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32

Exact Monte Carlo Sampling

32.1 The problem with Monte Carlo methods

For high-dimensional problems, the most widely used random sampling meth-
ods are Markov chain Monte Carlo methods like the Metropolis method, Gibbs
sampling, and slice sampling.

The problem with all these methods is this: yes, a given algorithm can be
guaranteed to produce samples from the target density P (x) asymptotically,
‘once the chain has converged to the equilibrium distribution’. But if one runs
the chain for too short a time T , then the samples will come from some other
distribution P (T )(x). For how long must the Markov chain be run before it has
‘converged’? As was mentioned in Chapter 29, this question is usually very
hard to answer. However, the pioneering work of Propp and Wilson (1996)
allows one, for certain chains, to answer this very question; furthermore Propp
and Wilson show how to obtain ‘exact’ samples from the target density.

32.2 Exact sampling concepts

Propp and Wilson’s exact sampling method (also known as ‘perfect simulation’
or ‘coupling from the past’) depends on three ideas.

Coalescence of coupled Markov chains

First, if several Markov chains starting from different initial conditions share
a single random-number generator, then their trajectories in state space may
coalesce; and, having, coalesced, will not separate again. If all initial condi-
tions lead to trajectories that coalesce into a single trajectory, then we can be
sure that the Markov chain has ‘forgotten’ its initial condition. Figure 32.1a-
i shows twenty-one Markov chains identical to the one described in section
29.4, which samples from {0, 1, . . . , 20} using the Metropolis algorithm (fig-
ure 29.12, p.368); each of the chains has a different initial condition but they
are all driven by a single random number generator; the chains coalesce after
about 80 steps. Figure 32.1(a-ii) shows the same Markov chains with a dif-
ferent random number seed; in this case, coalescence does not occur until 400
steps have elapsed (not shown). Figure 32.1b shows similar Markov chains,
each of which has identical proposal density to those in section 29.4 and fig-
ure 32.1a; but in figure 32.1b, the proposed move at each step, ‘left’ or ‘right’,
is obtained in the same way by all the chains at any timestep, independent of
the current state. This coupling of the chains changes the statistics of coales-
cence. Because two neighbouring paths only merge when a rejection occurs,
and rejections only occur at the walls (for this particular Markov chain), coa-

413



Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

414 32 — Exact Monte Carlo Sampling

lescence will occur only when the chains are all in the leftmost state or all in
the rightmost state.

Coupling from the past

How can we use the coalescence property to find an exact sample from the
equilibrium distribution of the chain? The state of the system at the moment
when complete coalescence occurs is not a valid sample from the equilibrium
distribution; for example in figure 32.1b, final coalescence always occurs when
the state is against one of the two walls, because trajectories only merge at
the walls. So sampling forward in time until coalescence occurs is not a valid
method.

The second key idea of exact sampling is that we can obtain exact samples
by sampling from a time T0 in the past, up to the present. If coalescence
has occured, the present sample is an unbiased sample from the equilibrium
distribution; if not, we restart the simulation from a time T0 further into
the past, reusing the same random numbers. The simulation is repeated at a
sequence of ever more distant times T0, with a doubling of T0 from one run to
the next being a convenient choice. When coalescence occurs at a time before
‘the present’, we can record x(0) as an exact sample from the equilibrium
distribution of the Markov chain.

Figure 32.2 shows two exact samples produced in this way. In the leftmost
panel of figure 32.2a, we start twenty-one chains in all possible initial condi-
tions at T0 = −50 and run them forward in time. Coalescence does not occur.
We restart the simulation from all possible initial conditions at T0 = −100, and
reset the random number generator in such a way that the random numbers
generated at each time t (in particular, from t = −50 to t = 0) will be identical
to what they were in the first run. Notice that the trajectories produced from
t = −50 to t = 0 by these runs that started from T0 = −100 are identical to a
subset of the trajectories in the first simulation with T0 = −50. Coalescence
still does not occur, so we double T0 again to T0 = −200. This time, all the
trajectories coalesce and we obtain an exact sample, shown by the arrow. If
we pick an earlier time such as T0 = −500, all the trajectories must still end
in the same point at t = 0, since all trajectories must pass through some state
at t = −200, and all those states lead to the same final point. So if we ran
the Markov chain for an infinite time in the past, from any initial condition,
it would end in the same state. Figure 32.2b shows an exact sample produced
in the same way with the Markov chains of figure 32.1b.

This method, called coupling from the past, is important because it allows
us to obtain exact samples from the equilibrium distribution; but, as described
here, it is of little practical use, since we are obliged to simulate chains starting
in all initial states. In the examples shown, there are only twenty-one states,
but in any realistic sampling problem there will be an utterly enormous number
of states – think of the 21000 states of a system of 1000 binary spins, for
example. The whole point of introducing Monte Carlo methods was to try to
avoid having to visit all the states of such a system!

