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Abstract

Linear and semidefinite programming are highly suc-
cessful approaches for obtaining good approximations
for NP-hard optimization problems. For example, break-
through approximation algorithms for MAX CUT and
SPARSEST CUT use semidefinite programming.

Perhaps the most prominent NP-hard problem whose
exact approximation factor is still unresolved is VER-
TEX COVER. PCP-based techniques of Dinur and
Safra [7] show that it is not possible to achieve a factor
better than 1.36; on the other hand no known algorithm
does better than the factor of 2 achieved by the simple
greedy algorithm. Furthermore, there is a widespread
belief that SDP techniques are the most promising meth-
ods available for improving upon this factor of 2.

Following a line of study initiated by Arora et al. [3],
our aim is to show that a large family of LP and SDP
based algorithms fail to produce an approximation for
VERTEX COVER better than 2. Lovász and Schri-
jver [21] introduced the systems LS and LS+ for sys-
tematically tightening LP and SDP relaxations, respec-
tively, over many rounds. These systems naturally cap-
ture large classes of LP and SDP relaxations; indeed,
LS+ captures the celebrated SDP-based algorithms for
MAX CUT and SPARSEST CUT mentioned above.

We rule out polynomial-time 2 − Ω(1) approxima-
tions for VERTEX COVER using LS+. In particular, we
prove an integrality gap of 2−o(1) for VERTEX COVER

SDPs obtained by tightening the standard LP relaxation
with Ω(

√
log n/ log log n) rounds of LS+. While tight

integrality gaps were known for VERTEX COVER in the
weaker LS system [23], previous results did not rule out
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a 2−Ω(1) approximation after even two rounds of LS+.

1 Introduction

A vertex cover in a graph G = (V, E) is a set S ⊆ V
such that every edge e ∈ E intersects S in at least one
endpoint. The minimum VERTEX COVER problem asks
what size the minimum vertex cover in G is. Determin-
ing how well we can approximate VERTEX COVER is
one of the outstanding open problems in the complexity
of approximation: while VERTEX COVER has a trivial
2-approximation algorithm, no better approximation al-
gorithms are known.

This contrasts with the situation for another famous
problem, MAX CUT: for many years, no approxima-
tion algorithm was known that could yield better than
a (0.5 + o(1))-approximation (the trivial randomized
algorithm gives a 0.5-approximation) until the semi-
nal paper of Goemans and Williamson [12] which used
semidefinite programming (SDP) to obtain a 0.878-
approximation algorithm. Since then semidefinite pro-
gramming has yielded breakthrough approximation al-
gorithms for various NP-hard optimization problems
and has arguably become our most powerful tool for
designing approximation algorithms. Consequently,
semidefinite programming is believed (see Lovász [20]
for instance) to be the most promising technique for at-
tacking the VERTEX COVER problem.

However, Kleinberg and Goemans [19] showed in
’95 that the standard SDP for VERTEX COVER has an
integrality gap of 2 − o(1). Subsequently, Charikar [6]
showed that the integrality gap remains 2 − o(1) even
if we add additional triangle inequality constraints.



Hatami, Magen and Markakis [14] strengthened this fur-
ther, showing that this state of affairs remains even when
we add the so-called pentagonal inequality constraints.

Indeed, the state of the art is such that SDP-based
algorithms for VERTEX COVER must settle for compet-
ing in “how big” the “little oh” term is in the 2 − o(1)
factor. Halperin [13] gives a (2 − log log ∆/ log∆)-
approximation, where ∆ is the maximal degree of the
graph. The best approximation algorithm currently
known for arbitrary graphs is due to Karakostas [16]
who obtains a (2 − Ω(1/

√
log n))-approximation algo-

rithm using a stronger SDP relaxation.

Nevertheless, it is consistent with the known hardness
results for VERTEX COVER that there could be some
other SDP with integrality gap, say, 1.4. In particu-
lar, the best PCP-based hardness result known (Dinur
and Safra [7]) only shows that 1.36-approximation of
VERTEX COVER is NP-hard. Only by assuming Khot’s
Unique Games Conjecture [17] do we get a tight 2−o(1)
inapproximability result [18]. However, determining the
validity of the Unique Games Conjecture (or directly im-
proving on [7]) remains a difficult open problem.

To get a better picture of the approximability of
VERTEX COVER (especially in light of the inability
to resolve the issue with PCP-based methods), Arora
et al. [3] suggested the following approach: rule out
good approximations by large families of algorithms.
One such family is the class of relaxations for VERTEX

COVER in the Lovász-Schrijver hierarchies. Lovász
and Schrijver [21] define procedures LS and LS+ for
systematically tightening linear and semidefinite relax-
ations, respectively, over many rounds. Important algo-
rithmic properties of LS and LS+ are: (a) n rounds of
even the weaker LS procedure suffice to obtain exact
solutions and (b) we can optimize a linear function over
the rth round LS and LS+ relaxations in nO(r) time
(provided the original relaxation had a polynomial-time
separation oracle).

Many celebrated SDP-based algorithms, includ-
ing the seminal MAX CUT algorithm of Goemans-
Williamson [12] and the Arora-Rao-Vazirani algo-
rithm [4] for SPARSEST CUT, can be derived using a
constant number of rounds of LS+. Thus proving inap-
proximability results for LS+ based algorithms rules out
one of the most promising classes of algorithms that we
currently have for obtaining 2 − Ω(1) approximations
for VERTEX COVER. Furthermore, unlike PCP-based
results we emphasize that such results do not rely on any
complexity theoretic assumptions.

