
ICML 2014 AutoML Workshop

Cognitive Automation of Data Science

Horst Samulowitz samulowitz@us.ibm.com
Chandra Reddy creddy@us.ibm.com
IBM TJ Watson Research Center, Yorktown Heights, NY, USA

Ashish Sabharwal AshishS@allenai.org

Allen Institute for Artificial Intelligence (AI2), Seattle, WA, USA

Abstract

This paper explores how an automated procedure may leverage domain knowledge and
reasoning to further automate Machine Learning (ML) and Data Science in a manner that
may be thought of as cognitive. To this end, we first describe key features that we believe a
cognitive automation system for data science must possess. The goal of a system embodying
this concept would be to extend existing data-driven approaches by incorporating knowl-
edge from experts as well as unstructured data, and performing inference on the knowledge.
It would include basic concepts such as reasoning based on realizations (such as overfitting)
during the configuration process that results in the system performing corrective actions
driven by knowledge of the underlying analytics tool. Furthermore, the system would di-
rectly incorporate end-user constraints (e.g., the wish for explainable decisions) in order to
guide the learning process. While knowledge can be directly contributed by experts (e.g.,
known best practices in data science), the system would also extract relevant knowledge
from unstructured data by employing DeepQA systems (e.g., querying Wikipedia pages)
and through interactions with the user in order to support recent developments in data
science and active user guidance. Finally, in the spirit of IBM Blue Chef, the system would
bring the notion of creativity to automated ML by composing novel variations of existing
ML techniques. The present paper discusses the main features of and challenges in building
such a system.

Keywords: Meta-Learning, Cognitive Systems, Unstructured Data, Knowledge Represen-
tation, User-Interaction

1. Introduction

The expression “Big Data” is commonly used to describe not only the fact that an immense
amount of data is being collected from various sources (e.g., internet and social media users,
mobile phones, surveillance sensors), but also the challenging task of actually analyzing
it. To this end, a wide variety of approaches have been proposed in the active research
areas of Machine Learning and Statistics, ranging from algorithms for classification to time-
series analysis. For instance, one recent celebrated approach for both unsupervised and
supervised learning called Deep Learning is able to automatically extract complex patterns
from Terabytes of data in application areas such as Natural Language Processing (NLP) and
image analysis. However, while these advances improve our ability to make sense of large
scale datasets, no single approach is applicable to or successful in most of the scenarios
occurring commonly in data analytics. For instance, the data requirements imposed by

c© 2014 H.S. samulowitz@us.ibm.com, C.R. creddy@us.ibm.com & A.S. AshishS@allenai.org.



samulowitz@us.ibm.com creddy@us.ibm.com AshishS@allenai.org

deep learning stem from the availability of large amounts of data in specific application
areas but can be too restrictive in other domains (e.g., when data is highly non-linear).
Besides different “shapes” of data, the underlying objective of the data analytics process
drives the usability of as well as preference for different approaches. A common example
is that end-users of a data analytics tool may want to understand, at least to some extent,
the reasoning process of the tool and may thus favor traditional approaches such as low-
depth Decision Trees over deep Neural Networks, Support Vector Machines (SVMs), or even
Random Forests.

A range of tools are deployed in the processing pipeline needed to analyze big data.
Roughly speaking, the tool chain starts with algorithms for cleaning and processing data,
and concludes with presenting the predictions in a way that aligns with the end-users’
objective(s) and preferences.

In recent years various data-drive meta-approaches, under the umbrella term algorithm
portfolios, have been introduced to automatically select (at runtime) from a collection of
base algorithms the expected best match for a given problem instance. For example, in the
context of solving problems posed in propositional logic (SAT) and constraint reasoning
(CSP), a range of ML methods such as Linear Regression, Decision Trees, k-Nearest Neigh-
bor, and Collaborative Filtering have been used to automatically select the most promising
solver for a given problem instance at hand (cf. Hutter et al., 2009; Stern et al., 2010; Xu
et al., 2008; Malitsky et al., 2013). Similarly, some approaches use ML methods in order
to change algorithms on-the-fly in an instance-specific way, such as by changing heuristic
settings online or adapting to data flow when evaluating a complex database query. Fur-
thermore, within ML, approaches such as Auto-Weka (Thornton et al., 2013) attempt to
exploit the variation in performance across different clustering or classification approaches
or across different parameter settings of an algorithm (e.g., number of units in various layers
of a deep neural network).

These meta-approaches, although derived independently for a variety of application
domains, are all based on: a) characterizing problem instances by features and b) selecting
the most promising approach for a problem instance at hand based solely on observed
outcomes on training data.

