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Modeling binary data

• Given a training set of binary vectors, fit a model that will 

assign a probability to other binary vectors.

– Useful for deciding if other binary vectors come from 

the same distribution.

– This can be used for monitoring complex systems to 

detect unusual behavior.

– If we have models of several different distributions it 

can be used to compute the posterior probability that 

a particular  distribution produced the observed data.
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A naïve model for binary data

For each component,  j, compute its probability, pj, 

of being on in the training set. Model the 

probability of test vector alpha as the product of 

the probabilities of each of its components: 
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A mixture of naïve models

• Assume that the data was generated by first 

picking  a particular naïve model and then 

generating a binary vector from this naïve 

model.

– This is just like the mixture of Gaussians, but 

for binary data.
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Limitations of mixture models

• Mixture models assume that the whole of each data vector 

was generated by exactly one of the models in the mixture. 

– This makes is easy to compute the posterior distribution 

over models when given a data vector.

– But it cannot deal with data in which there are several 

things going on at once.

mixture of 10 models mixture of 100 models



Dealing with compositional structure

• Consider a dataset in which each image contains N 

different things:

– A distributed representation requires a number of 

neurons that is linear in N. 

– A localist representation (i.e. a mixture model) 

requires a number of neurons that is exponential in N.

• Mixtures require one model for each possible combination.

• Distributed representations are generally much harder to 

fit to data, but they are the only reasonable solution.

– Boltzmann machines use distributed representations 

to model binary data.



How a Boltzmann Machine models data

• It is not a causal generative model (like a 

mixture model) in which we first pick the hidden 

states and then pick the visible states given the 

hidden ones.

• Instead, everything is defined in terms of 

energies of joint configurations of the visible and 

hidden units. 



The Energy of a joint configuration
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Using energies to define probabilities

• The probability of a joint 

configuration over both visible 

and hidden units depends on 

the energy of that joint 

configuration compared with 

the energy of all other joint 

configurations.

• The probability of a 

configuration of the visible 

units is the sum of the 

probabilities of all the joint 

configurations that contain it.
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An example of how weights define a distribution

1 1 1 1       2          7.39          .186 

1 1 1 0       2          7.39          .186  

1 1 0 1       1          2.72          .069 

1 1 0 0       0          1               .025

1 0 1 1       1          2.72          .069

1 0 1 0       2          7.39          .186

1 0 0 1       0          1               .025

1 0 0 0       0          1               .025

0 1 1 1       0          1               .025

0 1 1 0       0          1               .025

0 1 0 1       1          2.72          .069

0 1 0 0       0          1               .025

0 0 1 1       -1         0.37          .009

0 0 1 0       0          1               .025

0 0 0 1       0          1               .025

0 0 0 0       0          1               .025

total =39.70

)(),( vhvhv ppeE E

0.466

0.305

0.144

0.084



Getting a sample from the model

• If there are more than a few hidden units, we cannot 
compute the normalizing term (the partition function) 
because it has exponentially many terms.

• So use Markov Chain Monte Carlo to get samples from 
the model:

– Start at a random global configuration

– Keep picking units at random and allowing them to 
stochastically update their states based on their 
energy gaps.

– Use simulated annealing to reduce the time required 
to approach thermal equilibrium.

• At thermal equilibrium,  the probability of a global 
configuration is given by the Boltzmann distribution.



Getting a sample from the posterior 

distribution over distributed representations

for a given data vector

• The number of possible hidden configurations is 

exponential so we need MCMC to sample from 

the posterior.

– It is just the same as getting a sample from 

the model, except that we keep the visible 

units clamped to the given data vector. 

• Only the hidden units are allowed to change states

• Samples from the posterior are required for 

learning the weights. 


