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Some problems with backpropagation

• The amount of information that each training case 
provides about the weights is at most the log of the 
number of possible output labels.

– So to train a big net we need lots of labeled data.

• In nets with many layers of weights the backpropagated 
derivatives either grow or shrink multiplicatively at each 
layer. 

– Learning is tricky either way.

• Dumb gradient descent is not a good way to perform a 
global search for a good region of a very large, very non-
linear space. 

– So deep nets trained by backpropagation are rare in 
practice. 



A solution to all of these problems

• Use greedy unsupervised learning to find a sensible set of 

weights one layer at a time. Then fine-tune with 

backpropagation.

• Greedily learning one layer at a time scales well to really 

deep networks.

• Most of the information in the final weights comes from 

modeling the distribution of input vectors. 

– The precious information in the labels is only used for 

the final fine-tuning.

• We do not start backpropagation until we already have 

sensible weights that already do well at the task.

– So the fine-tuning is well-behaved and quite fast.



Modelling the distribution of digit images
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The network learns a density model for 

unlabeled digit images. When we generate 

from the model we often get things that look 

like real digits of all classes.  

More hidden layers make the generated 

fantasies look better (YW Teh, Simon Osindero).

But do the hidden features really help with 

digit discrimination? Add 10 softmaxed units 

to the top and do backprop.

The top two layers form a restricted 

Boltzmann machine whose free energy 

landscape should model the low 

dimensional manifolds of the digits.



Results on permutation-invariant MNIST task

• Very carefully trained backprop net with      1.53% 
one or two hidden layers (Platt; Hinton)

• SVM (Decoste & Schoelkopf)                       1.4%

• Generative model of joint density of             1.25% 
images and labels (with unsupervised fine-tuning)

• Generative model of unlabelled digits          1.2% 
followed by gentle backpropagtion

• Generative model of joint density                 1.1% 
followed by gentle backpropagation



Learning Dynamics of Deep Nets

the next 4 slides describe work by Yoshua Bengio’s group

Before fine-tuning After fine-tuning



Effect of Unsupervised Pre-training
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Effect of Depth
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Why unsupervised pre-training makes sense

stuff

image label

stuff

image label

If image-label pairs were 

generated this way, it 

would make sense to try 

to go straight from 

images to labels.  

For example,  do the 

pixels have even parity?

If image-label pairs are 

generated this way, it 

makes sense to first learn 

to recover the stuff that 

caused the image by 

inverting the high 

bandwidth pathway.

high 

bandwidth
low 

bandwidth



An early use of neural nets (~1989)

• Use a feedforward neural net to convert a window 

of speech coefficients into a posterior probability 

distribution over short pieces of phonemes (61 

phones each with 3 pieces)

– To train this net we need to know the “correct” 

label for each window, so we need to bootstrap 

from an existing speech recognition system.

• The trained neural net produces a posterior 

distribution over phone pieces at each time.

– We feed these distributions  to  a decoder which 

finds the most likely sequence of phonemes. 



How to make the phone recognizer 

work much better 

• Train lots of big layers, one at a time, without 

using the labels.

• Add  183-way softmax over labels as the final 

layer.

• Fine-tune with bckpropagation on a big GPU 

board for several days.



A very deep belief net for phone recognition

11 frames of filter-

bank coefficients

2000 binary hidden units 

2000 binary hidden units 

2000 binary hidden units 

2000 binary hidden units 

183 labels

Mohamed, Dahl & Hinton (2011)

not pre-trained

Many of the 

major speech 

recognition 

groups (Google, 

Microsoft, IBM) 

are now trying 

this approach.



Deep Autoencoders

• They always looked like a really nice way to do 
non-linear dimensionality reduction:

– They provide mappings both ways

– The learning time is linear (or better) in the 
number of training cases.

– The final model is compact and fast.

• But it turned out to be very very difficult to 
optimize deep autoencoders using backprop.

– We now have a much better way to optimize 
them.



The deep autoencoder
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If you start with small random weights it will not 

learn.  If you break symmetry randomly by using 

bigger weights, it will not find a good solution.

So we train a stack of 4 RBM’s and then “unroll” 

them.  Then we fine-tune with gentle backprop.
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A comparison of methods for compressing 

digit images to 30 real numbers.

real              

data

30-D       

deep auto

30-D logistic 

PCA

30-D         

PCA



A very deep autoencoder for synthetic 

curves that only have 6 degrees of freedom 

Data      0.0

Auto:6 1.5

PCA:6 10.3

PCA:30 3.9

squared 

error



An autoencoder for patches of real faces

• 6252000100064130   and back out again

logistic unitslinear linear

Train on 100,000  denormalized face patches 

from 300 images of 30 people. Use 100 epochs 

of CD at each layer followed by backprop 

through the unfolded autoencoder.

Test on face patches from 100 images of 10 new 

people.



Reconstructions of face patches from new people

Data

Auto:30 

126

PCA:30 

135



64 of the hidden units in the first hidden layer



How to find documents that are similar to a 

query document

• Convert each document into a “bag of 

words”.

– This is a vector of word counts 

ignoring the order. 

– Ignore stop words (like “the” or “over”)

• We could compare the word counts of 

the query document and millions of other 

documents but this is too slow. 

– So we reduce each query vector to a 

much smaller vector that still contains 

most of the information about the 

content of the document.
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How to compress the count vector 

• We train the neural 

network to reproduce its 

input vector as its output

• This forces it to 

compress as much 

information as possible 

into the 10 numbers in 

the central bottleneck.

• These 10 numbers are 

then a good way to 

compare documents.

2000  reconstructed counts

500 neurons

2000  word counts

500 neurons

250 neurons

250 neurons

10

input 

vector

output 
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The non-linearity used for reconstructing 

bags of words

• Divide the counts in a bag of words vector by N, where N 
is the total number of non-stop words in the document.

– The resulting probability vector gives the probability of 
getting a particular word if we pick a non-stop word at 
random from the document.

• At the output of the autoencoder, we use a softmax.

– The probability vector defines the desired outputs of 
the softmax. 

• When we train the first RBM in the stack we use the 
same trick. 

– We treat the word counts as probabilities, but we 
make the visible to hidden weights N times bigger 
than the hidden to visible because we have N 
observations from the probability distribution.



Performance of the autoencoder at 

document retrieval

• Train on bags of 2000 words for 400,000 training cases 
of business documents.

– First train a stack of RBM’s. Then fine-tune with 
backprop.

• Test on a separate 400,000 documents. 

– Pick one test document as a query. Rank order all the 
other test documents by using the cosine of the angle 
between codes. 

– Repeat this using each of the 400,000 test documents 
as the query (requires 0.16 trillion comparisons).

• Plot the number of retrieved documents against the 
proportion that are in the same hand-labeled class as the 
query document. Compare with LSA (a version of PCA).



Proportion of retrieved documents in same class as query

Number of documents retrieved



First compress all documents to 2 numbers using a type of PCA                               

Then use different colors for different document categories



First compress all documents to 2 numbers.                         

Then use different colors for different document categories



THE  END