While these approaches have achieved outstanding results such as winning international
competitions (cf. Järvisalo et al., 2011) and making complex algorithmic tools more ac-
cessible to non-experts, existing methods do not explicitly leverage semantic algorithmic
or model information, external expert knowledge, or end-user constraints and objectives
when driving the automated analytics process. In fact, most existing approaches are purely
data-driven and traverse the configuration search space in a way that completely ignores
higher-level knowledge and insights that a human expert might have. In the most basic
case, this means that one simply tries various values of numerical parameters (e.g., learn-
ing rate) or categorical parameters (e.g., use pre-processing or not), hoping to do better
than brute force enumeration of the entire search space. While successful, this approach
operates at the lowest possible semantic level, i.e., at the level of the base algorithm IDs
or their core parameters, treating the algorithms themselves as complete black-boxes. For
instance, recently proposed systems like Auto-Weka for auto-selection of ML methods work
in the space of about 700 categorical and numeric parameters, trying to select their best
configuration by mainly considering achieved output value and past evaluation results.

2



Cognitive Automation of Data Science

2. Cognitive Automation

We begin by defining what we mean by cognitive in the context of an ML automation
framework. While we find the proposed properties to be critical to such a system, one could
arguably relax some of these or expand the notion to include additional desirables.

Definition 1 An algorithmic framework will be called cognitive if it has the following
properties:

1. it integrates knowledge from (a) various structured or unstructured sources, (b) past
experience, and (c) current state, in order to reason with this knowledge as well as to
adapt over time;

2. it interacts with the user (e.g., by natural language or visualization) and reasons based
on such interactions; and

3. it can generate novel hypotheses and capabilities, and test their effectiveness.

While the first part of this characterization is embodied to some extent by existing
frameworks such as Auto-Weka, the next two aspects are not.

2.1. Incorporating Domain Knowledge

In our context, we would like a cognitive automated data analytics system to “understand”
and exploit knowledge of the following nature:

• Basic properties and techniques underlying the base analytics algorithms it can use and
compose, such as input requirements, theoretical guarantees, key concepts pertinent
to that algorithm (e.g., distance function in k-NN), properties of the output (e.g.,
with or without correctness confidence), computational properties such as runtime,
applicability such as online vs. offline learning, support for missing data, etc.

• Domain knowledge from experts (e.g., common practices), structured and unstruc-
tured data (e.g., corpus of WEKA manual, ML books and papers), interaction with
the user, basic statistical knowledge (e.g., overfitting detection), and insights from
data-driven evaluations and past experience.

• The overall objective of the end-user, constraints from the end-user or the problem do-
main such as interpretability of results, fast and/or adaptive decision making, stream-
ing vs. batch data, etc.

• For various base algorithms, how to react to observations or realizations made during
the automation process, such as high classification error and overfitting.

2.2. Exploiting Domain Knowledge

The following examples illustrate how the system could successfully leverage such knowledge
in order to improve the decision making process not only for what base analytics algorithms
to deploy and in which configuration, but also to automatically create novel methods.

3



samulowitz@us.ibm.com creddy@us.ibm.com AshishS@allenai.org

Example 1, Reasoning (Overfitting): Consider a model based on k-nearest neighbor (k-NN).
For a classification or regression model, one can automatically detect overfitting (Hastie
et al., 2001). Based on this observation and a semantic understanding of how k-NN works,
the system could try to systematically increase k rather than uniformly searching over
a different value of k (as if k-NN was a black-box). Similarly, when configuring neural
networks, it could try to reduce the number of hidden layers in response to overfitting.
Example 2, Reasoning (End-User Constraint): The end-user may prefer as succinct an
explanation of a recommendation as possible. If the automated process is aware of this
objective and understands that certain methods are more suitable for it than others, it
could directly start employing methods such as decision trees or rules and then perform
finer grained adjustments such as reducing the depth of the decision tree.
Example 3, Reasoning (Modeling): Multi-Class Classification can be achieved in different
ways. When the number of classes is low, one can often successfully combine binary clas-
sifiers to perform the task. However, when the number of classes is high this approach
can become less practical (e.g., extremely high training time). Simply being aware of this
relationship could help the automated process make a better decision.
Example 4, Deep QA (Novel Knowledge): Suppose one wanted to use k-NN on a data set
with discrete features. The system could search for “distance measure knn discrete data”
and extract the knowledge stated on a Wikipedia page: “A commonly used distance metric
for continuous variables is Euclidean distance. For discrete variables, such as for text clas-
sification, another metric can be used, such as the overlap metric (or Hamming distance).”
It could thus “know” and exploit this knowledge to configure k-NN appropriately.
Example 5, Interactivity (Suggestion): In the above example, suppose only the Euclidean
distance metric is provided by the user. The automated system should be able to exploit
the Wikipedia knowledge and interactively suggest to the user that a Hamming distance
metric may be more suitable.
Example 6, Creativity (Regularization): In deep learning one recently introduced technique
called “DropOut” randomly selects subsets of node activations in each layer and sets them
to zero (Hinton et al., 2012). Subsequently, a technique called “DropConnect” (Wan et al.,
2013) was introduced that instead sets a randomly selected subset of edge weights (or
connections) within the network to zero.1 A cognitive automated system for ML could
possibly automatically explore such novel extensions as DropConnect given knowledge about
DropOut, not to mention a combination of the two approaches. Exploring certain simple
combinations and variations of existing techniques in order to develop new creations would
be in the spirit of IBM Blue Chef (Varshney et al., 2013).

