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The Bayesian framework

• The Bayesian framework assumes that we always 

have a prior distribution for everything.

– The prior may be very vague.

– When we see some data, we combine our prior 

distribution with a likelihood term to get a posterior 

distribution.

– The likelihood term takes into account how 

probable the observed data is given the parameters 

of the model. 

• It favors parameter settings that make the data likely. 

• It fights the prior

• With enough data the likelihood terms always win.



A coin tossing example

• Suppose we know nothing about coins except that each 
tossing event produces a head with some unknown 
probability p and a tail with probability 1-p. Our model of 
a coin has one parameter, p.

• Suppose we observe 100 tosses and there are 53 
heads.  What is p?

• The frequentist answer: Pick the value of p that makes 
the observation of 53 heads and 47 tails most probable.
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Some problems with picking the parameters 

that are most likely to generate the data

• What if we only tossed the coin once and we got 
1 head?

– Is p=1 a sensible answer?
• Surely p=0.5 is a much better answer.

• Is it reasonable to give a single answer?

– If we don’t have much data, we are unsure 
about p.

– Our computations of probabilities will work 
much better if we take this uncertainty into 
account.



Using a distribution over parameter values

• Start with a prior distribution 

over p. In this case we used a 

uniform distribution.

• Multiply the prior probability of 

each parameter value by the 

probability of observing a head 

given that value.

• Then scale up all of the 

probability densities so that 

their integral comes to 1. This 

gives the posterior distribution.
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Lets do it again: Suppose we get a tail

• Start with a prior 

distribution over p.

• Multiply the prior 

probability of each 

parameter value by the 

probability of observing a 

tail given that value.

• Then renormalize to get 

the posterior distribution. 

Look how sensible it is!
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Lets do it another 98 times

• After 53 heads and 47 

tails we get a very 

sensible posterior 

distribution that has its 

peak at 0.53 (assuming a 

uniform prior).

probability 

density

p

area=1

0 1

1

2



Bayes Theorem
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A cheap trick to avoid computing the 

posterior probabilities of all weight vectors

• Suppose we just try to find the most probable 
weight vector.

– We can do this by starting with a random 
weight vector and then adjusting it in the 
direction that improves  p( W | D ).

• It is easier to work in the log domain. If we want 
to minimize a cost we use negative log 
probabilities:
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Why we maximize sums of log probs

• We want to maximize the product of the probabilities of 
the outputs on all the different  training cases

– Assume the output errors on different training cases, 
c, are independent.

• Because the log function is monotonic, it does not 
change where the maxima are. So we can maximize 
sums of log probabilities
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A even cheaper trick

• Suppose we completely ignore the prior over 

weight vectors

– This is equivalent to giving all possible weight 

vectors the same prior probability density.

• Then all we have to do is to maximize:

• This is called maximum likelihood learning. It is 

very widely used for fitting models in statistics.

)|(log)|(log WDpWDp
c

c



Supervised Maximum Likelihood Learning

• Minimizing the squared 

residuals is equivalent to 

maximizing the log 

probability of the correct 

answer under a Gaussian 

centered at the model’s 

guess.
d = the 

correct
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y = model’s 

estimate of most 

probable value
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Supervised Maximum Likelihood Learning

• Finding a set of weights, W, that minimizes the 
squared errors is exactly the same as finding a W 
that maximizes the log probability that the model 
would produce the desired outputs on all the 
training cases.

– We implicitly assume that zero-mean Gaussian 
noise is added to the model’s actual output.

– We do not need to know the variance of the 
noise because we are assuming it’s the same 
in all cases. So it just scales the squared error.


