
Software-Defined Caching:

Managing Caches in Multi-Tenant Data Centers

Ioan Stefanovici⋆, Eno Thereska, Greg O’Shea, Bianca Schroeder⋆, Hitesh Ballani, Thomas
Karagiannis, Antony Rowstron, Tom Talpey†

University of Toronto⋆, Microsoft Research, Microsoft†

Abstract

In data centers, caches work both to provide low IO laten-

cies and to reduce the load on the back-end network and

storage. But they are not designed for multi-tenancy; system-

level caches today cannot be configured to match tenant or

provider objectives. Exacerbating the problem is the increas-

ing number of un-coordinated caches on the IO data plane.

The lack of global visibility on the control plane to coor-

dinate this distributed set of caches leads to inefficiencies,

increasing cloud provider cost.

We present Moirai, a tenant- and workload-aware system

that allows data center providers to control their distributed

caching infrastructure. Moirai can help ease the management

of the cache infrastructure and achieve various objectives,

such as improving overall resource utilization or providing

tenant isolation and QoS guarantees, as we show through

several use cases. A key benefit of Moirai is that it is trans-

parent to applications or VMs deployed in data centers. Our

prototype runs unmodified OSes and databases, providing

immediate benefit to existing applications.

Categories and Subject Descriptors D.4.7 [Operating

Systems]: Organization and Design—Distributed systems;

D.4.2 [Operating Systems]: Storage Management—Distributed

memories

Keywords Caching, Software-defined storage, Predictable

performance, SLA, QoS

1. Introduction

An increasing number of enterprise applications have mi-

grated to hosted platforms in private enterprise and public

cloud data centers. Such platforms are typically virtualized,

i.e., tenants deploy applications in virtual machines (VMs)

whose access to the underlying resources (memory, storage,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

SoCC ’15, August 27-29, 2015, Kohala Coast, HI, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3651-2/15/08$15.00.
http://dx.doi.org/10.1145/2806777.2806933

VM VM

Hypervisor Hypervisor

VM VM

Hypervisor

Storage Storage

VM VM

Figure 1: Simplified IO stack in a multi-tenant data cen-

ter. Two tenants, a green and red one, are shown, with 3

VMs each spread over 3 hypervisors. The circles repre-

sent typical caches on the IO stack.

network) is shared with other tenants, and mediated by hy-

pervisors such as Hyper-V, VMware ESX, or Xen. Uninhib-

ited sharing of such resources in a multi-tenant environment

leads to poor and variable application performance. While

recent efforts give providers control over how resources like

network [3, 19, 24, 31, 34] and storage [4, 17, 18, 35, 38]

are shared, there is no coordinated end-to-end control of the

distributed caching infrastructure, made up of storage caches

at multiple places along the IO stack (inside VMs, hypervi-

sors, storage servers; see Figure 1). Today, storage caches

along the IO stack are transparent to both applications and

cloud providers, lack workload-aware mechanisms, and are

each managed in isolation, leading to multiple problems:

• Lack of performance isolation Since caches are not

tenant- or workload-aware, applications with different IO

patterns and request rates sharing the same cache will impact

each other’s cache performance. For example, depending on

the cache eviction policy, one application’s large sequen-

tial reads can blast away another workload’s working set.

Even with scan-resistant cache management policies, such

as ARC [29], aggressive clients with higher request rates will

still be allocated larger portions of the cache.

• Lack of customization Since caches are not tenant

aware, the entire cache is treated as a single pool with one

cache write policy (write-through, write-back, etc), despite

different durability requirements of different applications,

and one eviction policy, despite the fact that different work-

loads benefit from different cache eviction policies. For ex-

ample, Figure 2(a) shows two IOMeter workloads under two

Workload 1 Workload 2

(a) The effect of eviction policy

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1

4
4

8
7

1
3
0

1
7
3

2
1
6

2
5
9

3
0
2

3
4
5

3
8
8

4
3
1

4
7
4

5
1
7

5
6
0

6
0
3

6
4
6

6
8
9

7
3
2

7
7
5

8
1
8

8
6
1

9
0
4

9
4
7

T
h
ro
u
g
h
p
u
t
(M

B
/s
)

Time (s)

T1 T2 T3 T4

Naive Par��oning

Op�mal Par��oning

(b) The effect of cache size

Figure 2: Performance depends on the cache policy (a)

and allocation (b).

different eviction policies, LRU and MRU [11] respectively.

The workload on the left performs at its peak with an MRU

policy, while the one on the right performs best with LRU.

Today, if both workloads were running atop the same hyper-

visor, they would have to follow the same eviction policy,

leading to performance penalties on the order of 4-5x.

•Lack of coordination Each cache in the IO stack makes

its decisions locally, agnostic to the state of other caches in

the stack, leading to inefficiencies, such as double caching,

as was also noted by Wong and Wilkes [43].

• Lack of adaptability Currently, the organization and

configuration of caches is fixed. Caches cannot be added,

removed, or resized on the fly to adapt to changes in the

workload or in provider objectives.