Although the above examples focus mainly on modeling, the ideas could be extended to
the entire tool chain used in data analytics (e.g., data cleaning, outlier detection, etc.).

3. Challenges in Cognitive Automation

In order to design a system that automatically guides and develops the decision process in
ways exemplified above, one must figure out: (a) how to represent such knowledge; (b) how
to acquire such knowledge and how to improve the internal representation as new knowledge

1. This is a very simplified presentation of these two techniques, meant to illustrate the idea of creativity.

4



Cognitive Automation of Data Science

arrives; and (c) how to perform inference on this knowledge in order to guide the automated
process and create novel techniques.

Representation of Knowledge: While some part of the knowledge can be cast as a rule-
based system (e.g., “if k-NN is being used and overfitting is observed, then increase k”) in
combination with a standard knowledge representation system (e.g., knowledge graph (Eder,
2012)), it will not be sufficient to capture and facilitate several key concepts. For instance,
in k-NN one does not only want to “know” that the distance measure plays a critical role, is
related to overfitting, and impacts accuracy, but also that it is based on geometric distances
in the feature space and that one can potentially “look for” another distance measure.
Each algorithm will need to be appropriately described using “meta-knowledge” in order to
capture key properties in a way that provides the system sufficient “meaning” to enable it
to add to or alter existing methods. Furthermore, most knowledge in this context will be
of probabilistic nature. For example, while more pruning in a decision tree is very likely to
reduce overfitting, there is no absolute guarantee that this will succeed. A major challenge
is to create a representation that is a) machine-readable, b) captures key properties of
algorithms, and c) facilitates inference over this knowledge.
Knowledge Acquisition: Here one can distinguish between multiple sources of knowledge.
Manual: One can exploit expert knowledge by adding it to the system manually. This could
be known “best practices” such as employing bootstrap sampling to ensure model accuracy.
Automatic: The goal here is to automatically extract expert knowledge from unstructured
data using NLP/DeepQA techniques. E.g., the phrase “main drawbacks of decision trees”
in a search engine returns a paper that lists the following drawbacks: “reduced performance
when the training set is small” and “rigid decision criteria.” Clearly, it is not straightforward
to make an algorithm understand these statements and act upon them. However, since
the applicability of new knowledge is somewhat restricted by the existing specification
of the algorithmic components (e.g., what a “measure” means for k-NN), it makes the
understanding process limited but, at the same time, computationally more feasible. While
manually adding best practices for each analytics tool may be simpler, the automatic way
of acquiring knowledge is more amenable to incorporating emerging technologies. Even
if it manages to do so only in an offline fashion (i.e., without integrating novel techniques
automatically in an algorithmic fashion), it could provide advice to the data scientist, similar
to the role of IBM’s Watson applied to health care where it assists medical doctors with,
for example, newest results from medical studies.
End-User Constraints: User constraints such as strict training/testing runtime requirements
or interpretability of results should trigger rules that can potentially prune large chunks of
the configuration space. For instance, having a tight training time budget might eliminate
multi-class classification via binary classifiers or the training of deep neural networks.

Introspection: Knowledge Learning: In every application of the automated process, spe-
cific pieces of knowledge (e.g., rules) are applied to guide it. While this provides explanations
to the user who can potentially leverage this information further, the system itself can learn
from the decisions made by it and the outcome achieved. For instance, it might be able to
deduce new knowledge that reduces the number of user queries in the future.
Online Adaptation: Over time the configuration process might have seen various data sets
and tried many different approaches. It can try to generalize this knowledge and exploit it

5



samulowitz@us.ibm.com creddy@us.ibm.com AshishS@allenai.org

to improve future decision making in an online fashion. One could, for instance, start with
the definition of features that characterize data sets (e.g., number of data points, feature
types, variance in feature values, etc.) in order to leverage past experience. This can also
include end-user preference learning (e.g., realization that end-user in a certain domain
prefers compact and interpretable models and in another domain does not care so much).

