
CSC321: Introduction to Neural Networks

and Machine Learning

Lecture 17: Boltzmann Machines as

Probabilistic Models

Geoffrey Hinton

Modeling binary data

• Given a training set of binary vectors, fit a model that will

assign a probability to other binary vectors.

– Useful for deciding if other binary vectors come from

the same distribution.

– This can be used for monitoring complex systems to

detect unusual behavior.

– If we have models of several different distributions it

can be used to compute the posterior probability that

a particular distribution produced the observed data.




j

jModeldatap

iModeldatap
dataiModelp

)|(

)|(
)|(

A naïve model for binary data

For each component, j, compute its probability, pj,

of being on in the training set. Model the

probability of test vector alpha as the product of

the probabilities of each of its components:

  
j

jjjj pspsp)1)(1()(
s

Binary

vector

alpha

If component

j of vector

alpha is on

If component

j of vector

alpha is off

A mixture of naïve models

• Assume that the data was generated by first

picking a particular naïve model and then

generating a binary vector from this naïve

model.

– This is just like the mixture of Gaussians, but

for binary data.

  
 j

m
jj

m
jj

Modelsm

m pspsp)1)(1()( s

Limitations of mixture models

• Mixture models assume that the whole of each data vector

was generated by exactly one of the models in the mixture.

– This makes is easy to compute the posterior distribution

over models when given a data vector.

– But it cannot deal with data in which there are several

things going on at once.

mixture of 10 models mixture of 100 models

Dealing with compositional structure

• Consider a dataset in which each image contains N

different things:

– A distributed representation requires a number of

neurons that is linear in N.

– A localist representation (i.e. a mixture model)

requires a number of neurons that is exponential in N.

• Mixtures require one model for each possible combination.

• Distributed representations are generally much harder to

fit to data, but they are the only reasonable solution.

– Boltzmann machines use distributed representations

to model binary data.

How a Boltzmann Machine models data

• It is not a causal generative model (like a

mixture model) in which we first pick the hidden

states and then pick the visible states given the

hidden ones.

• Instead, everything is defined in terms of

energies of joint configurations of the visible and

hidden units.

The Energy of a joint configuration





ji

ijji

unitsi

ii wssbsE 

bias of

unit i

weight between

units i and j
Energy with configuration

alpha on the visible units

and beta on the hidden

units

binary state of unit i in joint

configuration alpha, beta

indexes every non-identical

pair of i and j once

Using energies to define probabilities

• The probability of a joint

configuration over both visible

and hidden units depends on

the energy of that joint

configuration compared with

the energy of all other joint

configurations.

• The probability of a

configuration of the visible

units is the sum of the

probabilities of all the joint

configurations that contain it.

 












E

E

e

e
p),(hv


















E

E

e

e

p)(v

configuration

alpha on the

visible units

partition

function

-1

h1 h2

+2 +1

v1 v2

An example of how weights define a distribution

1 1 1 1 2 7.39 .186

1 1 1 0 2 7.39 .186

1 1 0 1 1 2.72 .069

1 1 0 0 0 1 .025

1 0 1 1 1 2.72 .069

1 0 1 0 2 7.39 .186

1 0 0 1 0 1 .025

1 0 0 0 0 1 .025

0 1 1 1 0 1 .025

0 1 1 0 0 1 .025

0 1 0 1 1 2.72 .069

0 1 0 0 0 1 .025

0 0 1 1 -1 0.37 .009

0 0 1 0 0 1 .025

0 0 0 1 0 1 .025

0 0 0 0 0 1 .025

total =39.70

)(),(vhvhv ppeE E

0.466

0.305

0.144

0.084

Getting a sample from the model

• If there are more than a few hidden units, we cannot
compute the normalizing term (the partition function)
because it has exponentially many terms.

• So use Markov Chain Monte Carlo to get samples from
the model:

– Start at a random global configuration

– Keep picking units at random and allowing them to
stochastically update their states based on their
energy gaps.

– Use simulated annealing to reduce the time required
to approach thermal equilibrium.

• At thermal equilibrium, the probability of a global
configuration is given by the Boltzmann distribution.

Getting a sample from the posterior

distribution over distributed representations

for a given data vector

• The number of possible hidden configurations is

exponential so we need MCMC to sample from

the posterior.

– It is just the same as getting a sample from

the model, except that we keep the visible

units clamped to the given data vector.

• Only the hidden units are allowed to change states

• Samples from the posterior are required for

learning the weights.