• Waste of system resources Simple solutions for par-

titioning caches along the IO stack are not sufficient. For

example, Figure 2(b) shows that the observed performance

triples when cache space is optimally allocated according to

workload characteristics (the workload consists of 4 tenants

using 120 VMs in total), compared to the case when caches

are naively allocated equally across tenants. We will describe

the details of this experiment in Section 5, but note that all

workloads’ throughputs benefit when the right cache size is

chosen. This is true even for tenants that receive less total

cache, as the contention at the storage device is reduced.

While some of these problems have been tackled in iso-

lation, there is no comprehensive framework for the end-to-

end management of caches that allows providers to address

the major issues they are facing today. We present Moirai1,

a tenant- and workload-aware system that allows data cen-

ter providers to control their distributed caching infrastruc-

ture to achieve provider objectives, such as improving re-

source utilization and request latency, achieving tenant iso-

lation, and QoS guarantees. Moirai does not require changes

to the IO stack architecture, is transparent to applications and

VMs, and does not change cache consistency semantics.

2. Design

Figure 3 shows the architecture of Moirai, which comprises

three key components. At the core is a logically-centralized

1 Moirai (Ancient Greek for “apportioner”) in Greek mythology are the

three personifications of fate, who control the thread of life of every mortal

from birth to death, analogously to the end-to-end control of caches by the

three components that comprise Moirai.

�
��
�
�
�
�

�� ��

������������	
����

���
����	
����

��������	

����������
�����

���	
���

�����

�
�
�
�
��
��	

�
��	�
���

���
��

�������

������
��
�
�
�
�
�����

����������	�

�	�	���	�

Figure 3: The Moirai architecture.

controller that uses information on workload characteris-

tics maintained by the metrics engine to configure the pro-

grammable caches to achieve provider objectives.

2.1 The Metrics Engine

The Metrics Engine is a hypervisor-based module that main-

tains key characteristics for each workload running on the

system, such as throughput, number of reads vs. writes, etc.,

but also hit ratio curves, which describe the percentage of

requests serviced from cache as a function of the cache size.

We use phantom caches, which inspect IO headers (with

fields such as accessed file name, offset, length, etc.) and ex-

ploit techniques from recent work [33, 41, 42] to generate hit

ratio curves efficiently at runtime. The Metrics Engine peri-

odically sends these performance metrics to the centralized

controller.

2.2 Programmable Caches

Caches along the IO stack are programmable through a sim-

ple API shown in Table 1. Caches are created at the desired

position in the IO stack by sending a createCache call to

the appropriate level in the stack (more details in Section 4).

A cache c is made workload-aware using the createRule

call, which installs a rule to specify the IOs that should

be cached in c. If the header of an incoming IO matches

one of c’s rules, the IO (header+data) is sent through the

cache. The controller can also configure cache properties

(configureCache) to set the size, eviction, and write poli-

cies. Similarly, cache performance metrics are obtained via

the getCacheStats call.

The controller is all-seeing, and installs cache rules in a

way that maintains consistency and coherence across caches

along the IO stack. Care must also be taken when the loca-

tion of a cache changes (e.g., the controller decides to cache

at the storage server rather than at the hypervisor). In order

to maintain consistency, Moirai first removes the caches on

the old path, which automatically triggers the eviction of all

cached state, including writing any dirty blocks to the back-

end storage, and then installs caches on the new path. We

considered other options, such as keeping the old caches un-

til all accesses eventually move to the new caches, but they

add complexity and require maintaining extra metadata.

createCache (<size,eviction pol,write pol>)

returns a reference to the newly created cache c

removeCache (Cache c)

createRule (IO Header h, Cache c)

creates cache rule <src,op,file,range>→ c

removeRule (IO Header h, Cache c)

configureCache (<size,eviction pol,write pol>, Cache c)

getCacheStats (Cache c)

returns cache statistics

Table 1: Moirai’s API for a configurable cache.

2.3 Controller

The centralized controller uses the API described in Sec-

tion 2.2 and information provided by the Metrics Engine to

create and configure caches in order to implement objectives

specified by the provider, as illustrated in Section 3.

3. Data Plane Transformations

In this section, we explore Moirai’s ability to program

and transform the data plane to implement various cloud

provider objectives and improve workload performance. For

each goal, we illustrate how the controller effects the neces-

sary changes on the data plane.

3.1 Prioritizing a Workload

It’s often desirable to be able to isolate the performance of a

particular (high-priority) application A from that of another

application B sharing a cache in the same VM. The con-

troller can achieve this by configuring a dedicated cache C (a

50GB LRU write-through cache in this particular example)

inside the hypervisor, which is exclusive to workload A:

1: C = createCache (< 50GB, LRU, write-through>)

2: createRule (< V M, *, A.file, *>, C)

The createRule call configures the cache to accept all

R/W IOs originating from the VM that access any part of

A.file. The figure below shows the resulting data plane.