Arora et al. [3] obtained the first result along these
lines for VERTEX COVER showing that Ω(log n) rounds

of the weaker LS procedure has an integrality gap of
2 − o(1). Tourlakis [25] subsequently proved an in-
tegrality gap of 1.5 − o(1) for VERTEX COVER for
Ω(log2 n) rounds of LS. Very recently, a beautiful re-
sult by Schoenebeck, Trevisan and Tulsiani [23] showed
that the integrality gap is 2−o(1) even after Ω(n) rounds
of LS. Unfortunately, the hard examples used in these
papers cannot be used to prove a 2−o(1) integrality gap
for even one round of LS+.

The only known integrality gaps for VERTEX COVER

LS+ relaxations prior to the current paper were proved
by Schoenebeck, Trevisan and Tulsiani [22] who
showed that the integrality gap remains 7/6 for Ω(n)
rounds of LS+. The graphs they use are obtained using
the standard FGLSS [8] reduction from MAX-3XOR to
VERTEX COVER. Such instances cannot prove stronger
integrality gaps for LS+ since their integrality gaps are
at most 7/6 after one round of LS+.

To summarize, previously known results do not pre-
clude a polynomial time 2 − Ω(1) approximation algo-
rithm for VERTEX COVER using LS+ tightenings. In
particular, showing a 2 − o(1) integrality gap for even
two rounds of LS+ remained a challenging open prob-
lem (Charikar’s construction [6] does imply a 2 − o(1)
gap for one round).

In this paper we rule out such approximations. Our
starting point is the graph families used to show 2 −
o(1) integrality gaps for various VERTEX COVER SDPs
in [19, 6, 14] (similar graphs were used by Alon
and Kahale [2] in independent work contemporaneous
with [19] studying the Lovász theta function). We
briefly describe these graphs. The vertex set is {−1, 1}m

and two vertices are adjacent if their Hamming distance
is exactly (1 − γ)m. A result of Frankl and Rödl [10]
bounds from above the size of any independent set in
such graphs by m(2 − Ω(γ2))m. Hence, for constant
γ > 0 (or even γ a slowly vanishing function of m) any
vertex cover has size (1−o(1))|V |. Of course for γ = 0
these graphs are just perfect matchings on 2m vertices.
The cleverness of the construction lies in how a minus-
cule increase in γ dramatically changes the independent
set size while not appreciably altering the “geometry” of
the graph (and hence not appreciably increasing the SDP
value from the perfect matching case).

We use this graph family to show that
Ω(

√
log n/ log log n) rounds of LS+ has an inte-

grality gap of 2 − o(1) for VERTEX COVER. Our main
theorem also implies that the integrality gap remains
at least 2 − O(

√
log log n/ logn) after O(1) rounds

of LS+. Hence, the approximation ratio achieved by
Karakostas’ [16] algorithm is essentially tight for “poly-



nomial” time LS+ relaxations. Our main technical tool
is the construction of a sequence of tensoring operations
on vectors. These operations have the property that
inner products on the set of tensored vectors are a poly-
nomial function of the inner products of the original
vectors. These extend similar tensoring operations
used by Charikar [6] (and implicit in earlier work by
Kahn and Kalai [15]). However, our application calls
for more complicated polynomials, and moreover the
polynomials (and hence the tensored vectors) change
as the induction unwinds in our lower bound argument
(details in Section 3).

Section 2 contains all necessary definitions includ-
ing a description of LS+. Section 3 outlines our ap-
proach while Section 4 contains the proof of our main
result. Section 5 discusses limitations of our approach
and poses some open problems.

2 Definitions, Notation and Tools

2.1 Standard SDPs for VERTEX COVER

The standard way to formulate VERTEX COVER for
a graph G = (V, E) as a quadratic integer program is:

min
∑

i∈V (1 + x0xi)/2
s.t. (x0 − xi)(x0 − xj) = 0 ∀ij ∈ E

xi ∈ {−1, 1} ∀i ∈ {0} ∪ V

The set of vertices i for which xi = x0 corresponds to
the minimal vertex cover. This quadratic program leads
to the following semidefinite programming relaxation:

min
∑

i∈V (1 + v0 · vi)/2
s.t. (v0 − vi) · (v0 − vj) = 0 ∀ij ∈ E

‖vi‖ = 1 ∀i ∈ {0} ∪ V
(1)

We can strengthen this relaxation by adding the vector
analogues of constraints valid in the integral case. Ex-
amples are the triangle and “extended” triangle inequal-
ities (respectively),

(vi − vj) · (vi − vk) ≥ 0 ∀i, j, k ∈ {0} ∪ V, (2)

(vi ± vj) · (vi ± vk) ≥ 0 ∀i, j, k ∈ {0} ∪ V. (3)

Relaxation (1) was studied in [19]. The SDP tightened
using (2) was studied in [6] while the SDP tightened us-
ing (2) and (3) (as well as the so-called pentagonal in-
equalities) was studied in [14].

2.2 Lovász-Schrijver Lift-and-Project

A convex cone is a set K ⊆ Rn+1 such that for every
y, z ∈ K , and for every α, β ≥ 0, αy + βz ∈ K .

Let ei denote the vector with 1 in coordinate i and 0
everywhere else. Hence, Y ei denotes the ith column of
a matrix Y . If K ⊆ R

n+1 is a convex cone, M+(K) ⊆
R

(n+1)×(n+1) consists of all symmetric (n+1)×(n+1)
matrices Y such that,

1. For all i = 0, 1, . . . , n, Y0i = Yii.
2. For all i = 0, 1, . . . , n, Y ei, Y e0 − Y ei ∈ K .
3. Y is positive semidefinite (PSD).

We then define N+(K) = {Y e0 : Y ∈ M+(K)} ⊆
R

n+1. That is, a vector y = (y0, . . . , yn) is in N+(K)
if there exists Y ∈ M+(K) such that Y e0 = y in
which case Y is called a protection matrix for y. De-
fine Nk

+(K) inductively by setting N0
+(K) = K and

Nk
+(K) = N+(Nk−1

+ (K)).
Let G = (V, E) be a graph and assume that V =

{1, . . . , n}. The VERTEX COVER convex cone for G,
V C(G), is the set of vectors y ∈ R

n+1 such that:

yi + yj ≥ y0 for all ij ∈ E (4)

y0 ≥ yi ≥ 0 for all i ∈ V (5)

y0 ≥ 0

Constraints (4) are called the edge constraints and con-
straints (5) are called the box constraints.

