confidence ranges
To explore whether participants’ confidence ranges compensate
for anchoring biases, we considered the data from Figure 1 again.
A t-test between the “2 months” and the “20 months” conditions
was performed, but considering the maximum (worst-case)
estimates from the “2 months” group and the minimum (best-case)
estimates from the “20 months” group. This addresses our last
experimental hypothesis.

The new numbers are as follows: The best-case estimates on the
“2 months” condition have a mean of 8.7 months. The worst-case
estimates on the “20 months” condition average 12.8 months. The
result of the t-test for H0, MaxLow-MinHigh yields t = 2.182, and the
null hypothesis is rejected (p < 0.05).Therefore, the effects of
anchoring and adjustment seem to be so high that giving
estimators the opportunity of including a confidence range in their
estimates does not compensate for their biases.

Additional insights are found if the data from each condition are
concentrated to show the general agreement that estimators may
have among themselves. Figure 5 displays, for each condition, the

percentage of estimators who included each month within their
confidence range. An initial observation is that agreement among
estimators is rather low. In the “2 months” condition, agreement
peaks at 56%, at the 4 months line. For the control condition the
maximum agreement is 50%, at the 4, 5 and 11 months points.
Finally, the maximum agreement for the “20 months” condition is
63%, at the 16 and 17 months points.

As participants in all conditions actually estimated the exact same
project, it is reasonable to merge the three charts and see the
general agreement among estimators. Figure 6, on the next page,
shows this information. Once all estimators are considered, the
maximum agreement is very low (39%), and appears at two points
(11 and 16 months).

This indicates that, were this project truly developed, at least 61%
of the estimators would have been wrong in their predictions, no
matter how long the project actually took. This is perhaps not
perplexing considering how often estimates miss their targets in
real software projects.

Figure 5. Estimate ranges results by condition

10 20 305 15 25 35

Percentage of
estimators
considering month

Months

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Mean estimation

45
Figure 6. Estimate ranges results, concentrated

7. DISCUSSION AND CONCLUSIONS
Our results show that the anchoring and adjustment heuristic does
take place in software estimation processes. When estimators are
given a high anchor their estimates are significantly higher than
when they are given a low anchor or no anchor at all. This effect
is too strong to be ignored. On average, estimates on the high
anchor condition were more than twice as long as those in the low
anchor condition. The effects were so large that even the worst-
case scenario produced by estimators in the low anchor condition
is significantly more optimistic than the best-case scenario from
the high anchor condition.

Furthermore, the effect is maintained across experienced
estimators and users of expert-based techniques (who presented
the strongest effects of this bias). However, although the trend
seems to occur in users of model-based techniques as well, their
data were not conclusive. The difference in effects between low
anchors and no anchors was not conclusive either.

There are at least four possible reasons why no difference was
found between low anchor and no anchor conditions. First,
estimators may be optimistic by nature, so participants in the
control condition could be substituting external anchoring effects
with their internal optimism. Second, the value for the low anchor
(2 months) may not have been low enough. Third, a greater pool
of participants may be needed to identify the differences between
these two groups. And fourth, it is possible that low anchors do
not affect estimation processes as powerfully as high anchors.

There are several ways to expand this experiment to continue
exploring this effect. In particular, we could run the experiment
with other estimation units. Estimators were asked to provide their
estimate in months, and the anchor was also provided in months.
It would be interesting to see the effect of giving estimates in
weeks when the anchors “2 weeks” and “20 weeks” are provided.
Another possibility is to explore estimates at different stages of
the project lifecycle, to see if the effect of anchors diminishes as

projects are more and more detailed. The experimental materials
are available to other researchers who wish to repeat the
experiment, by contacting the authors.

There are several things that can be done to compensate for
anchoring biases. Ideally, estimators should be shielded from
anchors. However, this is not always feasible. Estimators should
be aware that anchors may bias their own results. Unfortunately,
previous studies have shown that anchoring effects take place
even when participants are forewarned [25].

Giving wide estimation intervals would help to compensate for
the optimism in our calculations: Boehm [4] indicates that
confidence ranges of about 50% or 60% are adequate at early
project stages, and estimators should resist the temptation to
narrow their estimates. Finally, some development lifecycles are
riskier than others because of the weight they give to deadlines,
and this study is further evidence that lifecycles such as the spiral
model or incremental development are safer than others like the
waterfall model.

It is interesting to note that our software estimation exercise does
not have a right answer. Even if the project was developed, it may
be true that project goals are partially set based on estimates, and
that a low estimate would produce a smaller product than a high
estimate. If that is the case, the power of a seemingly innocuous
anchor can shape a project as forcefully as its specifications.

Anchoring and adjustment biases may not be the biggest problem
of software estimation. Considering that estimation is frequently
done irrationally, that estimation processes tend to resemble
bargaining matches, and that accuracy expectations of initial
estimates are unreasonable, there are more factors involved in
flawed estimations than a misleading anchor. But the need to
consider the effect of anchoring on estimates is nonetheless
important if we intend to treat software estimation as anything
more than guesswork.

