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Learning multilayer networks

• We want to learn models with multiple layers of non-
linear features.

• Perceptrons: Use a layer of hand-coded, non-adaptive 
features followed by a layer of adaptive decision units.

– Needs supervision signal for each training case. 

– Only one layer of adaptive weights. 

• Back-propagation: Use multiple layers of  adaptive 
features and train by backpropagating error derivatives

– Needs supervision signal for each training case.

– Learning time scales poorly for deep networks.

• Support Vector Machines: Use a very large set of fixed 
features

– Needs supervision signal for each training case.

– Does not learn multiple layers of features



Learning multi-layer networks (continued)

• Boltzmann Machines: Nice local learning rule that works in 

arbitrary networks. 

– Getting the pairwise statistics required for learning can be 

very slow if the hidden units are interconnected.

– Maximum likelihood learning requires unbiased samples 

from the model’s distribution. These are very hard to get.

• Restricted Boltzmann Machines: Exact inference is very 

easy when the states of the visible units are known because 

then the  hidden states are independent.

– Maximum likelihood learning is still slow because of the 

need to get samples from the model, but contrastive 

divergence learning is fast and often works well. 

– But we can only learn one layer of adaptive features!



Stacking Restricted Boltzmann Machines

• First learn a layer of 

hidden features.

• Then treat the feature 

activations as data 

and learn a second 

layer of hidden 

features.

• And so on for as 

many hidden layers 

as we want. data

first layer of features

data is activities of 

first layer of features

second layer of features

RBM1

RBM2



Stacking Restricted Boltzmann Machines

• Is learning a model of the hidden activities just a hack? 

– It does not seem as if we are learning a proper 

multilayer model because the lower weights do not 

depend on the higher ones.

• Can we treat the hidden layers of the whole stack of 

RBM’s as part of one big generative model rather than a 

model plus a model of a model etc.? 

– If it is one big model, it definitely is not a Boltzmann 

machine. The first hidden layer has two sets of 

weights (above and below) which would make the 

hidden activities very different from the activities of 

those units in either of the RBM’s.



The overall model produced by composing 

two RBM’s
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The generative model

• To generate data: 

1. Get an equilibrium sample 

from the top-level RBM by 

performing alternating Gibbs 

sampling for a long time.

2. Perform a single top-down 

pass to get states for all the 

other layers.

The lower-level, bottom-up 

connections  are not part of 

the generative model. They 

are there to do fast 

approximate inference.
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Why does stacking RBM’s produce this kind 

of generative model?

• It is not at all obvious that stacking RBM’s 

produces a model in which the top two layers of 

features form an RBM, but the layers beneath 

that are not at all like a Boltzmann Machine.

• To understand why this happens we need to ask 

how an RBM defines a probability distribution 

over visible vectors.



How an RBM defines the probabilities of 

hidden and visible vectors

• The weights in an RBM define p(h|v) and p(v|h) in a very 
straightforward way (lets ignore biases for now)

– To sample from p(v|h), sample the binary state of 
each visible unit from a logistic that depends on its 
weight vector times h. 

– To sample from p(h|v), sample the binary state of 
each hidden unit from a logistic that depends on its 
weight vector times v. 

• If we use these two conditional distributions to do 
alternating Gibbs sampling for a long time, we can get 
p(v) or p(h) 

– i.e. we can sample from the model’s distribution over 
the visible or hidden units.



Why does layer-by-layer learning work?
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The weights, W,  in the bottom level RBM define p(v|h) 

and they also, indirectly, define p(h).

So we can express the RBM model as

If we leave p(v|h) alone and build a better model of p(h), 

we will improve p(v). 

We need a better model of the posterior hidden vectors 

produced by applying W to the data.
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• In a mixture model, we define the probability of a datavector to be

• The learning rule for the mixing proportions is to make them match 
the posterior probability of using each Gaussian.

• The weights of an RBM implicitly define a mixing proportion for each 
possible hidden vector. 

– To fit the data better, we can leave p(v|h) the same and make 
the mixing proportion of each hidden vector more like the 
posterior over hidden vectors.

An analogy
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A guarantee

• Can we prove that adding more layers will always help?

– It would be very nice if we could learn a big model 

one layer at a time and guarantee that as we add 

each new hidden layer the model gets better.

• We can actually guarantee the following:

– There is a lower bound on the log probability of the 

data. 

– Provided that the layers do not get smaller and the 

weights are initialized correctly (which is easy), every 

time we learn a new hidden layer this bound is 

improved (unless its already maximized).

• The derivation of this guarantee is quite complicated.



Back-fitting

• After we have learned all the layers greedily, the 
weights in the lower layers will no longer be 
optimal. 

• The weights in the lower layers can be fine-
tuned in several ways. 

– For the generative model that comes next, the 
fine-tuning involves a complicated and slow 
stochastic learning procedure.

– If our ultimate goal is discrimination, we can 
use backpropagation for the fine-tuning.



A neural network model of digit recognition

2000 top-level units

500 units 

500 units 

28 x 28 

pixel     

image

10 label units

The model learns a joint density for 

labels and images. To perform 

recognition we can start with a neutral 

state of the label units and do one or 

two iterations of the top-level RBM.

Or we can just compute the harmony 

of the RBM with each of the 10 labels

The top two layers form a 

restricted Boltzmann machine 

whose free energy landscape 

models the low dimensional 

manifolds of the digits.

The valleys have names:



See the movie at

http://www.cs.toronto.edu/~hinton/adi/index.htm



Samples generated by running the top-level RBM 

with one label clamped. There are 1000 iterations 

of alternating Gibbs sampling between samples.



Examples of correctly recognized MNIST test digits 

(the 49 closest calls)



How well does it discriminate on MNIST test set with 

no extra information about geometric distortions?

• Up-down net with RBM pre-training + CD10     1.25%

• SVM  (Decoste & Scholkopf) 1.4%   

• Backprop with 1000 hiddens (Platt)                   1.5%

• Backprop with 500 -->300 hiddens                    1.5%

• Separate hierarchy of RBM’s per class             1.7%

• Learned motor program extraction                  ~1.8% 

• K-Nearest Neighbor                                        ~ 3.3%

• Its better than backprop and much more neurally plausible 
because the neurons only need to send one kind of signal, 
and the teacher can be another sensory input.



All 125 errors



The receptive fields of the first hidden layer



The generative fields of the first hidden layer