Workload A flows through its own cache C in the hyper-

visor, while workload B continues along its previous path,

bypassing that cache, effectively isolating A’s traffic from it.

���������	 ������

����	�
��
�� ������	
�� ������

�

���������

3.2 Providing Per-Workload Bandwidth Guarantees

Next we examine how Moirai allocates cache space to sev-

eral arbitrary workloads W1,W2, . . . ,Wn, all running on the

the same system, in order to guarantee each workload Wi

a particular bandwidth Bi. Similar to Section 3.1, the con-

troller passes each workload’s traffic through its own dedi-

cated cache Ci at the hypervisor (see figure on the following

column), but the question now becomes what the size each

of the caches needs to be. For simplicity of exposition, we

focus on hypervisor level caches only, but the techniques

can be expanded to include simultaneous allocation of hy-

pervisor and storage level cache space, as we explain in our

extended technical report [36].

�� �������

����	�
��

�� �������

����	�
��

���

�� ����	
��	 ��	���

��

��

To answer this question, the controller uses information

from the Metrics Engine to first determine the hit ratio

Hitcache
i required for workload Wi to meet a certain band-

width guarantee, and then allocates the workload Wi cache

space ai, such that U(ai) = Hitcache
i , where U is the work-

load’s hit ratio function (provided by the Metrics Engine).

More precisely, note that if the total bandwidth achievable

from the storage back-end 2 is BW
storage
i and main memory

bandwidth is BW memory, a workload’s bandwidth depends on

its hit ratio Hitcache
i as follows:

SLABW
i ≤ Hitcache

i ×BWmemory +(1−Hitcache
i)×BW

storage
i

That means the cache hit ratio in order to achieve a band-

width SLABW
i needs to be at least:

Hitcache
i ≥

SLABW
i −BW

storage
i

BW memory −BW
storage
i

After the min. data bandwidth guarantees SLABW
1 , . . . ,SLABW

n

are met for all n workloads, the leftover cache space can be

allocated based on priorities or using approaches highlighted

in Section 3.3 to optimize for global utility.

Recent work we have done provides performance guaran-

tees to applications that span multiple distributed appliances

and the intervening network, through the abstraction of a vir-

tual datacenter (VDC) [2]. We are currently also working to

expand this abstraction to include caches.

3.3 Maximizing Global Workload Utility

Rather than per-workload guarantees, a provider might strive

to maximize the global workload utility, i.e., the sum of

the utilities across all workloads in the system. Utility of

a workload could be measured by hit ratio, or be defined

more generally in terms of bytes per second (Bps) satisfied

by the cache, or by extending the notion of hit ratio by

introducing weights to account for the type of IO (i.e., reads

vs. writes), or even to account for the impact of a workload

on the storage device (e.g., sequential vs. random access).

The choice of definition for utility will be dictated by the

optimization goals of the cloud provider. Using the example

of hit ratios as the utility function, the controller can create

a separate cache for each workload (similar to Section 3.2)

and then use a classic result [37] to determine the cache

allocations a1, ...,an that maximize system-wide hit ratios

(shown in our extended technical report [36]).

2 If the storage back-end is remote, BW
storage
i is the minimum of the network

bandwidth, and the back-end storage array’s bandwidth.

One might argue that a standard, workload-agnostic sys-

tem that manages the entire cache as a single pool and ap-

plies its favorite replacement policy to it is also designed to

achieve the same goal of maximizing overall hit ratio. How-

ever, Moirai can provide generalizations of this goal (e.g., a

weighted sum of the hit ratios across workloads) and simul-

taneously provide other goals, such as isolation (e.g., pro-

tecting one workload from the effects of workload spikes in

another workload), which a standard system cannot.

3.4 Consolidating Memory Over Fast Networks

As systems are increasingly making use of fast networks

with speeds in excess of 40-100Gbps and RDMA capabil-

ities [12], use of remote resources is becoming increasingly

feasible and can improve overall utilization of resources.

Consider as an example a read-only dataset DATA.file ac-

cessed by N VMs across N hypervisors. Placing one consol-

idated cache at the storage server can result in an Nx reduc-

tion in total cache space used, with potentially only small in-

creases in latency. The controller can accomplish this as fol-

lows (using the example of a 100GB MRU write-back cache

C as the consolidated cache):

1: C = createCache (<100GB , MRU, write-back>)

2: createRule (< V M1−N, *, DATA.file, *>, C)

The resulting data plane is shown in the figure below:

���
���������

���

���	
����

���

�� ����	
��	 ��	���

�

3.5 Scaling Out Caches

In addition to fully-remote caching, caching capacity per

workload can be split across the compute and storage server,

while appearing to the VM and applications as one single

aggregate cache. Note that today, workloads do flow through

both caches (at the hypervisor, and at the storage server),

but this occurs in an uncontrolled fashion, leading to wasted

memory capacity by double-caching of data in both places.