The value of the VERTEX COVER relaxation arising
from k rounds of LS+ is the solution of

min
∑n

i=1 yi

s.t. (y0, . . . , yn) ∈ Nk
+(V C(G)) and y0 = 1

The integrality gap of this relaxation (for n-vertex
graphs) is the largest ratio between the minimum vertex
cover size of G and the optimum in the above program,
over all n-vertex graphs G.

To get an idea of the power of LS+, we note first
that the relaxation N+(V C(G)) is at least as strong
as the standard SDP relaxation for VERTEX COVER

since the Cholesky decomposition of any matrix Y ∈
M+(V C(G)) satisfies (under an affine transformation)
SDP (1). In fact, it even satisfies the triangle inequali-
ties (2) for the case i = 0. On the other hand, one can
show that adding both the standard and “extended” tri-
angle inequalities (constraints (2) and (3), respectively)
to the standard VERTEX COVER SDP results in a re-
laxation at least as strong as N+(V C(G)). Indeed, we
will (implicitly) exploit the latter fact when constructing
SDP solutions for our lower bound.

2.3 Vectors and Tensoring

We will use 0 to denote the all-0 vector. Given
two vectors x,y ∈ {−1, 1}n their Hamming distance



dH(x,y) is |{i ∈ [n] : xi �= yi}|. For two vectors
u ∈ R

n and v ∈ R
m denote by (u,v) ∈ R

n+m the
vector whose projection on the first n coordinates is u
and on the last m coordinates is v.

Recall that the tensor product u ⊗ v of vectors u ∈
R

n and v ∈ R
mis the vector in R

nm indexed by ordered
pairs from n × m and that assumes the value uivj at

coordinate (i, j). Define u⊗d to be the vector in R
nd

obtained by tensoring u with itself d times.

Definition 1 Let P (x) = c1x
t1 + . . .+ cqx

tq be a poly-
nomial with nonnegative coefficients. Then we define TP

to be the function that maps a vector u to the vector
TP (u) = (

√
c1u

⊗t1 , . . . ,
√

cqu
⊗tq).

Fact 1 For all u,v ∈ R
d, TP (u) · TP (v) = P (u · v).

2.4 Frankl-Rödl Graphs

Definition 2 Fix γ, 0 ≤ γ ≤ 1 and an integer m ≥ 1.
The Frankl-Rödl graph Gγ

m is the graph with vertices
{−1, 1}m and where two vertices i, j ∈ {−1, 1}m are
adjacent if dH(i, j) = (1 − γ)m.

Relatives of the following lemma appear in [10] in
various guises, but it seems as if the exact statement that
we will use requires a further small step which we sketch
in Appendix A. The key difference with variants in [10]
is that we explicitly allow γ to be a function of m.

Lemma 1 Let m be an integer and let γ = γ(m) > 0
be a sufficiently small number so that γ · m is an even
integer. Then there are no independent sets in Gγ

m of size
larger than m2m(1 − γ2/64)m.

2.5 Saturated Vectors

In general, our lower bounds will be proved by ar-
guing about vectors whose coordinates are either 0/1 or
take on at most one other fixed value. The following
definition formalizes this.

Definition 3 A vector y ∈ [0, 1]n+1 is an ε-vector if
y0 = 1 and yi ∈

{
0, 1

2 + ε, 1
}

for all 1 ≤ i ≤ n.

Note that ε-vectors have the property that the sum of
any two non-0/1 coordinates is 1 + 2ε. A weaker con-
dition on vectors in [0, 1]n+1 would be to only require
that the sum of any two non-0/1 coordinates is at least
1+2ε. Such vectors were used in [23] and the following
definition is adapted from their paper:

Definition 4 ([23]) Let G = (V, E) be a graph. A vec-
tor y ∈ V C(G) is ε-saturated if for every edge ij ∈ E
such that yi and yj are both not integral, yi+yj ≥ 1+2ε.

Saturated vectors have the following important property
proved in [23] (we include a proof in Appendix B for
completeness):

Lemma 2 ([23]) Let G = (V, E) be any graph and sup-
pose x ∈ V C(G) is ε-saturated. Then x is a convex
combination of ε-vectors in V C(G).

The lemma essentially says that proving lower
bounds for ε-saturated vectors reduces to proving lower
bounds for ε-vectors. This will be crucial for our argu-
ments since we only know how to find protection matri-
ces for ε-vectors. We remark that our definition for sat-
uration is slightly different than the one in [23] as there
they only require that one of yi or yj in Definition 4 be
non-integral. Consequently, Lemma 2 becomes some-
what stronger to accommodate this difference, but the
additional argument for this strengthening is trivial (see
Appendix B).

3 Overview of the Proof

We start with a Frankl-Rödl graph G = Gγ
m and de-

note by n = 2m the size of G. We will show that the
point x = (1, 1/2 + ε, . . . , 1/2 + ε) is contained in the
polytope defined after Ω(

√
log n/ log log n) rounds of

LS+. This clearly gives us our desired 2 − o(1) inte-
grality gap.

The standard way to prove that a certain point x is in
the polytope resulting from r rounds of LS+ (hereafter,
the “rth polytope”) is as follows: (1) Exhibit a symmet-
ric PSD “protection” matrix Y for x such that the diago-
nal and first column of Y equal x. (2) Show inductively
that the vectors Y ei and Y (e0 − ei) are in the (r − 1)st
polytope. By definition of LS+ it will then follow that
x is in the rth polytope.