Inference: Reasoning: Probabilistic logic inference (such as with probabilistic graphical
models (Koller and Friedman, 2009), Markov Logic Networks (Richardson and Domingos,
2006), etc.) on the underlying knowledge base is likely to be the best match for the context,
since the process is guided by rules of thumb as well as uncertain knowledge about what
approaches are most likely to succeed on previously unseen data sets or objectives.
Creativity: Besides guiding the analytics process using provided knowledge, one also wants
the system to infer novel concepts by combining various pieces of provided knowledge and
extrapolating from them. As suggested in Example 6, it may be possible to represent such
techniques for neural networks in a way that one could perform automated inference over
them in order to explore new variations of these techniques to analyze data. One other
option to creativity arises in the context of hybrid learning methods such as combining
statistical methods with neural networks for image analysis. For instance, the system could
try to use a decision tree to divide the training instances and then perform predictions using
k-NN on these reduced sets of instances. When considering the entire tool chain in data
science, there is large combinatorial space for generating novel combinations of tools. While
perhaps somewhat far-fetched, this would, at least in spirit, be similar to the technology
behind IBM’s Blue Chef mentioned earlier, which combines various ingredients and end-user
preferences to come up with a novel yet “edible” recipe.

4. Closing Remarks

While the proposed framework involves various sophisticated (and some currently not well-
understood) techniques including reasoning and optimization over knowledge acquired from
unstructured data and interaction with a user, it can be developed in stages. One can start
off with a system that is relatively close to the purely data-driven “black-box” approach
but has some basic semantic knowledge. For instance, with self-awareness of overfitting,
one can represent rules that appropriately cause the process to trigger the right amount of
pruning when learning a decision tree model or to adapt k in k-NN appropriately. After
manually adding some basic rules, one needs to define ways to represent key properties of
the algorithms so that the automated process is able to reason with them and eventually
modify them based on its own experience. These first steps are in fact related to recent work
that aims at “building an automatic statistician” (Lloyd et al., 2014). Subsequently one can
try to query external sources of knowledge in a focused way using existing and emerging
NLP technologies (e.g., extracting knowledge from Wikipedia pages), and integrate this
knowledge via interaction with a user. The most ambitious concept of creativity can perhaps
be dealt with last, but considering it already during the design of the system may have
benefits.

6



Cognitive Automation of Data Science

References

J.S. Eder. Knowledge graph based search system, 2012. URL https://www.google.com/patents/

US20120158633. US Patent App. 13/404,109.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning.
Springer Series in Statistics. Springer New York Inc., New York, NY, USA, 2001.

Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Improving neural networks by preventing co-adaptation of feature detectors. CoRR,
abs/1207.0580, 2012.

Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown, and Thomas Stutzle. ParamILS: an automatic
algorithm configuration framework. Journal of Artificial Intelligence Research, 36:267–306, 2009.

Matti Järvisalo, Daniel Le Berre, and Olivier Roussel. SAT competition, 2011.

Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and Techniques
- Adaptive Computation and Machine Learning. The MIT Press, 2009. ISBN 0262013193,
9780262013192.

James Robert Lloyd, David Duvenaud, Roger Grosse, Joshua B. Tenenbaum, and Zoubin Ghahra-
mani. Automatic construction and Natural-Language description of nonparametric regression
models. In Association for the Advancement of Artificial Intelligence (AAAI), 2014.

Yuri Malitsky, Ashish Sabharwal, Horst Samulowitz, and Meinolf Sellmann. Algorithm portfolios
based on cost-sensitive hierarchical clustering. In The 23rd International Joint Conference on
Artificial Intelligence, IJCAI, pages 608–614, 2013.

Matthew Richardson and Pedro Domingos. Markov logic networks. Mach. Learn., 62(1-2):107–136,
February 2006. ISSN 0885-6125.

D. Stern, H. Samulowitz, R. Herbrich, T. Graepel, L. Pulina, and A. Tacchella. Collaborative expert
portfolio management. In AAAI 2010, Twenty-Fourth AAAI Conference on Artificial Intelligence,
2010, pages 210–216, 2010.

C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown. Auto-WEKA: Combined selection and
hyperparameter optimization of classification algorithms. In Proc. of KDD-2013, pages 847–855,
2013.

Lav R. Varshney, Florian Pinel, Kush R. Varshney, Angela Schorgendorfer, and Yi-Min Chee. Cog-
nition as a part of computational creativity. In 12th IEEE International Conference Cognitive
Informatiatics and Cognitive Computing, ICCI*CC 2013, page 3643, 2013.

Li Wan, Matthew D. Zeiler, Sixin Zhang, Yann LeCun, and Rob Fergus. Regularization of neural
networks using dropconnect. In ICML (3), volume 28 of JMLR Proceedings, pages 1058–1066.
JMLR.org, 2013.

Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. SATzilla: portfolio-based algo-
rithm selection for SAT. Journal of Artificial Intelligence Research, 32:565–606, June 2008.

7

https://www.google.com/patents/US20120158633
https://www.google.com/patents/US20120158633

	Introduction
	Cognitive Automation
	Incorporating Domain Knowledge
	Exploiting Domain Knowledge

	Challenges in Cognitive Automation
	Closing Remarks