8. ACKNOWLEDGMENTS
We would like to thank the people who volunteered to this study
for their invaluable participation; and to Eric Yu, Greg Wilson
and Björn Regnell for their insights and comments on this work.
Funding was provided by NSERC and Bell University Labs
(BUL).

9. REFERENCES
[1] Aranda, J., Easterbrook, S. Anchoring and Adjustment in

Software Estimation – Experiment Documentation Package,
2005. Available at: http://www.cs.toronto.edu/~jaranda/
anchoring/package.html

[2] Aronson, E., Wilson, T. D., and Akert, R. M. Social
Psychology. Prentice Hall, 4th Ed., 2002.

[3] Baird, B. Managerial Decisions Under Uncertainty. Wiley,
1989.

[4] Boehm, B. Software Engineering Economics. Prentice Hall,
1981.

[5] Boehm, B., Clark, B., Horowitz, E., Westland, C., Madachy,
R., and Selby, R. Cost models for future software life cycle
processes: COCOMO 2.0. Annals of Software Engineering,
Special Volume on Software Process and Product
Measurement (1995).

[6] Brown, N. R., and Siegler, R. S. The role of availability in
the estimation of national populations. Memory and
Cognition, 20 (1993), 406-412.

[7] Chapman, G. B., and Bornstein, B. H. The more you ask for,
the more you get: Anchoring in personal injury verdicts.
Applied Cognitive Psychology, 10, 6 (1996), 519-540.

[8] DeMarco, T. Controlling Software Projects. Prentice Hall,
1982.

[9] DeMarco, T., and Lister, T. Peopleware. Dorset House, 2nd
Ed., 1999.

[10] Dolado, J. J. On the problem of the software cost function.
Information and Software Technology, 43 (2001), 61-72.

[11] Helmer, O. Social Technology. Basic Books, 1966.
[12] Hihn, J., and Habib-agahi, H. Cost estimation of software-

intensive projects: A survey of current practices.
International Conference on Software Engineering (1991),
276-287.

[13] Hill, J., Thomas, L. C., and Allen, D. E. Experts’ estimates of
task durations in software development projects.
International Journal of Project Management, 18, 1 (2000),
13-21.

[14] Jeffery, R., Rune, M., and Wieczorek, I. A comparative study
of two software development cost modeling techniques using
multi-organizational and company-specific data. Information
and Software Technology, 42, (2000), 1009-1016.

[15] Jones, C. Applied Software Measurement. McGraw Hill,
1996.

[16] Jørgensen, M. A review of studies on expert estimation of
software development effort. The Journal of Systems and
Software, 70, (2004), 37-60.

[17] Jørgensen, M., Teigen, K. J., and Mølokken-Østvold, K.
Better sure than safe? Overconfidence in judgement based
software development effort prediction intervals. The
Journal of Systems and Software, 70, (2004), 79-93.

[18] Jørgensen, M., and Sjøberg, D. The impact of customer
expectation on software development effort estimates.
International Journal of Project Management, 22, (2004),
317-325.

[19] Jørgensen, M., and Sjøberg, D. Impact of effort estimates on
software project work. Information and Software
Technology, 43, (2001), 939-948.

[20] Kemerer, C. F. An empirical validation of software cost
estimation models. Communications of the ACM, 30, 5
(1987).

[21] Mussweiler, T., and Strack, F. The semantics of anchoring.
Organizational Behavior and Human Decision Processes,
86, 2 (2001), 234-255.

[22] Northcraft, G. B., and M. A. Neale. Experts, amateurs and
real estate: An anchoring and adjustment perspective on
property pricing. Organizational Behavior and Human
Decision Processes, 39, 1 (1987).

[23] Shepperd, M., and Schofield, M. Estimating software project
effort using analogies. IEEE Transactions on Software
Engineering, 23, 12 (1997).

[24] Tversky, A., and Kahneman, D. Judgment under uncertainty:
Heuristics and biases. In Judgment under uncertainty:
Heuristics and biases; Kahneman, D., Slovic, P., and
Tversky, A. (Eds.) Cambridge University Press, 1982.

[25] Wilson, T. D., Houston, C. E., and Brekke, N. A new look at
anchoring effects: Basic anchoring and its antecedents.
Journal of Experimental Psychology: General, 125, 4
(1993), 384-402.

[26] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell,
B., and Wesslén, A. Experimentation in Software
Engineering: An Introduction. Kluwer Academic Publishers,
2000.

	INTRODUCTION
	FUNDAMENTALS AND RELATED WORK
	Anchoring and Adjustment
	Software Estimation

	RESEARCH QUESTIONS
	EXPERIMENT PLAN AND DESIGN
	Experiment Design
	Variables
	Hypotheses
	Threats to Validity

	EXPERIMENT EXECUTION
	DATA ANALYSIS AND INTERPRETATION OF RESULTS
	General Results
	Experienced participants’ results
	Expert-based estimators’ results
	Model-based estimators’ results
	Confidence ranges

	DISCUSSION AND CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