To define a protection matrix for x we will start with
the canonical set of vectors associated with the ver-
tices of G, namely the normalized versions of the vec-
tors {−1, 1}m (these vectors were also the starting point
for [19, 6, 14]). These vectors have the appealing prop-
erty that the inner product of vectors associated with two
vertices i and j is solely a function of their Hamming
distance dH(i, j). Observe that this property will not be
compromised by applying the TP tensoring transforma-
tion to the vectors. Indeed, we will use this tensoring
transformation with a specific polynomial P to obtain a
new set of tensored vectors and then define our candi-
date protection matrix to be essentially the Gram matrix



of these vectors. (Note that Charikar [6] also uses a ten-
sor transformation to prove his integrality gap for the
SDP with triangle inequalities.)

A consequence of the observation above is that the
values on the diagonal of the Gram matrix are all iden-
tical. So this protection matrix recipe only works for
vectors like x where all fractional values are the same.
In fact, for technical reasons which we do not get into in
this outline, this recipe produces valid protection matri-
ces only when x is a ρ-vector for some 0 < ρ < 1/2.

To continue our inductive argument we would in turn
like to use the same recipe to find candidate protection
matrices for each of the 2n vectors Y ei and Y (e0 − ei)
(or, more accurately, for the projections of these vectors
onto the hyperplane x0 = 1). The problem is that while
these 2n vectors may indeed be in the (r−1)st polytope,
they may not be ρ-vectors. (This is because the entries
Yij of Y ei are a polynomial function of dH(i, j) and the
latter is distributed like a binomial distribution when i is
fixed.) So the recipe cannot be used without extra work.

To remedy the situation, we will apply a “correc-
tion” phase as follows. (Note that “correction” phases
of some sort or another can be found in many previous
works [3, 1, 5, 25, 22, 23].) We will construct the ten-
sored vectors so that the vectors Y ei, Y (e0 − ei) have
high saturation. We will then use Lemma 2 to express
these vectors as convex combinations of ρ′-vectors from
V C(G) for some ρ′ > 0 (this is the “correction” part).
We then carry on the induction with these ρ′-vectors to
show that they lie in the (r − 1)st polytope. Convexity
then implies that the vectors Y ei, Y (e0−ei) are also in
the (r − 1)st polytope.

To summarize, we start with a vector x = (1, 1/2 +
ε0, . . . , 1/2 + ε0), ε0 = ε, and after one round we need
to show that the 2n vectors Y ei, Y (e0−ei) correspond-
ing to x’s protection matrix Y have large saturation ε1;
and then we continue with vectors with fractional values
1/2+ε1, and so on. In this process, the obvious objective
is to make the sequence ε0, ε1, ε2, . . . as slowly decreas-
ing as possible, thereby making it last for many rounds
before it becomes negative (which amounts to negative
saturation, and hence that the corresponding vectors are
not in V C(G) at all). We will show that for each round
i, we can ensure that εi = εi−1 − O(γ). Thus for ar-
bitrarily small initial ε0, we get an induction chain of
length Ω(ε0/γ).

The engine of this process and our main technical
tool are the tensor-inducing polynomials. Along with
the sequence of decreasing saturation values we shall
have a sequence of polynomials with positive coeffi-
cients, P0, P1, P2, . . . where Pi depends on εi and de-

termines εi+1. The choice of this sequence is at the
heart of the matter. The non-negativity requirement on
the coefficients is what makes this a challenging task.
Charikar [6] used a polynomial designed to produce vec-
tors that satisfy the triangle inequality. This polynomial
is the sum of a linear term and a degree O(1/γ) mono-
mial that unfortunately produces a poor saturation, and
hence cannot be used to proceed beyond one round of
LS+. In particular, the saturation it provides is about
1/m � γ. The problem is intrinsic: let us suppose
that we are dealing with Y (e0 − ei) for some fixed i.
It is easy to see that no matter which polynomial we
use, edges incident to vertex i will have no slack at all
in Y (e0 − ei). Such an edge ij will not in itself af-
fect the saturation as its vertices will have integral val-
ues; however, the continuous nature of the construction
means that nearby edges i′j′ will not have integral val-
ues since their values will correspond to evaluating the
polynomial at points only slightly different than those
for ij. But then, to ensure that i′j′ has good saturation,
our polynomial must vary a lot between the cases corre-
sponding to ij and i′j′. This calls for a polynomial with
a very large derivative, and hence one with very high de-
gree d � m; in contrast, the polynomial that Charikar
uses has degree independent of m.

4 Main Theorem

Lemma 3 Let m be a sufficiently large integer and γ >
0. Let n = 2m and let ε be a sufficiently small constant
such that ε > 5γ. Suppose in addition that y ∈ R

n+1 is
an ε-vector in V C(Gγ

m). Then there exists a protection
matrix Y for y such that for all i with 0 < yi < 1,
Y ei/yi and Y (e0−ei)/(1−yi) are convex combinations
of (ε − 6γ)-vectors. In particular, y ∈ N+(V C(Gγ

m)).

Given Lemma 3, we can prove our main theorem
from which the integrality gaps for LS+ stated in the
introduction immediately follow.

Theorem 5 Let m be sufficiently large, and fix γ ≥
12

√
log m

m such that γm are all even. Let ε be a suffi-
ciently small constant such that ε > 5γ. Let n = 2m

and let r =  ε
6γ � − 1. Then the integrality gap of

N r
+(V C(Gγ

m)) is at least 2 − 4ε − 2/m.

Proof: Let y = (1, 1
2 + ε, . . . , 1

2 + ε) ∈ R
n+1. Clearly

y ∈ V C(Gγ
m). A simple inductive argument using

Lemma 3 then implies that y ∈ N r
+(V C(Gγ

m)).



