Assignment 2 CSC263
 Due: Oct 14, 2008

1. Consider a dictionary over the integers extended by the following two operations:
(a) CLOSEST-NON-ELEMENT (S, x) which given a finite subset $S \subseteq \mathbf{Z}$ and an integer $x \in \mathbf{Z}$, returns an integer $y \in \mathbf{Z}-S$ (i.e., an integer y not in S) that is closest to x. (Note: x need not be in S.)
(b) CLOSEST-PAIR (S) which returns two integers in S which are closest together in value. In other words, if CLOSEST-PAIR(S) returns the integers a and b, then they must satisfy the condition

$$
\forall x, y \in S \quad(x \neq y \rightarrow|a-b| \leq|x-y|)
$$

It is an error if S contains fewer than two elements.
Explain how to augment a red-black tree so that CLOSEST-NON-ELEMENT (S, x) and CLOSET$\operatorname{PAIR}(S)$, as well as the standard operations $\operatorname{SEARCH}(S, x), \operatorname{INSERT}(S, x)$, and $\operatorname{DELETE}(S, x)$ can all be performed in $O(\log |S|)$ time. Justify why your algorithms are correct and run within the required time bound.
2. Consider two hash tables, T_{1} and T_{2}, with the same number of buckets. With T_{1}, we use chaining to resolve collisions, where each chain is a doubly-linked list and insertions are done at the front of the list. With T_{2}, we use linear probing to resolve collisions, and deletions are done by replacing the item with a special "deleted" item. For both tables, we use the same hash function.
(a) Let $S=S_{1}, S_{2}, \ldots, S_{n}$ be a sequence of INSERT and DELETE operations. Suppose that we perform S on both T_{1} and T_{2}. For $1 \leq i \leq n$, let $C_{1, i}$ be the number of item comparisons made when performing S_{i} on T_{1}, and let $C_{2, i}$ be the number of item comparisons made when performing S_{i} on T_{2}. Show that for $1 \leq i \leq n, C_{1, i} \leq C_{2, i}$.
(b) Explain why the claim in part (a) is no longer true if the sequence S also contains SEARCH operations.
(c) Let S be as in part (a). Suppose we perform S on both T_{1} and T_{2}, then do a SEARCH operation where each item in the table is equally likely to be searched for. Let E_{1} be the expected number of item comparisons made when performing the SEARCH operation on T_{1}, and let E_{2} be the expected number of item comparisons made when performing the SEARCH operation on T_{2}. Prove that $E_{1} \leq E_{2}$.