In situations where the hypervisor is hosting several ap-

plications and memory is limited, the controller has several

choices for how to split the cache for a workload A and con-

figure it at the hypervisor(1) and storage server(2). If the

workload access is uniform across the file, one choice is to

cache half the file in each of the respective caches:

1: createRule (< V M, *, A.file, 0, size/2>, C1)

2: createRule (< V M, *, A.file, size/2+1, size>, C2)

The resulting data plane is shown in the figure below:

���������	 ������

�� ������	
�� ������

��

�	

The controller can also match workload access patterns

to the way the cache is split based on hot or cold blocks or

files. Another option is to treat both caches as a global LRU

cache. To do that, the controller programs C1 to cache the

IOs from A.file, and C2 to only cache IOs that were evicted

(or “demoted”) from C1.

4. Implementation

We have implemented and deployed a Moirai prototype,

comprising all components described in Section 2, on a

Windows-based system and made the code publicly avail-

able [1]. The controller is implemented in around 6000 LOC

of C# and communicates with the caches through RPCs over

TCP. The Metrics Engine is implemented as a user-level

stage in the hypervisor in around 500 LOC and uses a variant

of SHARDS [41] to determine hit ratio curves. Cache mod-

ules implement the APIs in Table 1 at user-level in around

2000 LOC in C#.

One implementation challenge is how to classify and di-

rect a tenant’s traffic to the configurable caches. We decided

to build an extension of the IOFlow framework [38] to im-

plement this functionality. Note that while in its original

form IOFlow does keep track of each IO’s tenant class, it was

designed to provide IO queueing and rate limiting based on

IO request headers. By contrast, caching involves inspection

and manipulation of the data associated with an IO request.

We implemented an extension of the IOFlow architecture

to add support for data transformations using a version of

the Windows messaging API for filter drivers, in around 500

new LOC. IOs are passed to a user-level cache through an

upcall, while a kernel-mode thread handling the IO request

blocks pending a return code from the cache. The latter de-

cides whether the request is terminated at the filter driver

(hit), or is sent further down the IO stack.

5. Experimental Evaluation

This section provides an experimental evaluation of some of

Moirai’s use cases presented in Section 3. Our experimen-

tal testbed has 12 servers, each with 16 Intel Xeon 2.4 GHz,

384 GB of RAM and three Seagate Constellation 2 disks

or four Intel 520 SSDs in RAID-0. The servers run Win-

dows Server 2012 R2 operating system and can act as either

Hyper-V hypervisors or as storage servers. Each server has a

40 Gbps Mellanox ConnectX-3 NIC supporting RDMA and

connected to a Mellanox MSX1036B-1SFR switch. We use

real enterprise application traces and benchmarks, as speci-

fied below and in more detail in our technical report [36]. As

Moirai is transparent to applications and VM’s, they can run

on our testbed without modifications.

5.1 Enforcing Priorities

We examine Moirai’s ability to prioritize a workload using

the example of a VM with one SQL Server instance running

both TPC-E and TPC-H. The corresponding database files,

“TPCE.VHD” and “TPCH.VHD” each have a footprint of

50GB and are stored on Virtual Hard Drives (VHDs) on two

separate disk-based storage servers.

1

10

100

Q2 Q6 Q7 Q15 Q19

La
te

n
cy

 (
se

co
n

d
s)

Hypervisor Storage 40Gbps Storage 1Gbps

Figure 4: Latency for 5 TPC-H queries. The controller

can decide to use file caches in the storage server for fast

RDMA-based networks. Y-axis is log scale.

We run two experiments, one with default caching and

one where we use Moirai to prioritize the TPC-E work-

load, as explained in Section 3.1, and measure the following

throughput (transactions/min) for the TPC-E workload:

Default (Txn/min) Moirai (Txn/min)

TPC-E TPC-E with TPC-E TPC-E with

alone TPC-H alone TPC-H

1098 207 871 852

We observe that in the system without Moirai, TPC-E’s

performance drops by more than 5X when TPC-H runs. On

the other hand, we find that with Moirai, TPC-E’s throughput

running alongside TPC-H is within 2.3 % of its throughput

running by itself.

Note that our current implementation of Moirai results in

a data plane overhead of 20% (this difference is due to using

our user-level cache vs. SQL Server’s native cache, which

is highly optimized). The overhead also stems in part from

extra memory copies between the kernel and the user-level

cache. We believe that this overhead is acceptable compared

to the 5x drop in performance with today’s caching infras-

tructure. Further, note that the controller can detect when

no other workloads are running and remove the user-level

cache, thus avoiding the extra overhead.

5.2 Maximizing Global Hit Rate

We consider the example of maximizing global hit rate using

four tenants with 30 VMs each, spread over 10 hypervisors

accessing VHDs on an SSD-based storage server. Each ten-

ant’s VM uses IOMeter, parameterized with the key charac-

teristics of the Hotmail workloads [36] (Tenants 1-4 are run-

ning the Index, Data, Msg and Log workloads respectively).

We compare two approaches of dividing up the cache

space. In the first we divide space equally among the four

tenants. In the second (after 480 seconds), we use the method

described in Section 3.3 to partition the cache and reconfig-

ure the data plane. The results are shown in Figure 2(b).