On the other hand, Lemma 1 implies that the largest
independent set in Gγ

m has size at most

2mm

(
1 − γ2

64

)m

≤ m2m

e
γ2m
64

≤ m2m

e
144
64 log m

≤ 2m

m
.

Hence, the integrality gap for N r
+(V C(Gγ

m)) is at least,
2m−2m/m

n( 1
2+ε)

= 2(1−1/m)
1+2ε ≥ 2 − 4ε − 2

m . �

4.1 Proof of Lemma 3

Fix m and γ and consider G = Gγ
m. Denote the

vertices V of G as vectors wi ∈ {−1, 1}m, 1 ≤ i ≤ 2m,
and for each vector wi ∈ V define ui = 1√

m
wi. Note

that ‖ui‖ = 1 for all i ∈ V and ui · uj = 2γ − 1 for
all ij ∈ E. Moreover, −1 ≤ ui · uj ≤ 1 − 2

m for all
1 ≤ i < j ≤ 2m.

Given a polynomial P with nonnegative coefficients
we will now define a procedure that takes the vectors
{ui}, applies the tensoring operation TP from Sec-
tion 2.3 to obtain a new set of vectors, and then applies a
linear transformation to the resulting vectors. The Gram
matrix of the vectors resulting from this procedure will
be called Y (P,y). Our goal will be to pick P so that
Y (P,y) is a protection matrix for y.

First, define v0 = (1, 0, . . . , 0). For each vertex 1 ≤
i ≤ 2m define,

vi =




v0, if yi = 1
0, if yi = 0
(1
2 + ε,

√
1−4ε2

2 · TP (ui)), if yi = 1
2 + ε

Let Y (P,y) ∈ R
(n+1)×(n+1) be the PSD matrix defined

by Y (P,y)ij = vi · vj . We define a class of polynomi-
als and show that for any polynomial P in this class,
Y (P,y) is a protection matrix for y.

Definition 6 A polynomial P (x) is called (γ, ε, m)-
useful if it satisfies the following conditions:

1. P has only nonnegative coefficients.

2. P (1) = 1,

3. P (x) ≥ P (2γ − 1) = − 1−2ε
1+2ε for all x ∈ [−1, 1].

4. For all i ∈ {1, . . . , 2m} and all jk ∈ E,

− 4ε

1 − 2ε
≤ P (ui · uj) + P (ui · uk) ≤ 4ε

1 + 2ε
. (6)

Claim 1 If P is (γ, ε, m)-useful, then Y = Y (P,y) ∈
M+(V C(G)). In particular, Y is a protection matrix
for y and hence, y ∈ N+(V C(G)).

Proof: Since Y is PSD by definition, to show that Y is
a protection matrix for y it suffices to show that: A) for
all 0 ≤ i ≤ n, Yi0 = Yii = yi, and B) for all 1 ≤ i ≤ n,
Y ei, Y (e0 − ei) ∈ V C(G).

Consider A first. Clearly Yi0 = Yii = yi whenever
yi ∈ {0, 1}. In particular, note that Y00 = 1. So assume
that yi = 1/2 + ε. Clearly Yi0 = 1

2 + ε, so consider Yii.
We have

Yii = vi · vi =
(

1
2

+ ε

)2

+
1 − 4ε2

4
TP (ui) · TP (ui)

=
1
4

+ ε + ε2 +
1 − 4ε2

4
P (ui · ui) =

1
2

+ ε,

where the last equality follows from the fact that the ui

are unit vectors and P (1) = 1.
Now consider B. We must show that for 1 ≤ i ≤ n,

Y ei and Y (e0−ei) both satisfy the edge constraints (4)
and the box constraints (5). Note that if yi ∈ {0, 1}, then
{Y ei, Y (e0 − ei)} = {0, Y e0} ⊆ V C(G) and these
constraints are trivially satisfied. So assume yi = 1

2 + ε.
The box constraints require for all 1 ≤ j ≤ n that

0 ≤ Yij ≤ Yi0 and 0 ≤ Y0j − Yij ≤ Y00 − Yi0. Equiva-
lently, for all 1 ≤ j ≤ n,

Yi0 + Yj0 − Y00 ≤ Yij ≤ Yi0. (7)

On the other hand, the edge constraints require for all
1 ≤ i ≤ n and all jk ∈ E that

Yij + Yik ≥ Yi0, (8)

(Y0j − Yij) + (Y0k − Yik) ≥ Y00 − Yi0. (9)

Since (7) holds when yi ∈ {0, 1}, by symmetry it
also holds if yj ∈ {0, 1}. So assume yj = 1

2 + ε. We
first show that the right inequality in (7) holds. Fix j ∈
{1, . . . , n}. Note that since P (1) = 1, it follows that
‖vi‖ = ‖vj‖. So, Yij = vi · vj ≤ ‖vi‖2 = Yii = Yi0.

Now consider the left inequality in (7). We have that,

Yij + Y00 − Yi0 − Yj0 = Yij − 2ε

=
[
1
4

+ ε + ε2 +
1 − 4ε2

4
TP (ui) · TP (uj)

]
− 2ε

=
1
4
− ε + ε2 +

1 − 4ε2

4
P (ui · uj) ≥ 0,

where the last inequality follows by Property 3 of a
(γ, ε, m)-useful polynomial and the fact that the ui are
unit vectors. So (7) holds.