Monotonicity

Having established that we can obtain valid samples by simulating forward
from times in the past, starting in all possible states at those times, the third
trick of Propp and Wilson, which makes the exact sampling method useful
in practice, is the idea that, for some Markov chains, it may be possible to
detect coalescence of all trajectories without simulating all those trajectories.
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Figure 32.1. Coalescence, the first
idea behind the exact sampling
method. In the leftmost panel,
coalescence occurred within 100
steps. Different coalescence
properties are obtained depending
on the way each state uses the
random numbers it is supplied
with. (a) Two runs of a
Metropolis simulator in which the
random bits that determine the
proposed step depend on the
current state; a different random
number seed was used in each
case. (b) In this simulator the
random proposal (‘left’ or ‘right’)
is the same for all states. In each
panel, one of the paths, the one
starting at location x = 8, has
been highlighted.
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Figure 32.2. ‘Coupling from the past’, the second idea behind the exact sampling method.
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Figure 32.3. (a) Ordering of states, the third idea behind the exact sampling method. The trajectories
shown here are the left-most and right-most trajectories of figure 32.2b. In order to establish
what the state at time zero is, we only need to run simulations from T0 = −50, T0 = −100,
and T0 = −200, after which point coalescence occurs.

(b,c) Two more exact samples from the target density, generated by this method, and
different random number seeds. The initial times required were T0 = −50 and T0 = −1000,
respectively.
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418 32 — Exact Monte Carlo Sampling

This property holds, for example, in the chain of figure 32.1b, which has the
property that two trajectories never cross. So if we simply track the two tra-
jectories starting from the leftmost and rightmost states, we will know that
coalescence of all trajectories has occurred when those two trajectories co-
alesce. Figure 32.3b illustrates this idea by showing only the left-most and
right-most trajectories of figure 32.2b. Figure 32.3(c,d) shows two more ex-
act samples from the same equilibrium distribution generated by running the
‘coupling from the past’ method starting from the two end-states alone. In
(c), two runs coalesced starting from T0 = −50; in (d), it was necessary to try
times up to T0 = −1000 to achieve coalescence.

32.3 Exact sampling from interesting distributions

In the toy problem we studied, the states could be put in a one-dimensional
order such that no two trajectories crossed. The states of many interesting
state spaces can also be put into a partial order and coupled Markov chains
can be found that respect this partial order. [An example of a partial order
on the four possible states of two spins is this: (+,+) > (+,−) > (−,−);
and (+,+) > (−,+) > (−,−); and the states (+,−) and (−,+) are not
ordered.] For such systems, we can show that coalescence has occurred merely
by verifying that coalescence has occurred for all the histories whose initial
states were ‘maximal’ and ‘minimal’ states of the state space.

Compute ai :=
∑

j Jijxj

Draw u from Uniform(0, 1)
If u < 1/(1 + e−ai)

xi := +1
Else

xi := −1

Algorithm 32.4. Gibbs sampling
coupling method. The Markov
chains are coupled together by
having all chains update the same
spin i at each time step and
having all chains sharing a
common sequence of random
numbers u.

As an example, consider the Gibbs sampling method applied to a ferro-
magnetic Ising spin system, with the partial ordering of states being defined
thus: state x is ‘greater than or equal to’ state y if xi ≥ yi for all spins i.
The maximal and minimal states are the the all-up and all-down states. The
Markov chains are coupled together as shown in algorithm 32.4. Propp and
Wilson (1996) show that exact samples can be generated for this system, al-
though the time to find exact samples is large if the Ising model is below its
critical temperature, since the Gibbs sampling method itself is slowly-mixing
under these conditions. Propp and Wilson have improved on this method for
the Ising model by using a Markov chain called the single-bond heat bath
algorithm to sample from a related model called the random cluster model;
they show that exact samples from the random cluster model can be obtained
rapidly and can be converted into exact samples from the Ising model. Their
ground-breaking paper includes an exact sample from a 16-million-spin Ising
model at its critical temperature. A sample for a smaller Ising model is shown
in figure 32.5.

Figure 32.5. An exact sample from
the Ising model at its critical
temperature, produced by
D.B. Wilson. Such samples can be
produced within seconds on an
ordinary computer by exact
sampling.A generalization of the exact sampling method for ‘non-attractive’ distri-

butions

The method of Propp and Wilson for the Ising model, sketched above, can
only be applied to probability distributions that are, as they call them, ‘at-
tractive’. Rather than define this term, let’s say what it means, for practical
purposes: the method can be applied to spin systems in which all the cou-
plings are positive (e.g., the ferromagnet), and to a few special spin systems
with negative couplings (e.g., as we already observed in Chapter 31, the rect-
angular ferromagnet and antiferromagnet are equivalent); but it cannot be
applied to general spin systems in which some couplings are negative, because
in such systems the trajectories followed by the all-up and all-down states are
not guaranteed to be upper and lower bounds for the set of all trajectories.
Fortunately, however, we do not need to be so strict. It is possible to re-
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32.3: Exact sampling from interesting distributions 419

express the Propp and Wilson algorithm in a way that generalizes to the case
of spin systems with negative couplings. The idea the summary state version
of the exact sampling method is still that we keep track of bounds on the set
of all trajectories, and detect when these bounds are equal, so as to find exact
samples. But the bounds will not themselves be actual trajectories, and they
will not necessarily be tight bounds.