Interestingly, we observe not only that overall throughput

increases by more than 2.5x, but also that this improvement

comes at no cost to any of the individual four tenants. The

reason is that all tenants benefit from the decreased load at

the storage back-end.

0

400

800

1200

1600

2000

Baseline

(1x5GB)

Double

caching

(2x5GB)

IoCache

(2x5GB)

Ideal (1X10GB)

Tr
a
n
sa
ct
io
n
s/
m
in
u
te

Moirai

Figure 5: Splitting IOs for TPC-E across two different

caches. Today, “double caching” occurs since all IOs flow

through all caches. Moirai can prevent this, and match

the performance of an aggregate cache.

We have experimented with other workload combinations

as well. In the worst case across all experiments the overall

throughput still increased by 35%, but this came at the cost

of a small penalty to one tenant, whose throughput dropped

by 10%. A cloud provider could feed into the controller a

minimum amount of cache space or minimum hit rate it

wants to guarantee each workload, and then ask it to divide

the remaining cache space to maximize global utility.

5.3 Consolidating Memory Over Fast Networks

In this section we use Moirai with a TPC-H workload run-

ning on 10 different hypervisors to illustrate the trade-offs

for memory consolidation over fast networks. We compare

the case where Moirai is used to insert a 50GB cache inside

each of the 10 hypervisors, to the case where Moirai inserts

one shared 50GB cache at the storage server, which is either

accessed at 1Gbps over TCP or at 40Gbps over RDMA. In

all cases, all the data resides in memory (100% hit rate). The

results are shown in Figure 4.

We observe that the average latency overhead when using

a consolidated cache over the fast network is around 26%,

compared to using local hypervisor caches. For the slow

network the overheads are 153%. Note that in exchange for

paying these overheads one gains a 10X reduction in the

total amount of cache space allocated for this workload. Also

note that with Moirai a provider has the option to seamlessly

switch from one cache configuration to another, depending

on the state of the system. For example, a provider might

switch to a consolidated cache at the cost of some latency

penalties when cache space is scarce.

5.4 Scaling Out Caches

In this section, we evaluate Moirai’s ability to scale out

the storage cache as described in Section 3.5. We con-

sider a TPC-E workload on a machine low on memory. The

provider wishes to scale out TPC-E’s 5GB hypervisor cache

to include another 5GB at the storage server.

Figure 5 shows the results when allocating the split cache

with and without Moirai. Without Moirai there is little ben-

efit to adding a 5GB cache at the storage server (second bar

from the left), compared to having only the 5GB cache at

the hypervisor (left-most bar), due to double caching. On

0

1

2

3

4

5

6

7

8

0

10

20

30

40

50

60

70

80

90

0

2
4

4
8

7
2

9
6

1
2

0

1
4

4

1
6

8

1
9

2

2
1

6

2
4

0

2
6

4

2
8

8

3
1

2

3
3

6

3
6

0

3
8

4

4
0

8

4
3

2

4
5

6

4
8

0

5
0

4

5
2

8

5
5

2

5
7

6

6
0

0

Te
n

a
n

t
th

ro
u

g
h

p
u

t
(G

B
/s

)

A
g

g
re

ga
te

 t
e

n
a

n
t

ca
ch

e
 s

iz
e

 (
G

B
)

Time (s)

Cache size Throughput

no cache 120 flows allocated

72GB cache

60 flows go idle. 60 active

flows allocated 72GB cache

120 flows allocated

72GB cache

Figure 6: Moirai adapting to workloads dynamically

over time. Note there are two y-axis.

the other hand when setting up the two caches with Moirai

(third bar from the left), performance is similar to that of an

aggregate 10GB cache at the hypervisor (right-most bar).

5.5 Dynamic Workloads

The controller in Moirai continuously monitors the metrics

and dynamically reacts to changes after some reaction time

s, a configurable parameter. For example, Moirai will detect

when a cache goes unutilized and reuse the space accord-

ingly. We have worked with values for s on the order of

15-30 seconds - we believe that this range presents a good

trade-off between responsiveness and unwarranted reconfig-

urations due to momentary changes in workload demand.

To illustrate Moirai’s dynamic capabilities, we evaluate a

setup consisting of 10 hypervisors each with 12 VMs, where

each VM has a 2GB file stored on an SSD back-end accessed

by IOMeter. The provider uses Moirai to allocate a total of

72GB cache at the hypervisor level, which is evenly split

between VMs (i.e., each receiving 72/120 GB).

Figure 6 shows what happens if half of the VMs on each

hypervisor go idle for some time, before they become active

again at a later point. Moirai detects when the VMs go

idle and re-computes the cache allocation for each VM to

distribute spare capacity, hence improving the performance

of the active VMs. Once all VMs become active again,

Moirai re-computes the initial allocations, and performance

goes back to previous levels.