Now consider the remaining constraints. Fix j, k ∈
{0, 1, . . . , 2m}. Using constraints (7), the fact that
Yii = Yi0 for all i, and the fact that y is an ε-vector in
V C(G), it is easy to verify that constraints (8) and (9)



hold whenever one of yj or yk are integral. So assume
yj = yk = 1

2 + ε.
Constraint (8) then holds if the following is at least 1:

Yij + Yik

Yi0

= 2
(

1
2

+ ε

)
+

1 − 2ε

2
TP (ui) · (TP (uj) + TP (uk))

= 1 + 2ε +
1 − 2ε

2
(P (ui · uj) + P (ui · uk)). (10)

Similarly, (9) holds if the following is at least 1:

(Y0j − Yij) + (Y0k − Yik)
Y00 − Yi0

= 1 + 2ε − 1 + 2ε

2
(P (ui · uj) + P (ui · uk)). (11)

But by Property 4 of a (γ, ε, m)-useful polynomial, for
all 1 ≤ i ≤ n and all jk ∈ E, equations (10) and (11)
are indeed both at least 1. The claim follows. �

By Lemma 2, to complete the proof of Lemma 3
it suffices to show that there exists a (γ, ε, m)-useful
polynomial P such that if Y = Y (P,y), then for
all i such that yi = 1

2 + ε the vectors Y ei/yi and
Y (e0−ei)/(1−yi) are (ε−6γ)-saturated. (The vectors
Y ei/yi and Y (e0 − ei)/(1 − yi) are the “normalized”
versions of Y ei and Y (e0 − ei), i.e., their projections
onto the hyperplane x0 = 1.)

To that end, let us first compute the saturation of these
vectors for an arbitrary but fixed (γ, ε, m)-useful poly-
nomial P . Fix i such that yi = 1

2 + ε and consider
Y ei/yi. Let I = {i} ∪ {j : yj ∈ {0, 1}}. Then the sat-
uration of Y ei/yi is at least

min
j,k �∈I,jk∈E

1
2
((Yij + Yik)/yi − 1)

= min
j,k �∈I,jk∈E

[
ε +

1 − 2ε

4
(P (ui · uj) + P (ui · uk))

]

≥ min
j,k �=i,jk∈E

[
ε +

1 − 2ε

4
(P (ui · uj) + P (ui · uk))

]
,

where the equality follows by (10) and the fact that
yj , yk �∈ {0, 1}. Similarly, the saturation of Y (e0 −
ei)/(1 − yi) is at least

min
j,k �∈I,jk∈E

1
2

(
(Y0j − Yij) + (Y0k − Yik)

1 − yi
− 1

)

= min
j,k �∈I,jk∈E

[
ε − 1 + 2ε

4
(P (ui · uj) + P (ui · uk))

]

≥ min
j,k �=i,jk∈E

[
ε − 1 + 2ε

4
(P (ui · uj) + P (ui · uk))

]
,

where the equality follows by (11) and the fact that
yj, yk �∈ {0, 1}.

Lemma 3 now follows from the following lemma
proved in Section 4.2 which shows that (γ, ε, m)-useful
polynomials of the type we require do in fact exist:

Lemma 4 Let m be an integer and γ a sufficiently small
positive real such that m

2γ and 1
2γ are even integers and

m is significantly larger than 1
γ . Suppose ε > 5γ. Then

there exists a (γ, ε, m)-useful polynomial P such that for
all i, j, k ∈ {−1, 1}m where j, k �= i and jk ∈ E,

|P (ui · uj) + P (ui · uk)| ≤ 20γ. (12)

4.2 Proof of Lemma 4:
Constructing (γ, ε, m)-useful polynomials

In this section we prove Lemma 4. Fix ε and γ as in
the statement of the lemma. Let R be the subset of R

2

that consists of all (x, y) ∈ [−1, 1]2 for which |x + y| ≤
2γ, |x− y| ≤ 2(1−γ), x < 1− 1

m , and y < 1− 1
m (see

Figure 1).

λ

1

−1 −λ

−λ

y = x

y

1λ

x

x = 1 − 1
m

−1

y = 1 − 1
m

Figure 1. The domain R.

Claim 2 To prove the lemma it suffices to find a polyno-
mial P with nonnegative coefficients such that P (1) =
1, ∀x ∈ [−1, 1] P (x) ≥ P (2γ−1) = (2ε−1)/(2ε+1),
and such that,

|P (x) + P (y)| ≤ 20γ ∀(x, y) ∈ R. (13)

Proof: By definition, P satisfies the first three properties
of a (γ, ε, m)-useful polynomial.



Next recall that the vectors ui satisfy the property
−1 ≤ ui ·uj ≤ 1− 2

m for all 1 ≤ i �= j ≤ 2m. Further,
if jk ∈ E and i �= j, k, then since uj + uk is supported
on γm coordinates on which it assumes values ±2/

√
m

we get that

|ui · uj + ui · uk| = |ui · (uj + uk)| ≤ 2γ.

Similarly, |ui · uj − ui · uk| ≤ 2(1 − γ). Hence,
{(ui · uj ,ui · uk) : j, k �= i and jk ∈ E} ⊆ R. So (13)
implies (12). Moreover, since 5γ < ε, it implies Prop-
erty 4 of a (γ, ε, m)-useful polynomial in all cases ex-
cept when i = k. However, in that case we have

P (ui · ui) + P (ui · uj) = P (1) + P (2γ − 1)

= 1 +
2ε − 1
2ε + 1

=
4ε

1 + 2ε
,

and hence Property 4 holds in that case too. �
Lemma 4 now follows from the following technical

lemma:

Lemma 5 Let m be an integer and γ a sufficiently small
positive real such that 1

γ is an even integer and m is

significantly larger than 1
γ . Let ε > 3γ be sufficiently

small. Then there exists a polynomial P satisfying the
conditions in Claim 2.

Proof: Let P (x) = ∆(x+1)x
2m
γ +cx

1
γ +(1−c−2∆)x

where c, ∆ are positive constants we will define below
so that P satisfies the conditions of the lemma. Note that
P has a “high” degree component (i.e., ∆(x + 1)x

2m
γ )

which vanishes at −1, as well as a “medium” degree and
a linear component (see Figure 2). Note that P (1) = 1.

