
CSC321: Introduction to Neural Networks

and Machine Learning

Lecture 20

Learning features one layer at a time

Geoffrey Hinton

Learning multilayer networks

• We want to learn models with multiple layers of non-
linear features.

• Perceptrons: Use a layer of hand-coded, non-adaptive
features followed by a layer of adaptive decision units.

– Needs supervision signal for each training case.

– Only one layer of adaptive weights.

• Back-propagation: Use multiple layers of adaptive
features and train by backpropagating error derivatives

– Needs supervision signal for each training case.

– Learning time scales poorly for deep networks.

• Support Vector Machines: Use a very large set of fixed
features

– Needs supervision signal for each training case.

– Does not learn multiple layers of features

Learning multi-layer networks (continued)

• Boltzmann Machines: Nice local learning rule that works in

arbitrary networks.

– Getting the pairwise statistics required for learning can be

very slow if the hidden units are interconnected.

– Maximum likelihood learning requires unbiased samples

from the model’s distribution. These are very hard to get.

• Restricted Boltzmann Machines: Exact inference is very

easy when the states of the visible units are known because

then the hidden states are independent.

– Maximum likelihood learning is still slow because of the

need to get samples from the model, but contrastive

divergence learning is fast and often works well.

– But we can only learn one layer of adaptive features!

Stacking Restricted Boltzmann Machines

• First learn a layer of

hidden features.

• Then treat the feature

activations as data

and learn a second

layer of hidden

features.

• And so on for as

many hidden layers

as we want. data

first layer of features

data is activities of

first layer of features

second layer of features

RBM1

RBM2

Stacking Restricted Boltzmann Machines

• Is learning a model of the hidden activities just a hack?

– It does not seem as if we are learning a proper

multilayer model because the lower weights do not

depend on the higher ones.

• Can we treat the hidden layers of the whole stack of

RBM’s as part of one big generative model rather than a

model plus a model of a model etc.?

– If it is one big model, it definitely is not a Boltzmann

machine. The first hidden layer has two sets of

weights (above and below) which would make the

hidden activities very different from the activities of

those units in either of the RBM’s.

The overall model produced by composing

two RBM’s

data

first layer of features

data is activities of

first layer of features

second layer of features

data

first layer of features

second layer of features

W1

W2

W2

W1

The generative model

• To generate data:

1. Get an equilibrium sample

from the top-level RBM by

performing alternating Gibbs

sampling for a long time.

2. Perform a single top-down

pass to get states for all the

other layers.

The lower-level, bottom-up

connections are not part of

the generative model. They

are there to do fast

approximate inference.

h2

data

h1

h3

2W

3W

1W

TW2

TW1

Why does stacking RBM’s produce this kind

of generative model?

• It is not at all obvious that stacking RBM’s

produces a model in which the top two layers of

features form an RBM, but the layers beneath

that are not at all like a Boltzmann Machine.

• To understand why this happens we need to ask

how an RBM defines a probability distribution

over visible vectors.

How an RBM defines the probabilities of

hidden and visible vectors

• The weights in an RBM define p(h|v) and p(v|h) in a very
straightforward way (lets ignore biases for now)

– To sample from p(v|h), sample the binary state of
each visible unit from a logistic that depends on its
weight vector times h.

– To sample from p(h|v), sample the binary state of
each hidden unit from a logistic that depends on its
weight vector times v.

• If we use these two conditional distributions to do
alternating Gibbs sampling for a long time, we can get
p(v) or p(h)

– i.e. we can sample from the model’s distribution over
the visible or hidden units.

Why does layer-by-layer learning work?

 
hh

hvphphvpvp)|()(),()(

The weights, W, in the bottom level RBM define p(v|h)

and they also, indirectly, define p(h).

So we can express the RBM model as

If we leave p(v|h) alone and build a better model of p(h),

we will improve p(v).

We need a better model of the posterior hidden vectors

produced by applying W to the data.

index over all

hidden vectors

joint

probability

conditional

probability

• In a mixture model, we define the probability of a datavector to be

• The learning rule for the mixing proportions is to make them match
the posterior probability of using each Gaussian.

• The weights of an RBM implicitly define a mixing proportion for each
possible hidden vector.

– To fit the data better, we can leave p(v|h) the same and make
the mixing proportion of each hidden vector more like the
posterior over hidden vectors.

An analogy


h

hvphpvp)|()()(

mixing

proportion

of Gaussian

index over all

Gaussians

probability

of v given

Gaussian h

A guarantee

• Can we prove that adding more layers will always help?

– It would be very nice if we could learn a big model

one layer at a time and guarantee that as we add

each new hidden layer the model gets better.

• We can actually guarantee the following:

– There is a lower bound on the log probability of the

data.

– Provided that the layers do not get smaller and the

weights are initialized correctly (which is easy), every

time we learn a new hidden layer this bound is

improved (unless its already maximized).

• The derivation of this guarantee is quite complicated.

Back-fitting

• After we have learned all the layers greedily, the
weights in the lower layers will no longer be
optimal.

• The weights in the lower layers can be fine-
tuned in several ways.

– For the generative model that comes next, the
fine-tuning involves a complicated and slow
stochastic learning procedure.

– If our ultimate goal is discrimination, we can
use backpropagation for the fine-tuning.

A neural network model of digit recognition

2000 top-level units

500 units

500 units

28 x 28

pixel

image

10 label units

The model learns a joint density for

labels and images. To perform

recognition we can start with a neutral

state of the label units and do one or

two iterations of the top-level RBM.

Or we can just compute the harmony

of the RBM with each of the 10 labels

The top two layers form a

restricted Boltzmann machine

whose free energy landscape

models the low dimensional

manifolds of the digits.

The valleys have names:

See the movie at

http://www.cs.toronto.edu/~hinton/adi/index.htm

Samples generated by running the top-level RBM

with one label clamped. There are 1000 iterations

of alternating Gibbs sampling between samples.

Examples of correctly recognized MNIST test digits

(the 49 closest calls)

How well does it discriminate on MNIST test set with

no extra information about geometric distortions?

• Up-down net with RBM pre-training + CD10 1.25%

• SVM (Decoste & Scholkopf) 1.4%

• Backprop with 1000 hiddens (Platt) 1.5%

• Backprop with 500 -->300 hiddens 1.5%

• Separate hierarchy of RBM’s per class 1.7%

• Learned motor program extraction ~1.8%

• K-Nearest Neighbor ~ 3.3%

• Its better than backprop and much more neurally plausible
because the neurons only need to send one kind of signal,
and the teacher can be another sensory input.

All 125 errors

The receptive fields of the first hidden layer

The generative fields of the first hidden layer