6. Related work
Application caches. There has been much work recently

on caches in data centers. Much of it focused on spe-

cialized application caches, such as Facebook’s photo-

serving stack [22], Facebook’s social graph store [5], mem-

cached [14], or explicit cloud caching services [8, 9]. In

contrast, our work is on system storage caches for hosting

cloud providers that run arbitrary workloads.

System caches. Work on system caches has focused on

efficient use of memory for virtual machines through bal-

looning and sharing techniques [20, 30, 40], which are im-

plemented in state-of-the-art hypervisors like VMware’s and

Hyper-V. Our work focuses on other caches in the system,

beneath the VM abstraction.

Cache replacement policies Some prior work has fo-

cused on isolating the cache effects of streams with differ-

ent access patterns (sequential versus looping) within the

same workload from each other [10, 15, 25, 29]. However,

these policies are not workload- or tenant-aware and cannot

prevent a more aggressive workload from occupying more

than its fair share of cache. Moreover, each of these policies

might actually work better when applied in the context of

Moirai, where a cache policy works on a per workload seg-

regated cache, as patterns of different workloads don’t get

interspersed and hence might be easier to detect. Others pro-

pose methods to detect changes in workload patterns and dy-

namically adjust the caching policy used by the system [16].

Moirai provides a perfect vehicle for implementing such an

approach and it would be interesting to extend it to support

such functionality. Yet another line of work [21, 27] pro-

poses that applications explicitly manage their cache space

and its contents, while our goal was to provide a solution that

is transparent to the application.

Inefficiencies in cache hierarchies Several other papers

have addressed the problem of inefficiencies in cache hier-

archies, e.g., some [7, 28] pass hints from the client to bet-

ter inform caching decisions at the storage server and oth-

ers [43] extend the SCSI command set by a demote com-

mand to avoid double caching. Our solution does not require

application or VM support, or changes to existing protocols.

Software defined storage. Similar to recent work on

software-defined networking (SDNs) [6, 13, 23, 26, 32, 39,

44] and storage (SDS) [38], our architecture is controller-

based with a separation between the data and the control

plane. Moirai’s implementation uses IOFlow’s [38] mecha-

nisms for traffic classification, however Moirai’s implemen-

tation required extensions to IOFlow, e.g., to support arbi-

trary inspection and manipulation of IO request data, as well

as the implementation of the three core components Moirai

comprises (as described in Section 2 and Section 4).

7. Summary
Caches are a critical resource in data centers. But today,

they are implicit, not designed for controlled sharing, lead-

ing to severe inefficiencies under multi-tenancy. This paper

presents Moirai, a software-defined caching architecture that

enables control of caches in a multi-tenant data center, with-

out requiring any tenant input or hints. We show using sev-

eral different use cases how Moirai can help ease the man-

agement of the distributed caching infrastructure and enable

the provider to achieve a series of different objectives. We

hope that our public release of the code [1] implementing

the Moirai prototype will help foster future work in this area,

and encourage you to read our technical report [36] for fur-

ther details.

8. Acknowledgements
We thank the anonymous reviewers, our shepherd An-

dreas Haeberlen, Jim Pinkerton, and Thomas Pfenning for

their feedback. Ioan Stefanovici is supported by a Natu-

ral Sciences and Engineering Research Council of Canada

(NSERC) CGS-D scholarship.

References

[1] Moirai prototype. https://github.com/

ioan-stefanovici/Moirai.

[2] S. Angel, H. Ballani, T. Karagiannis, G. O’Shea, and

E. Thereska. End-to-end performance isolation through vir-

tual datacenters. In 11th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 14), Broomfield,

CO, USA, Oct. 2014.

[3] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron. To-

wards predictable datacenter networks. In Proceedings of the

ACM SIGCOMM 2011 Conference, Toronto, Ontario, Canada.

[4] J.-P. Billaud and A. Gulati. hclock: Hierarchical qos for packet

scheduling in a hypervisor. In Proceedings of the 8th ACM

European Conference on Computer Systems, EuroSys ’13,

Prague, Czech Republic, 2013.

[5] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Di-

mov, H. Ding, J. Ferris, A. Giardullo, S. Kulkarni, H. Li,

M. Marchukov, D. Petrov, L. Puzar, Y. J. Song, and

V. Venkataramani. Tao: Facebook’s distributed data store for

the social graph. In Proceedings of the 2013 USENIX Confer-

ence on Annual Technical Conference, USENIX ATC’13, San

Jose, CA, USA.

[6] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown,

and S. Shenker. Ethane: taking control of the enterprise. In

Proceedings of ACM SIGCOMM 2007, Kyoto, Japan.

[7] Z. Chen, Y. Zhang, Y. Zhou, H. Scott, and B. Schiefer. Em-

pirical evaluation of multi-level buffer cache collaboration for

storage systems. In Proceedings of the 2005 ACM SIGMET-

RICS International Conference on Measurement and Model-

ing of Computer Systems, SIGMETRICS ’05, Banff, Alberta,

Canada.