A necessary condition for ensuring that P (x) ≥
P (2γ − 1) for x ∈ [−1, 1] is that P ′(2γ − 1) = 0.
This condition together with the condition P (2γ − 1) =
(2ε−1)/(2ε+1) immediately determine the values of c
and ∆. The following rough bounds will suffice for our
analysis:

2ε

1 + 2ε
− 5γ < ∆ < 3ε,

7γ < c < 8.5γ.

Note that since ε > 3γ these bounds ensure that P has
positive coefficients.

Next we verify that these bounds ensure that P (x) ≥
P (2γ − 1) for x ∈ [−1, 1]. Since 1

γ is even, P ′′(x) is at
least

∆
(

2m

γ
+ 1

)
2m

γ
x

2m
γ −1 + ∆

(
2m

γ
− 1

)
2m

γ
x

2m
γ −2.

It is not hard to see then that P ′′(x) ≥ 0 whenever
x ≥ −1 + 2γ

2m+γ . So since P ′(2γ − 1) = 0, it follows

that P (x) ≥ P (2γ − 1) whenever x ≥ −1 + 2γ
2m+γ . It

is more difficult to estimate P ′′ when x < −1 + 2γ
2m+γ ;

instead, we will bound P (x) directly for such x: our
lower bounds for c and ∆ and the fact that m is suffi-
ciently large imply that for x < −1 + 2γ

2m+γ ,

P (x) > c
(
1 − γ

m

) 1
γ − (1 − c − 2∆)

> −1 + 2∆ + c + ce−
1
m

> −1 − 2ε

1 + 2ε
− 4γ + 0.9c

> P (2γ − 1).

Hence, P (x) ≥ P (2γ − 1) for every x in [−1, 1].
It remains to prove that |P (x) + P (y)| ≤ 20γ on R.

Firstly, since m � 1/γ, we (very generously) have that

(x + 1)x
2m
γ < γ

6ε when x ∈ [−1, 1 − 1
m ]. Secondly,

|x 1
γ + y

1
γ | ≤ 2 over R. Finally, by definition of R, we

have that |x + y| ≤ 2γ for all (x, y) ∈ R. Hence, for
all (x, y) ∈ R, the expression |P (x)+P (y)| is bounded
from above by

∆
∣∣∣(x + 1)x

2m
γ + (y + 1)y

2m
γ

∣∣∣
+ c

∣∣∣x 1
γ + y

1
γ

∣∣∣
+ (1 − c − 2∆)|x + y|.

These three terms are at most γ, 17γ and 2γ, respec-
tively, implying that |P (x) + P (y)| ≤ 20γ. �
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Figure 2. Relative behaviour of the three
components of P .



5 Discussion

An obvious open problem is to investigate how the
integrality gap for VERTEX COVER evolves beyond
ω(

√
log n) rounds of LS+. Note that our graph in-

stances have girth essentially O( 1
γ ) ≈ √

log n and that
proving integrality gaps for VERTEX COVER for more
rounds than the girth proved quite challenging in the LS
context (see [25, 23]).

It would be very interesting to expand the family of
SDPs for which our methods apply. For example, the
VERTEX COVER SDPs we study are incomparable to
the SDP used in Karakostas’s algorithm [16] and with
the SDPs considered by Hatami et al. [14]. Karakostas’s
SDP employs the triangle and “extended” triangle in-
equalities (constraints (2) and (3), respectively, from
Section 2.1), while Hatami et al. also consider the the
so-called pentagonal inequalities. Such inequalities con-
strain the geometry of valid SDP solutions: they are con-
straints on the �2

2-distances of the vector solution and
do not depend on the edges present in the underlying
graph. It is not hard to show for the graph G0 with no
edges that there exist matrices in M r

+(V C(G0)) (for all
r) whose Cholesky decompositions do not satisfy the tri-
angle inequality when v0 is the middle point. The tech-
nical reason for this is as follows: while r rounds of
LS+ suffice to derive all valid inequalities for any sub-
set of r vertices, LS+ (without strengthening the initial
relaxation) cannot also derive all valid inequalities for
the “lifted” variables Yij involving those r vertices. In-
tuitively, to derive such inequalities we need a lift-and-
project method that in subsequent rounds does lifting on
the vertex variables and the Yij variables (i.e., applies
N+ to M+(V C(G)) rather than to N+(V C(G))).

Sherali and Adams [24] describe precisely such a
lift-and-project method. Unfortunately, our arguments
do not seem to extend to this system. Indeed, no non-
trivial integrality gaps are known for the SDP version of
Sherali-Adams for any problem. Even for the LP ver-
sion of Sherali-Adams only one such result is known:
Fernandez de la Vega and Kenyon-Mathieu [9] prove a
0.5-integrality gap for MAX CUT after super-constant
Sherali-Adams rounds.

Triangle, pentagonal and other such geometric in-
equalities for the Yij variables can be derived within
LS+ if one introduces new variables (and constraints)
to the initial relaxation to represent the �2

2 distances of
the Cholesky vectors corresponding to Y . Since geo-
metric constraints have proved powerful in tightening
relaxations for problems such as SPARSEST CUT [4], we
feel that the most interesting open problem posed by our

work is to extend our results to either the Sherali-Adams
system or to LS+ relaxations augmented with distance
variables and constraints.

