
CSC321 Introduction to Neural Networks and

Machine Learning

Lecture 21

Using Boltzmann machines to initialize

backpropagation

Geoffrey Hinton

Some problems with backpropagation

• The amount of information that each training case
provides about the weights is at most the log of the
number of possible output labels.

– So to train a big net we need lots of labeled data.

• In nets with many layers of weights the backpropagated
derivatives either grow or shrink multiplicatively at each
layer.

– Learning is tricky either way.

• Dumb gradient descent is not a good way to perform a
global search for a good region of a very large, very non-
linear space.

– So deep nets trained by backpropagation are rare in
practice.

A solution to all of these problems

• Use greedy unsupervised learning to find a sensible set of

weights one layer at a time. Then fine-tune with

backpropagation.

• Greedily learning one layer at a time scales well to really

deep networks.

• Most of the information in the final weights comes from

modeling the distribution of input vectors.

– The precious information in the labels is only used for

the final fine-tuning.

• We do not start backpropagation until we already have

sensible weights that already do well at the task.

– So the fine-tuning is well-behaved and quite fast.

Modelling the distribution of digit images

2000 units

500 units

500 units

28 x 28

pixel

image

The network learns a density model for

unlabeled digit images. When we generate

from the model we often get things that look

like real digits of all classes.

More hidden layers make the generated

fantasies look better (YW Teh, Simon Osindero).

But do the hidden features really help with

digit discrimination? Add 10 softmaxed units

to the top and do backprop.

The top two layers form a restricted

Boltzmann machine whose free energy

landscape should model the low

dimensional manifolds of the digits.

Results on permutation-invariant MNIST task

• Very carefully trained backprop net with 1.53%
one or two hidden layers (Platt; Hinton)

• SVM (Decoste & Schoelkopf) 1.4%

• Generative model of joint density of 1.25%
images and labels (with unsupervised fine-tuning)

• Generative model of unlabelled digits 1.2%
followed by gentle backpropagtion

• Generative model of joint density 1.1%
followed by gentle backpropagation

Learning Dynamics of Deep Nets

the next 4 slides describe work by Yoshua Bengio’s group

Before fine-tuning After fine-tuning

Effect of Unsupervised Pre-training

7

Erhan et. al. AISTATS’2009

Effect of Depth

8

w/o pre-training
with pre-trainingwithout pre-training

Why unsupervised pre-training makes sense

stuff

image label

stuff

image label

If image-label pairs were

generated this way, it

would make sense to try

to go straight from

images to labels.

For example, do the

pixels have even parity?

If image-label pairs are

generated this way, it

makes sense to first learn

to recover the stuff that

caused the image by

inverting the high

bandwidth pathway.

high

bandwidth
low

bandwidth

An early use of neural nets (~1989)

• Use a feedforward neural net to convert a window

of speech coefficients into a posterior probability

distribution over short pieces of phonemes (61

phones each with 3 pieces)

– To train this net we need to know the “correct”

label for each window, so we need to bootstrap

from an existing speech recognition system.

• The trained neural net produces a posterior

distribution over phone pieces at each time.

– We feed these distributions to a decoder which

finds the most likely sequence of phonemes.

How to make the phone recognizer

work much better

• Train lots of big layers, one at a time, without

using the labels.

• Add 183-way softmax over labels as the final

layer.

• Fine-tune with bckpropagation on a big GPU

board for several days.

A very deep belief net for phone recognition

11 frames of filter-

bank coefficients

2000 binary hidden units

2000 binary hidden units

2000 binary hidden units

2000 binary hidden units

183 labels

Mohamed, Dahl & Hinton (2011)

not pre-trained

Many of the

major speech

recognition

groups (Google,

Microsoft, IBM)

are now trying

this approach.

Deep Autoencoders

• They always looked like a really nice way to do
non-linear dimensionality reduction:

– They provide mappings both ways

– The learning time is linear (or better) in the
number of training cases.

– The final model is compact and fast.

• But it turned out to be very very difficult to
optimize deep autoencoders using backprop.

– We now have a much better way to optimize
them.

The deep autoencoder

784 1000 500 250

30 linear units

784 1000 500 250

If you start with small random weights it will not

learn. If you break symmetry randomly by using

bigger weights, it will not find a good solution.

So we train a stack of 4 RBM’s and then “unroll”

them. Then we fine-tune with gentle backprop.

321 WWW

TTT WWW 321

4W

TW4

A comparison of methods for compressing

digit images to 30 real numbers.

real

data

30-D

deep auto

30-D logistic

PCA

30-D

PCA

A very deep autoencoder for synthetic

curves that only have 6 degrees of freedom

Data 0.0

Auto:6 1.5

PCA:6 10.3

PCA:30 3.9

squared

error

An autoencoder for patches of real faces

• 6252000100064130 and back out again

logistic unitslinear linear

Train on 100,000 denormalized face patches

from 300 images of 30 people. Use 100 epochs

of CD at each layer followed by backprop

through the unfolded autoencoder.

Test on face patches from 100 images of 10 new

people.

Reconstructions of face patches from new people

Data

Auto:30

126

PCA:30

135

64 of the hidden units in the first hidden layer

How to find documents that are similar to a

query document

• Convert each document into a “bag of

words”.

– This is a vector of word counts

ignoring the order.

– Ignore stop words (like “the” or “over”)

• We could compare the word counts of

the query document and millions of other

documents but this is too slow.

– So we reduce each query vector to a

much smaller vector that still contains

most of the information about the

content of the document.

fish

cheese

vector

count

school

query

reduce

bag

pulpit

iraq

word

0

0

2

2

0

2

1

1

0

0

2

How to compress the count vector

• We train the neural

network to reproduce its

input vector as its output

• This forces it to

compress as much

information as possible

into the 10 numbers in

the central bottleneck.

• These 10 numbers are

then a good way to

compare documents.

2000 reconstructed counts

500 neurons

2000 word counts

500 neurons

250 neurons

250 neurons

10

input

vector

output

vector

The non-linearity used for reconstructing

bags of words

• Divide the counts in a bag of words vector by N, where N
is the total number of non-stop words in the document.

– The resulting probability vector gives the probability of
getting a particular word if we pick a non-stop word at
random from the document.

• At the output of the autoencoder, we use a softmax.

– The probability vector defines the desired outputs of
the softmax.

• When we train the first RBM in the stack we use the
same trick.

– We treat the word counts as probabilities, but we
make the visible to hidden weights N times bigger
than the hidden to visible because we have N
observations from the probability distribution.

Performance of the autoencoder at

document retrieval

• Train on bags of 2000 words for 400,000 training cases
of business documents.

– First train a stack of RBM’s. Then fine-tune with
backprop.

• Test on a separate 400,000 documents.

– Pick one test document as a query. Rank order all the
other test documents by using the cosine of the angle
between codes.

– Repeat this using each of the 400,000 test documents
as the query (requires 0.16 trillion comparisons).

• Plot the number of retrieved documents against the
proportion that are in the same hand-labeled class as the
query document. Compare with LSA (a version of PCA).

Proportion of retrieved documents in same class as query

Number of documents retrieved

First compress all documents to 2 numbers using a type of PCA

Then use different colors for different document categories

First compress all documents to 2 numbers.

Then use different colors for different document categories

THE END