[8] G. Chockler, G. Laden, and Y. Vigfusson. Data caching as a

cloud service. In Proceedings of the 4th International Work-

shop on Large Scale Distributed Systems and Middleware,

LADIS ’10, Zrich, Switzerland, 2010.

[9] G. Chockler, G. Laden, and Y. Vigfusson. Design and imple-

mentation of caching services in the cloud. IBM Journal of

Research and Development, 55(6):9:1–9:11, Nov 2011.

[10] J. Choi, S. H. Noh, S. L. Min, and Y. Cho. An implemen-

tation study of a detection-based adaptive block replacement

scheme. In Proceedings of the Annual Conference on USENIX

Annual Technical Conference, ATEC ’99, Monterey, Califor-

nia, 1999.

[11] H.-T. Chou and D. J. DeWitt. An evaluation of buffer manage-

ment strategies for relational database systems. In Proceed-

ings of the 11th International Conference on Very Large Data

Bases - Volume 11, VLDB ’85, Stockholm, Sweden, 1985.

[12] A. Dragojevic, D. Narayanan, O. Hodson, and M. Castro.

Farm: Fast remote memory. In Proceedings of the 11th

USENIX Conference on Networked Systems Design and Im-

plementation, NSDI’14, Seattle, WA, 2014.

[13] A. D. Ferguson, A. Guha, C. Liang, R. Fonseca, and S. Krish-

namurthi. Participatory networking: An API for application

control of SDNs. In Proceedings of ACM SIGCOMM 2013,

Hong Kong, 2013.

[14] B. Fitzpatrick. Distributed caching with memcached. Linux

J., 2004(124):5–, Aug. 2004.

[15] C. Gniady, A. R. Butt, and Y. C. Hu. Program-counter-based

pattern classification in buffer caching. In Proceedings of the

6th Conference on Symposium on Operating Systems Design

& Implementation, OSDI’04, San Francisco, CA, 2004.

[16] R. B. Gramacy, M. K. Warmuth, S. A. Brandt, and I. Ari.

Adaptive caching by refetching. In In Advances in Neural

Information Processing Systems 15, pages 1465–1472. MIT

Press, 2002.

[17] A. Gulati, I. Ahmad, and C. A. Waldspurger. Parda: propor-

tional allocation of resources for distributed storage access. In

Proccedings of Usenix FAST 2009, San Francisco, California,

2009.

[18] A. Gulati, A. Merchant, and P. J. Varman. mClock: handling

throughput variability for hypervisor IO scheduling. In Pro-

ceedings of USENIX OSDI 2010, Vancouver, BC, Canada,

2010.

[19] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu,

and Y. Zhang. Secondnet: A data center network virtualization

architecture with bandwidth guarantees. In Proceedings of the

6th International COnference, Co-NEXT ’10, Philadelphia,

Pennsylvania, 2010.

[20] D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren,

G. Varghese, G. M. Voelker, and A. Vahdat. Difference en-

gine: Harnessing memory redundancy in virtual machines. In

Proceedings of the 8th USENIX Conference on Operating Sys-

tems Design and Implementation, OSDI’08, San Diego, Cali-

fornia, 2008.

[21] K. Harty and D. R. Cheriton. Application-controlled physical

memory using external page-cache management. In Proceed-

ings of ACM ASPLOS 1992, Boston, Massachusetts, USA,

1992.

[22] Q. Huang, K. Birman, R. van Renesse, W. Lloyd, S. Kumar,

and H. C. Li. An analysis of Facebook photo caching. In

Proceedings of ACM SOSP 2013, Farmington, Pennsylvania,

USA, 2013.

[23] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,

S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle,

S. Stuart, and A. Vahdat. B4: Experience with a globally-

deployed software defined wan. In Proceedings of ACM

SIGCOMM 2013, Hong Kong, China, 2013.

[24] V. Jeyakumar, M. Alizadeh, D. Mazières, B. Prabhakar,

C. Kim, and A. Greenberg. Eyeq: Practical network per-

formance isolation at the edge. In Proceedings of the 10th

USENIX Conference on Networked Systems Design and Im-

plementation, NSDI ’13, Lombard, IL, 2013.

[25] J. M. Kim, J. Choi, J. Kim, S. H. Noh, S. L. Min, Y. Cho, and

C. S. Kim. A low-overhead high-performance unified buffer

management scheme that exploits sequential and looping ref-

erences. In Proceedings of the 4th Conference on Symposium

on Operating System Design & Implementation, OSDI ’00,

San Diego, California, 2000.

[26] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski,

M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and

S. Shenker. Onix: a distributed control platform for large-

https://github.com/ioan-stefanovici/Moirai
https://github.com/ioan-stefanovici/Moirai

scale production networks. In Proceedings of USENIX OSDI

2010, Vancouver, BC, Canada, 2010.

[27] C.-H. Lee, M. C. Chen, and R.-C. Chang. Hipec: High per-

formance external virtual memory caching. In Proceedings of

USENIX OSDI 1994, Monterey, California, USA, 1994.

[28] X. Li, A. Aboulnaga, K. Salem, A. Sachedina, and S. Gao.

Second-tier cache management using write hints. In Proceed-

ings of the 4th Conference on USENIX Conference on File and

Storage Technologies, FAST ’05, San Francisco, CA, 2005.

[29] N. Megiddo and D. S. Modha. Arc: A self-tuning, low over-

head replacement cache. In Proceedings of the 2Nd USENIX

Conference on File and Storage Technologies, FAST ’03, San

Francisco, CA, 2003.

[30] G. Miłós, D. G. Murray, S. Hand, and M. A. Fetterman. Satori:

Enlightened page sharing. In Proceedings of the 2009 Confer-

ence on USENIX Annual Technical Conference, USENIX’09,

San Diego, California, 2009.

[31] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy, S. Rat-

nasamy, and I. Stoica. Faircloud: Sharing the network in cloud

computing. In Proceedings of the ACM SIGCOMM 2012,

Helsinki, Finland, 2012.

[32] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, S. Vyas, and M. Yu.

SIMPLE-fying middlebox policy enforcement using SDN. In

Proceedings of the ACM SIGCOMM 2013, Hong Kong, 2013.

[33] T. Saemundsson, H. Bjornsson, G. Chockler, and Y. Vig-

fusson. Dynamic performance profiling of cloud caches. In

Proceedings of the ACM Symposium on Cloud Computing,

SOCC ’14, Seattle, WA, USA, 2014.

[34] A. Shieh, S. Kandula, A. Greenberg, C. Kim, and B. Saha.

Sharing the data center network. In Proceedings of the 8th

USENIX Conference on Networked Systems Design and Im-

plementation, NSDI’11, Boston, MA, 2011.

[35] D. Shue, M. J. Freedman, and A. Shaikh. Performance isola-

tion and fairness for multi-tenant cloud storage. In Proceed-

ings of Usenix OSDI 2012, Hollywood, CA, USA, 2012.

[36] I. Stefanovici, E. Thereska, G. OShea, B. Schroeder,

H. Ballani, T. Karagiannis, A. Rowstron, and T. Talpey.

Software-defined caching: Managing caches in multi-tenant

data centers. Technical Report CSRG-626, Department

of Computer Science, University of Toronto, ftp://

ftp.cs.toronto.edu/csrg-technical-reports/626/

ut-csrg-626.pdf, 2015.

[37] H. S. Stone, J. Turek, and J. L. Wolf. Optimal partitioning

of cache memory. IEEE Trans. Comput., 41(9):1054–1068,

Sept. 1992.

[38] E. Thereska, H. Ballani, G. O’Shea, T. Karagiannis, A. Row-

strow, T. Talpey, R. Black, and T. Zhu. IOFlow: A software-

defined storage architecture. In Proceedings of ACM SOSP,

Farmington, Pennsylvania, USA, 2013.

[39] N. Tolia, M. Kaminsky, D. G. Andersen, and S. Patil. An

architecture for internet data transfer. In Proceedings of

USENIX NSDI 2006, San Jose, CA, 2006.

[40] C. A. Waldspurger. Memory resource management in

VMware ESX server. SIGOPS Oper. Syst. Rev., 36(SI):181–

194, Dec. 2002.

[41] C. A. Waldspurger, N. Park, A. Garthwaite, and I. Ahmad. Ef-

ficient MRC construction with SHARDS. In 13th USENIX

Conference on File and Storage Technologies (FAST 15),

Santa Clara, CA, Feb. 2015.

[42] J. Wires, S. Ingram, Z. Drudi, N. J. A. Harvey, and

A. Warfield. Characterizing storage workloads with counter

stacks. In 11th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 14), Broomfield, CO, Oct.

2014.

[43] T. M. Wong and J. Wilkes. My cache or yours? making

storage more exclusive. In Proceedings of USENIX ATC 2002,

Monterey, California, 2002.

[44] H. Yan, D. A. Maltz, T. S. E. Ng, H. Gogineni, H. Zhang, and

Z. Cai. Tesseract: a 4D network control plane. In Proceedings

of USENIX NSDI 2007, Cambridge, MA, 2007.

ftp://ftp.cs.toronto.edu/csrg-technical-reports/626/ut-csrg-626.pdf
ftp://ftp.cs.toronto.edu/csrg-technical-reports/626/ut-csrg-626.pdf
ftp://ftp.cs.toronto.edu/csrg-technical-reports/626/ut-csrg-626.pdf

	Introduction
	Design
	The Metrics Engine
	Programmable Caches
	Controller

	Data Plane Transformations
	Prioritizing a Workload
	Providing Per-Workload Bandwidth Guarantees
	Maximizing Global Workload Utility
	Consolidating Memory Over Fast Networks
	Scaling Out Caches

	Implementation
	Experimental Evaluation
	Enforcing Priorities
	Maximizing Global Hit Rate
	Consolidating Memory Over Fast Networks
	Scaling Out Caches
	Dynamic Workloads

	Related work
	Summary
	Acknowledgements