Partial progress along this line is made in [11] where
it is shown that the construction from the current pa-
per (modulo an affine transformation) satisfies VERTEX

COVER SDPs tightened by local hypermetric inequal-
ities (hypermetric inequalities are a canonical subfam-
ily of inequalities satisfied by all �1 metrics and in-
clude triangle, pentagonal and indeed all (2k +1)-gonal
inequalities). More precisely, the SDP solution ana-
lyzed in [11] arises by taking the Cholesky decompo-
sition of the first-round protection matrix from the cur-
rent paper and then applying the affine transformation
zi = 2v0 − vi (this simply maps {0, 1} integral solu-
tions to {1,−1}). It is shown in [11] that the �2

2 metric
induced by these vectors satisfies all k-gonal inequali-
ties for k = Ω(

√
log n/ log log n) (and actually satisfies

all hypermetric inequalities on k points). Moreover, the
vectors satisfy the extended triangle inequalities (3) em-
ployed by Karakostas’s SDP. Interestingly, the asymp-
totic bound for the parameter k in [11] is the same as the
number of LS+ rounds for which we prove our lower
bound in the current paper. This hints at a deeper rela-
tionship between the families of SDPs considered in [11]
and the current paper.
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A Proof sketch of Lemma 1

In [10] we find the following similar-looking state-
ment to Lemma 1 about sets avoiding intersections.

Lemma 6 (Corollary 4.2 in [10]) Let η be a sufficiently
small number and m an integer. Also, let F and G be
two set families over the universe [m] so that |F ∩G| �=
mη� for every F ∈ F , G ∈ G. Then 4−m|F||G| ≤
(1 − η2/4).

By taking F = G and treating set families as points
in {−1, 1}m we get that the above lemma says that a
subset of size > 2m(1 − η2/4) must contain two points
which share exactly mη� ones.

Let S be a set in {−1, 1}m avoiding distance (1 −
γ)m. Instead of bounding the size of S we will bound
the size of the biggest set of the form Sk = {s ∈ S :
|s| = k}, where | · | denotes Hamming weight (i.e.,
the number of coordinates set to 1). Assume Sw is this
largest set; clearly it is of size at least |S|/m. We may
and will assume that w ≤ m/2. Having reduced to the
case where all points have the same Hamming weight w
we relate to Lemma 6: it is easy to see that no two points
in Sw may share exactly w − m(1 − γ)/2 ones.

Now, let us assume first that w > m
2 (1 − γ/2). Then

Sw is a subset that avoids intersections of size ηm where
γ/4 ≤ η ≤ γ/2. We now apply Lemma 6 (or its corol-
lary rather) to get that

|Sw| ≤ 2m(1 − η2/4) ≥ 2m(1 − γ2/64)m,

and so |S| ≤ m|Sw| ≤ m2m(1 − γ2/64)m. For the
other case, namely w ≤ m

2 (1− γ/2), it is enough to use
the simple upper bound Sw ≤ (

m
w

)
. More precisely |Sw|



is at most(
m

m
2 (1 − γ/2)

)
∼ 2mH(1/2−γ/4) ∼ 2m(2−γ2/16)m

≤ 2m exp
(
− log 2

16
γ2

)

≤ 2m(1 − γ2/64)m,

and again S is at most m times this bound.
The above estimate is nearly tight: consider the

(open) Hamming ball B of radius (1 − γ)/2; clearly
this ball is an independent set in Gγ,m. Now |B| =∑

j< m
2 (1−γ)

(
m
j

)
which is at least γm

2

(
m

m
2 (1−2γ)

)
. The

last expression can be further bounded from below by

γm

2
2mH(1/2−γ) ∼ γm

2
2m(1−γ2/4 = 2m γm

2
2−γ2m/4.

So for |B| to be o(2m) we must have that γm2−γ2m/4 =
o(1) and so γ = Ω(

√
log m/m).

B Proof of Lemma 2

For completeness, we include in this section a proof
of the lemma by Schoenebeck, Trevisan and Tul-
siani [23] (Lemma 2 here) for expressing an ε-saturated
vector as a convex combination of ε-vectors.

Proof: Partition V as follows: Let V− = {i ∈ V : xi <
1/2 + ε}, V+ = {i ∈ V : xi > 1/2 + ε}, V0 = {i ∈ V :
xi = 1/2 + ε}. Let r(0) = 0, and for all i ∈ V let

r(i) =




1 − xi

1/2+ε , i ∈ V−
1, i ∈ V0

1 − 1−xi

1/2−ε , i ∈ V+

setting at the end the maximum of the r(i)’s equal to 1.
Note that since x is ε-saturated, whenever ij ∈ E and
i ∈ V−, we must have j ∈ V+. Moreover, for such a
pair we must have that r(j) ≥ r(i) because

r(j) − r(i) = 1 − 1 − xj

1/2 − ε
−

(
1 − xi

1/2 + ε

)

=
xi

1/2 + ε
− 1 − xj

1/2 − ε

=
xi(1/2 − ε) − (1 − xj)(1/2 + ε)

(1/2 + ε)(1/2 − ε)

=
xi + xj − (1 + 2ε)

2(1/4 − ε2)
+

ε(xj − xi)
1/4 − ε2

> 0,

where the last inequality follows from the fact that x is
ε-saturated.

Reorder the r(i)’s so that 0 = r(i0) ≤ r(i1) ≤ . . . ≤
r(i|V |). For each t = 1, . . . , |V |, let x(t) be the ε-vector
where

x
(t)
i =




0, i ∈ V− and r(i) ≥ r(it)
1, i ∈ V+ and r(i) ≥ r(it)
1
2 + ε, otherwise

We claim these vectors are in V C(G). To see why
consider an edge ij. The constraint x

(t)
i + x

(t)
j ≥ 1 is

satisfied unless at least one of x
(t)
i and x

(t)
j is 0. How-

ever, if x
(t)
i = 0, then i ∈ V− and r(i) ≥ r(it). So the

feasibility of x implies j ∈ V+ and hence r(j) ≥ r(it).
So x

(t)
j = 1 and the constraint is satisfied.

It remains to argue that x is in the convex hull of
the x(t)’s. To that end, we define a distribution D over
the vectors x(t) such that x(t) is assigned the proba-
bility r(it) − r(it−1). It is easy to verify now that

Et[x
(t)
j ] = xj for all j ∈ V . �


