
CSC321: 2011

Introduction to Neural Networks

and Machine Learning

Lecture 10: The Bayesian way to fit models

Geoffrey Hinton

The Bayesian framework

• The Bayesian framework assumes that we always

have a prior distribution for everything.

– The prior may be very vague.

– When we see some data, we combine our prior

distribution with a likelihood term to get a posterior

distribution.

– The likelihood term takes into account how

probable the observed data is given the parameters

of the model.

• It favors parameter settings that make the data likely.

• It fights the prior

• With enough data the likelihood terms always win.

A coin tossing example

• Suppose we know nothing about coins except that each
tossing event produces a head with some unknown
probability p and a tail with probability 1-p. Our model of
a coin has one parameter, p.

• Suppose we observe 100 tosses and there are 53
heads. What is p?

• The frequentist answer: Pick the value of p that makes
the observation of 53 heads and 47 tails most probable.

 

53.0

)1(
1

4753

)1(47)1(53
)(

)1()(

4753

46534752

4753



















pif

pp
pp

pppp
dp

DdP

ppDP probability of a particular sequence

Some problems with picking the parameters

that are most likely to generate the data

• What if we only tossed the coin once and we got
1 head?

– Is p=1 a sensible answer?
• Surely p=0.5 is a much better answer.

• Is it reasonable to give a single answer?

– If we don’t have much data, we are unsure
about p.

– Our computations of probabilities will work
much better if we take this uncertainty into
account.

Using a distribution over parameter values

• Start with a prior distribution

over p. In this case we used a

uniform distribution.

• Multiply the prior probability of

each parameter value by the

probability of observing a head

given that value.

• Then scale up all of the

probability densities so that

their integral comes to 1. This

gives the posterior distribution.

probability

density

p

area=1

area=1

0 1

1

1

2

probability

density

probability

density

Lets do it again: Suppose we get a tail

• Start with a prior

distribution over p.

• Multiply the prior

probability of each

parameter value by the

probability of observing a

tail given that value.

• Then renormalize to get

the posterior distribution.

Look how sensible it is!

probability

density

p

area=1

area=1

0 1

1

2

Lets do it another 98 times

• After 53 heads and 47

tails we get a very

sensible posterior

distribution that has its

peak at 0.53 (assuming a

uniform prior).

probability

density

p

area=1

0 1

1

2

Bayes Theorem







W

WDpWp

Dp

WDpWp
DWp

WDpWpWDpDWpDp

)|()(

)(

)|()(
)|(

)|()(),()|()(

Prior probability of

weight vector W

Posterior probability

of weight vector W

given training data D

Probability of observed

data given W

joint probability
conditional

probability

A cheap trick to avoid computing the

posterior probabilities of all weight vectors

• Suppose we just try to find the most probable
weight vector.

– We can do this by starting with a random
weight vector and then adjusting it in the
direction that improves p(W | D).

• It is easier to work in the log domain. If we want
to minimize a cost we use negative log
probabilities:

)(log)|(log)(log)|(log

)(/)|()()|(

DpWDpWpDWpCost

DpWDpWpDWp





Why we maximize sums of log probs

• We want to maximize the product of the probabilities of
the outputs on all the different training cases

– Assume the output errors on different training cases,
c, are independent.

• Because the log function is monotonic, it does not
change where the maxima are. So we can maximize
sums of log probabilities

)|()|(WdpWDp
c

c

)|(log)|(log WdpWDp
c

c

A even cheaper trick

• Suppose we completely ignore the prior over

weight vectors

– This is equivalent to giving all possible weight

vectors the same prior probability density.

• Then all we have to do is to maximize:

• This is called maximum likelihood learning. It is

very widely used for fitting models in statistics.

)|(log)|(log WDpWDp
c

c

Supervised Maximum Likelihood Learning

• Minimizing the squared

residuals is equivalent to

maximizing the log

probability of the correct

answer under a Gaussian

centered at the model’s

guess.
d = the

correct

answer

y = model’s

estimate of most

probable value

2

2

2

)(

2

)(
),|(log

2

1
)|(),|(

),(

2

2






cc
cc

yd

cccc

cc

yd
kWinputdoutputp

ydpWinputdoutputp

Winputfy

cc

e











Supervised Maximum Likelihood Learning

• Finding a set of weights, W, that minimizes the
squared errors is exactly the same as finding a W
that maximizes the log probability that the model
would produce the desired outputs on all the
training cases.

– We implicitly assume that zero-mean Gaussian
noise is added to the model’s actual output.

– We do not need to know the variance of the
noise because we are assuming it’s the same
in all cases. So it just scales the squared error.