Instead of simulating two trajectories, each of which moves in a state space
{−1,+1}N , we simulate one trajectory envelope in an augmented state space
{−1,+1, ?}N , where the symbol ? denotes ‘either −1 or +1’. We call the state
of this augmented system the ‘summary state’. An example summary state of
a six-spin system is ++-?+?. This summary state is shorthand for the set of
states

++-+++, ++-++-, ++--++, ++--+- .

The update rule at each step of the Markov chain takes a single spin, enu-
merates all possible states of the neighbouring spins that are compatible with
the current summary state, and, for each of these local scenarios, computes
the new value (+ or -) of the spin using Gibbs sampling (coupled to a random
number u as in algorithm 32.4). If all these new values agree, then the new
value of the updated spin in the summary state is set to the unanimous value
(+ or -). Otherwise, the new value of the spin in the summary state is ‘?’. The
initial condition, at time T0, is given by setting all the spins in the summary
state to ‘?’, which corresponds to considering all possible start configurations.

In the case of a spin system with positive couplings, this summary state
simulation will be identical to the simulation of the uppermost state and low-
ermost states, in the style of Propp and Wilson, with coalescence occuring
when all the ‘?’ symbols have disappeared. The summary state method can
be applied to general spin systems with any couplings. The only shortcoming
of this method is that the envelope may describe an unnecessarily large set of
states, so there is no guarantee that the summary state algorithm will con-
verge; the time for coalescence to be detected may be considerably larger than
the actual time taken for the underlying Markov chain to coalesce.

The summary state scheme has been applied to exact sampling in belief
networks by Harvey and Neal (2000), and to the triangular antiferromagnetic
Ising model by Childs et al. (2001).

Further reading

For further reading, impressive pictures of exact samples from other distribu-
tions, and generalizations of the exact sampling method, browse the perfectly-
random sampling website.1

For beautiful exact-sampling demonstrations running live in your web-
browser, see Jim Propp’s website.2

Other uses for coupling

The idea of coupling together Markov chains by having them share a random
number generator has other applications beyond exact sampling. Pinto and
Neal (2001) have shown that the accuracy of estimates obtained from a Markov
chain Monte Carlo simulation (the second problem discussed in section 29.1,

1http://www.dbwilson.com/exact/
2http://www.math.wisc.edu/∼propp/tiling/www/applets/
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Figure 32.6. A perfectly random
tiling of a hexagon by lozenges,
provided by J.G. Propp and
D.B. Wilson.

p.357), using the estimator

Φ̂P ≡ 1

T

∑

t

φ(x(t)), (32.1)

can be improved by coupling the chain of interest, which converges to P , to a
second chain, which generates samples from a second, simpler distribution, Q.
The coupling must be set up in such a way that the states of the two chains
are strongly correlated. The idea is that we first estimate the expectations of
a function of interest, φ, under P and under Q in the normal way (32.1) and
compare the estimate under Q, Φ̂Q, with the true value of the expectation

under Q, ΦQ which we assume can be evaluated exactly. If Φ̂Q is an overes-

timate then it is likely that Φ̂P will be an overestimate too. The difference
(Φ̂Q − ΦQ) can thus be used to correct Φ̂P .

32.4 Exercises

. Exercise 32.1.[2, p.421] Is there any relationship between the probability dis-
tribution of the time taken for all trajectories to coalesce, and the equi-
libration time of a Markov chain? Prove that there is a relationship, or
find a single chain that can be realized in two different ways that have
different coalescence times.

. Exercise 32.2.[2 ] Imagine that Fred ignores the requirement that the random
bits used at some time t, in every run from increasingly distant times
T0, must be identical, and makes a coupled-Markov-chain simulator that
uses fresh random numbers every time T0 is changed. Describe what
happens if Fred applies his method to the Markov chain that is intended
to sample from the uniform distribution over the states 0, 1, and 2, using
the Metropolis method, driven by a random bit source as in figure 32.1b.
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Exercise 32.3.[5 ] Investigate the application of perfect sampling to linear re-
gression in Holmes and Mallick (1998) and try to generalize it.

Exercise 32.4.[3 ] The concept of coalescence has many applications. Some sur-
names are more frequent than others, and some die out altogether. Make
a model of this process; how long will it take until everyone has the same
surname?

Similarly, variability in any particular portion of the human genome
(which forms the basis of forensic DNA fingerprinting) is inherited like a
surname. A DNA fingerprint is like a string of surnames. Should the fact
that these surnames are subject to coalescences, so that some surnames
are by chance more prevalent than others, affect the way in which DNA
fingerprint evidence is used in court?

. Exercise 32.5.[2 ] How can you use a coin to create a random ranking of 3
people? Construct a solution that uses exact sampling. For example,
you could apply exact sampling to a Markov chain in which the coin is
repeatedly used alternately to decide whether to switch first and second,
then whether to switch second and third.

Exercise 32.6.[5 ] Finding the partition function Z of a probability distribution
is a difficult problem. Many Markov chain Monte Carlo methods produce
valid samples from a distribution without ever finding out what Z is.

Is there any probability distribution and Markov chain such that either
the time taken to produce a perfect sample or the number of random bits
used to create a perfect sample are related to the value of Z? Are there
some situations in which the time to coalescence conveys information
about Z?

32.5 Solutions

Solution to exercise 32.1 (p.420). It is perhaps surprising that there is no
direct relationship between the equilibration time and the time to coalescence.
A simple example that proves this is the case of the uniform distribution over
the integers A = {0, 1, 2, . . . , 20}. A Markov chain that converges to this
distribution in exactly one iteration is the chain for which the probability of
state st+1 given st is the uniform distribution, for all st. Such a chain can
be coupled to a random number generator in two ways: (a) we could draw a
random integer u ∈ A, and set st+1 equal to u regardless of st; or (b) we could
draw a random integer u ∈ A, and set st+1 equal to (st + u)mod 21. Method
(b) would produce a cohort of trajectories locked together, similar to the
trajectories in figure 32.1, except that no coalescence ever occurs. Thus, while
the equilibration times of methods (a) and (b) are both one, the coalescence
times are respectively one and infinity.

It seems plausible on the other hand that coalescence time provides some
sort of upper bound on equilibration time.
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Variational Methods

Variational methods are an important technique for the approximation of com-
plicated probability distributions, having applications in statistical physics,
data modelling and neural networks.

33.1 Variational free energy minimization

One method for approximating a complex distribution in a physical system is
mean field theory. Mean field theory is a special case of a general variational

free energy approach of Feynman and Bogoliubov which we will now study.
The key piece of mathematics needed to understand this method is Gibbs’
inequality, which we repeat here. Gibbs’ inequality first appeared in

equation (1.24); see also exercise 2.26
(p.37).The relative entropy between two probability distributions Q(x) and P (x)

that are defined over the same alphabet AX is

DKL(Q||P ) =
∑

x

Q(x) log
Q(x)

P (x)
. (33.1)

The relative entropy satisfies DKL(Q||P ) ≥ 0 (Gibbs’ inequality) with
equality only if Q=P . In general DKL(Q||P ) 6= DKL(P ||Q).

In this chapter we will replace the log by ln, and measure the divergence
in nats.

Probability distributions in statistical physics

In statistical physics one often encounters probability distributions of the form

P (x|β,J) =
1

Z(β,J)
exp[−βE(x;J)] , (33.2)

where for example the state vector is x ∈ {−1,+1}N , and E(x;J) is some
energy function such as

E(x;J) = −1

2

∑

m,n

Jmnxmxn −
∑

n

hnxn. (33.3)

The partition function (normalizing constant) is

Z(β,J) ≡
∑

x

exp[−βE(x;J)] . (33.4)

The probability distribution of equation (33.2) is complex. Not unbearably
complex – we can, after all, evaluate E(x;J) for any particular x in a time

422
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polynomial in the number of spins. But evaluating the normalizing constant
Z(β,J) is difficult, as we saw in Chapter 29, and describing the properties of
the probability distribution is also hard. Knowing the value of E(x;J) at a
few arbitrary points x, for example, gives no useful information about what
the average properties of the system are.

An evaluation of Z(β,J) would be particularly desirable because from Z
we can derive all the thermodynamic properties of the system.

Variational free energy minimization is a method for approximating the
complex distribution P (x) by a simpler ensemble Q(x;θ) that is parameterized
by adjustable parameters θ. We adjust these parameters so as to get Q to
best approximate P , in some sense. A by-product of this approximation is a
lower bound on Z(β,J).

The variational free energy

The objective function chosen to measure the quality of the approximation is
the variational free energy

βF̃ (θ) =
∑

x

Q(x;θ) ln
Q(x;θ)

exp[−βE(x;J)]
. (33.5)

This expression can be manipulated into a couple of interesting forms: first,

βF̃ (θ) = β
∑

x

Q(x;θ)E(x;J) −
∑

x

Q(x;θ) ln
1

Q(x;θ)
(33.6)

≡ β 〈E(x;J)〉Q − SQ, (33.7)

where 〈E(x;J)〉Q is the average of the energy function under the distribution
Q(x;θ), and SQ is the entropy of the distribution Q(x;θ) (we set kB to one
in the definition of S so that it is identical to the definition of the entropy H
in Part I).

Second, we can use the definition of P (x|β,J) to write:

βF̃ (θ) =
∑

x

Q(x;θ) ln
Q(x;θ)

P (x|β,J)
− lnZ(β,J) (33.8)

= DKL(Q||P ) + βF, (33.9)

where F is the true free energy, defined by

βF ≡ − lnZ(β,J), (33.10)

and DKL(Q||P ) is the relative entropy between the approximating distribution
Q(x;θ) and the true distribution P (x|β,J). Thus by Gibbs’ inequality, the
variational free energy F̃ (θ) is bounded below by F and only attains this value
for Q(x;θ) = P (x|β,J).

Our strategy is thus to vary θ in such a way that βF̃ (θ) is minimized.
The approximating distribution then gives a simplified approximation to the
true distribution that may be useful, and the value of βF̃ (θ) will be an upper

bound for βF . Equivalently, Z̃ ≡ e−βF̃ (
�
) is a lower bound for Z.

Can βF̃ be evaluated?

We have already agreed that the evaluation of various interesting sums over x

is intractable. For example, the partition function

Z =
∑

x

exp(−βE(x;J)) , (33.11)
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the energy

〈E〉P =
1

Z

∑

x

E(x;J) exp(−βE(x;J)) , (33.12)

and the entropy

S ≡
∑

x

P (x|β,J) ln
1

P (x|β,J)
(33.13)

are all presumed to be impossible to evaluate. So why should we suppose
that this objective function βF̃ (θ), which is also defined in terms of a sum
over all x (33.5), should be a convenient quantity to deal with? Well, for a
range of interesting energy functions, and for sufficiently simple approximating
distributions, the variational free energy can be efficiently evaluated.

33.2 Variational free energy minimization for spin systems

An example of a tractable variational free energy is given by the spin system
whose energy function was given in equation (33.3), which we can approximate
with a separable approximating distribution,

Q(x;a) =
1

ZQ
exp

(

∑

n

anxn

)

. (33.14)

The variational parameters θ of the variational free energy (33.5) are the
components of the vector a. To evaluate the variational free energy we need
the entropy of this distribution,

SQ =
∑

x

Q(x;a) ln
1

Q(x;a)
(33.15)

and the mean of the energy,

〈E(x;J)〉Q =
∑

x

Q(x;a)E(x;J). (33.16)

The entropy of the separable approximating distribution is simply the sum of
the entropies of the individual spins (exercise 4.2, p.68),

SQ =
∑

n

H
(e)
2 (qn), (33.17)

where qn is the probability that spin n is +1,

qn =
ean

ean + e−an
=

1

1 + exp(−2an)
, (33.18)

and

H
(e)
2 (q) = q ln

1

q
+ (1 − q) ln

1

(1 − q)
. (33.19)

The mean energy under Q is easy to obtain because
∑

m,n Jmnxmxn is a sum of
terms each involving the product of two independent random variables. (There
are no self-couplings, so Jmn = 0 when m = n.) If we define the mean value
of xn to be x̄n, which is given by

x̄n =
ean − e−an

ean + e−an
= tanh(an) = 2qn − 1, (33.20)
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we obtain

〈E(x;J)〉Q =
∑

x

Q(x;a)

[

−1

2

∑

m,n

Jmnxmxn −
∑

n

hnxn

]

(33.21)

= −1

2

∑

m,n

Jmnx̄mx̄n −
∑

n

hnx̄n. (33.22)

So the variational free energy is given by

βF̃ (a) = β 〈E(x;J)〉Q−SQ = β

(

−1

2

∑

m,n

Jmnx̄mx̄n −
∑

n

hnx̄n

)

−
∑

n

H
(e)
2 (qn).

(33.23)
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Figure 33.1. The variational free
energy of the two-spin system
whose energy is E(x) = −x1x2, as
a function of the two variational
parameters q1 and q2. The
inverse-temperature is β = 1.44.
The function plotted is

βF̃ = −βx̄1x̄2−H
(e)
2 (q1)−H

(e)
2 (q2),

where x̄n = 2qn − 1. Notice that
for fixed q2 the function is
convex ^ with respect to q1, and
for fixed q1 it is convex ^ with
respect to q2.

We now consider minimizing this function with respect to the variational
parameters a. If q = 1/(1 + e−2a), the derivative of the entropy is

∂

∂q
He

2(q) = ln
1 − q

q
= −2a. (33.24)

So we obtain

∂

∂am

βF̃ (a) = β

[

−
∑

n

Jmnx̄n − hm

]

(

2
∂qm

∂am

)

− ln

(

1 − qm

qm

)(

∂qm

∂am

)

= 2

(

∂qm

∂am

)

[

−β

(

∑

n

Jmnx̄n + hm

)

+ am

]

. (33.25)

This derivative is equal to zero when

am = β

(

∑

n

Jmnx̄n + hm

)

. (33.26)

So F̃ (a) is extremized at any point that satisfies equation (33.26) and

x̄n = tanh(an). (33.27)

The variational free energy F̃ (a) may be a multimodal function, in which
case each stationary point (maximum, minimum or saddle) will satisfy equa-
tions (33.26) and (33.27). One way of using these equations, in the case of a
system with an arbitrary coupling matrix J, is to update each parameter am

and the corresponding value of x̄m using equation (33.26), one at a time. This
asynchronous updating of the parameters is guaranteed to decrease βF̃ (a).

Equations (33.26) and (33.27) may be recognized as the mean field equa-
tions for a spin system. The variational parameter an may be thought of as
the strength of a fictitious field applied to an isolated spin n. Equation (33.27)
describes the mean response of spin n, and equation (33.26) describes how the
field am is set in response to the mean state of all the other spins.

The variational free energy derivation is a helpful viewpoint for mean field
theory for two reasons.

1. This approach associates an objective function βF̃ with the mean field
equations; such an objective function is useful because it can help identify
alternative dynamical systems that minimize the same function.

2. The theory is readily generalized to other approximating distributions.
We can imagine introducing a more complex approximation Q(x;θ) that
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Figure 33.2. Solutions of the
variational free energy
extremization problem for the
Ising model. Horizontal axis:
temperature T = 1/β. Vertical
axis: magnetization x̄. The
critical temperature found by
mean field theory is T mft

c = 4.

might for example capture correlations among the spins instead of mod-
elling the spins as independent. One could then evaluate the variational
free energy and optimize the parameters θ of this more complex approx-
imation. The more degrees of freedom the approximating distribution
has, the tighter the bound on the free energy becomes. However, if the
complexity of an approximation is increased, the evaluation of either the
mean energy or the entropy typically becomes more challenging.

33.3 Example: mean field theory for the ferromagnetic Ising model

In the simple Ising model studied in Chapter 31, every coupling Jmn is equal
to J if m and n are neighbours and zero otherwise. There is an applied
field hn = h that is the same for all spins. A very simple approximating
distribution is one with just a single variational parameter a, which defines a
separable distribution

Q(x; a) =
1

ZQ
exp

(

∑

n

axn

)

(33.28)

in which all spins are independent and have the same probability

qn =
1

1 + exp(−2a)
(33.29)

of being up. The mean magnetization is

x̄ = tanh(a) (33.30)

and the equation (33.26) which defines the minimum of the variational free
energy becomes

a = β (CJx̄ + h) , (33.31)

where C is the number of couplings that a spin is involved in, C = 4 in the
case of a rectangular two-dimensional Ising model. We can solve equations
(33.30) and (33.31) for x̄ numerically – in fact, it is easiest to vary x̄ and solve
for β – and obtain graphs of the free energy minima and maxima as a function
of temperature as shown in figure 33.2. The solid line shows x̄ versus T = 1/β
for the case C = 4, J = 1.

When h = 0, there is a pitchfork bifurcation at a critical temperature Tmft
c .

[A pitchfork bifurcation is a transition like the one shown by the solid lines in
figure 33.2, from a system with one minimum as a function of a (on the right)
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33.4: Variational methods in inference and data modelling 427

to a system (on the left) with two minima and one maximum; the maximum
is the middle one of the three lines. The solid lines look like a pitchfork.]
Above this temperature, there is only one minimum in the variational free
energy, at a = 0 and x̄ = 0; this minimum corresponds to an approximating
distribution that is uniform over all states. Below the critical temperature,
there are two minima corresponding to approximating distributions that are
symmetry-broken, with all spins more likely to be up, or all spins more likely
to be down. The state x̄ = 0 persists as a stationary point of the variational
free energy, but now it is a local maximum of the variational free energy.

When h > 0, there is a global variational free energy minimum at any
temperature for a positive value of x̄, shown by the upper dotted curves in
figure 33.2. As long as h < JC, there is also a second local minimum in the
free energy, if the temperature is sufficiently small. This second minimum cor-
responds to a self-preserving state of magnetization in the opposite direction
to the applied field. The temperature at which the second minimum appears
is smaller than Tmft

c , and when it appears, it is accompanied by a saddle point
located between the two minima. A name given to this type of bifurcation is
a saddle-node bifurcation.

The variational free energy per spin is given by

βF̃ = β

(

−C

2
Jx̄2 − hx̄

)

− H
(e)
2

(

x̄ + 1

2

)

. (33.32)

Exercise 33.1.[2 ] Sketch the variational free energy as a function of its one
parameter x̄ for a variety of values of the temperature T and the applied
field h.

Figure 33.2 reproduces the key properties of the real Ising system – that,
for h = 0, there is a critical temperature below which the system has long-
range order, and that it can adopt one of two macroscopic states. However,
by probing a little more we can reveal some inadequacies of the variational
approximation. To start with, the critical temperature Tmft

c is 4, which is
nearly a factor of 2 greater than the true critical temperature Tc = 2.27. Also,
the variational model has equivalent properties in any number of dimensions,
including d = 1, where the true system does not have a phase transition. So
the bifurcation at Tmft

c should not be described as a phase transition.
For the case h = 0 we can follow the trajectory of the global minimum as

a function of β and find the entropy, heat capacity and fluctuations of the ap-
proximating distribution and compare them with those of a real 8×8 fragment
using the matrix method of Chapter 31. As shown in figure 33.3, one of the
biggest differences is in the fluctuations in energy. The real system has large
fluctuations near the critical temperature, whereas the approximating distri-
bution has no correlations among its spins and thus has an energy-variance
which scales simply linearly with the number of spins.

33.4 Variational methods in inference and data modelling

In statistical data modelling we are interested in the posterior probability
distribution of a parameter vector w given data D and model assumptions H,
P (w |D,H).

P (w |D,H) =
P (D |w,H)P (w |H)

P (D |H)
. (33.33)

In traditional approaches to model fitting, a single parameter vector w is op-
timized to find the mode of this distribution. What is really of interest is



Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

428 33 — Variational Methods

Free Energy Energy

-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

0 1 2 3 4 5 6 7 8

mean field theory
real 8x8 system

-2

-1.5

-1

-0.5

0

0 1 2 3 4 5 6 7 8

mean field theory
real 8x8 system

Entropy Heat Capacity, dE/dT

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5 6 7 8

mean field theory
real 8x8 system

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 1 2 3 4 5 6 7 8

mean field theory
real 8x8 system

Fluctuations, var(E)

-1

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8

mean field theory
real 8x8 system

Figure 33.3. Comparison of
approximating distribution’s
properties with those of a real
8 × 8 fragment. Notice that the
variational free energy of the
approximating distribution is
indeed an upper bound on the
free energy of the real system. All
quantities are shown ‘per spin’.
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the whole distribution. We may also be interested in its normalizing constant
P (D |H) if we wish to do model comparison. The probability distribution
P (w |D,H) is often a complex distribution. In a variational approach to in-
ference, we introduce an approximating probability distribution over the pa-
rameters, Q(w;θ), and optimize this distribution (by varying its own param-
eters θ) so that it approximates the posterior distribution of the parameters
P (w |D,H) well.

One objective function we may choose to measure the quality of the ap-
proximation is the variational free energy

F̃ (θ) =

∫

dkw Q(w;θ) ln
Q(w;θ)

P (D |w,H)P (w |H)
. (33.34)

The denominator P (D |w,H)P (w |H) is, within a multiplicative constant,
equal to the posterior probability P (w |D,H) = P (D |w,H)P (w |H)/P (D |H).
So the variational free energy F̃ (θ) can be viewed as the sum of − lnP (D |H)
and the relative entropy between Q(w;θ) and P (w |D,H). F̃ (θ) is bounded
below by − lnP (D |H) and only attains this value for Q(w;θ) = P (w |D,H).
For certain models and certain approximating distributions, this free energy,
and its derivatives with respect to the approximating distribution’s parame-
ters, can be evaluated.

The approximation of posterior probability distributions using variational
free energy minimization provides a useful approach to approximating Bayesian
inference in a number of fields ranging from neural networks to the decoding of
error-correcting codes (Hinton and van Camp, 1993; Hinton and Zemel, 1994;
Dayan et al., 1995; Neal and Hinton, 1998; MacKay, 1995a). The method
is sometimes called ensemble learning to contrast it with traditional learning
processes in which a single parameter vector is optimized. Another name for
it is variational Bayes. Let us examine how ensemble learning works in the
simple case of a Gaussian distribution.

33.5 The case of an unknown Gaussian: approximating the posterior

distribution of µ and σ

We will fit an approximating ensemble Q(µ, σ) to the posterior distribution
that we studied in Chapter 24,

P (µ, σ | {xn}N
n=1) =

P ({xn}N
n=1 |µ, σ)P (µ, σ)

P ({xn}N
n=1)

(33.35)

=

1

(2πσ2)N/2
exp

(

−N(µ−x̄)2+S

2σ2

)

1
σµ

1
σ

P ({xn}N
n=1)

. (33.36)

We make the single assumption that the approximating ensemble is separable
in the form Q(µ, σ) = Qµ(µ)Qσ(σ). No restrictions on the functional form of
Qµ(µ) and Qσ(σ) are made.

We write down a variational free energy,

F̃ (Q) =

∫

dµ dσ Qµ(µ)Qσ(σ) ln
Qµ(µ)Qσ(σ)

P (D |µ, σ)P (µ, σ)
. (33.37)

We can find the optimal separable distribution Q by considering separately
the optimization of F̃ over Qµ(µ) for fixed Qσ(σ), and then the optimization
of Qσ(σ) for fixed Qµ(µ).
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Figure 33.4. Optimization of an
approximating distribution. The
posterior distribution
P (µ, σ | {xn}), which is the same
as that in figure 24.1, is shown by
solid contours. (a) Initial
condition. The approximating
distribution Q(µ, σ) (dotted
contours) is an arbitrary separable
distribution. (b) Qµ has been
updated, using equation (33.41).
(c) Qσ has been updated, using
equation (33.44). (d) Qµ updated
again. (e) Qσ updated again. (f)
Converged approximation (after
15 iterations). The arrows point
to the peaks of the two
distributions, which are at
σN = 0.45 (for P ) and σN−1 = 0.5
(for Q).

Optimization of Qµ(µ)

As a functional of Qµ(µ), F̃ is:

F̃ = −
∫

dµ Qµ(µ)

[
∫

dσ Qσ(σ) ln P (D |µ, σ) + ln[P (µ)/Qµ(µ)]

]

+ κ(33.38)

=

∫

dµ Qµ(µ)

[
∫

dσ Qσ(σ)Nβ
1

2
(µ − x̄)2 + lnQµ(µ)

]

+ κ′, (33.39)

where β ≡ 1/σ2 and κ denotes constants that do not depend on Qµ(µ). The
dependence on Qσ thus collapses down to a simple dependence on the mean

β̄ ≡
∫

dσ Qσ(σ)1/σ2. (33.40)

Now we can recognize the function −Nβ̄ 1
2 (µ − x̄)2 as the logarithm of a

Gaussian identical to the posterior distribution for a particular value of β = β̄.
Since a relative entropy

∫

Q ln(Q/P ) is minimized by setting Q = P , we can
immediately write down the distribution Qopt

µ (µ) that minimizes F̃ for fixed
Qσ:

Qopt
µ (µ) = P (µ |D, β̄,H) = Normal(µ; x̄, σ2

µ|D). (33.41)

where σ2
µ|D = 1/(Nβ̄).

Optimization of Qσ(σ)

As a functional of Qσ(σ), F̃ is (neglecting additive constants):

F̃ = −
∫

dσ Qσ(σ)

[
∫

dµ Qµ(µ) ln P (D |µ, σ) + ln[P (σ)/Qσ(σ)]

]

(33.42)

=

∫

dσ Qσ(σ)
[

(Nσ2
µ|D + S)β/2 −

(

N
2 − 1

)

lnβ + lnQσ(σ)
]

(33.43)
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where the integral over µ is performed assuming Qµ(µ) = Qopt
µ (µ). Here, the β-

dependent expression in square brackets can be recognized as the logarithm of
a gamma distribution over β – see equation (23.15) – giving as the distribution
that minimizes F̃ for fixed Qµ:

Qopt
σ (β) = Γ(β; b′, c′), (33.44)

with
1

b′
=

1

2
(Nσ2

µ|D + S) and c′ =
N

2
. (33.45)

In figure 33.4, these two update rules (33.41, 33.44) are applied alternately,
starting from an arbitrary initial condition. The algorithm converges to the
optimal approximating ensemble in a few iterations.

Direct solution for the joint optimum Qµ(µ)Qσ(σ)

In this problem, we do not need to resort to iterative computation to find
the optimal approximating ensemble. Equations (33.41) and (33.44) define
the optimum implicitly. We must simultaneously have σ2

µ|D = 1/(Nβ̄), and

β̄ = b′c′. The solution is:
1/β̄ = S/(N − 1). (33.46)

This is similar to the true posterior distribution of σ, which is a gamma distri-
bution with c′ = N−1

2 and 1/b′ = S/2 (see equation 24.13). This true posterior
also has a mean value of β satisfying 1/β̄ = S/(N − 1); the only difference is
that the approximating distribution’s parameter c′ is too large by 1/2.

The approximations given by variational free energy minimization
always tend to be more compact than the true distribution.

In conclusion, ensemble learning gives an approximation to the posterior
that agrees nicely with the conventional estimators. The approximate poste-
rior distribution over β is a gamma distribution with mean β̄ corresponding
to a variance of σ2 = S/(N − 1) = σ2

N−1. And the approximate posterior dis-

tribution over µ is a Gaussian with mean x̄ and standard deviation σN−1/
√

N .
The variational free energy minimization approach has the nice prop-

erty that it is parameterization-independent; it avoids the problem of basis-
dependence from which MAP methods and Laplace’s method suffer.

A convenient software package for automatic implementation of variational
inference in graphical models is VIBES (Bishop and Winn, 2000; Bishop et al.,
2002; Bishop and Winn, 2003). It plays the same role for variational inference
as BUGS plays for Monte Carlo inference.

33.6 Interlude

One of my students asked:

How do you ever come up with a useful approximating distribution,
given that the true distribution is so complex you can’t compute
it directly?

Let’s answer this question in the context of Bayesian data modelling. Let the
‘true’ distribution of interest be the posterior probability distribution over a
set of parameters x, P (x |D). A standard data modelling practice is to find
a single, ‘best-fit’ setting of the parameters, x∗, for example, by finding the
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maximum of the likelihood function P (D |x), or of the posterior distribution.
One interpretation of this standard practice is that the full description of
our knowledge about x, P (x |D), is being approximated by a delta-function,
a probability distribution concentrated on x∗. From this perspective, any

approximating distribution Q(x;θ), no matter how crummy it is, has to be
an improvement on the spike produced by the standard method! So even if
we use only a simple Gaussian approximation, we are doing well.

We now study an application of the variational approach to a realistic
example – data clustering.

33.7 K-means clustering and the expectation–maximization algorithm

as a variational method

In Chapter 20, we introduced the soft K-means clustering algorithm, version 1.
In Chapter 22, we introduced versions 2 and 3 of this algorithm, and motivated
the algorithm as a maximum likelihood algorithm.

K-means clustering is an example of an ‘expectation–maximization’ (EM)
algorithm, with the two steps, which we called ‘assignment’ and ‘update’,
being known as the ‘E-step’ and the ‘M-step’ respectively.

We now give a more general view of K-means clustering, due to Neal
and Hinton (1998), in which the algorithm is shown to optimize a variational
objective function. Neal and Hinton’s derivation applies to any EM algorithm.

The probability of everything

Let the parameters of the mixture model – the means, standard deviations, and
weights – be denoted by θ. For each data point, there is a missing variable (also
known as a latent variable), the class label kn for that point. The probability
of everything, given our assumed model H, is

P ({x(n), kn}N
n=1,θ |H) = P (θ |H)

N
∏

n=1

[

P (x(n) | kn,θ)P (kn |θ)
]

. (33.47)

The posterior probability of everything, given the data, is proportional to the
probability of everything:

P ({kn}N
n=1,θ | {x(n)}N

n=1,H) =
P ({x(n), kn}N

n=1,θ |H)

P ({x(n)}N
n=1 |H)

. (33.48)

We now approximate this posterior distribution by a separable distribution

Qk({kn}N
n=1)Q

� (θ), (33.49)

and define a variational free energy in the usual way:

F̃ (Qk, Q
� ) =

∑

{kn}

∫

dD
θ Qk({kn}N

n=1)Q � (θ) ln
Qk({kn}N

n=1)Q
� (θ)

P ({x(n), kn}N
n=1,θ |H)

.

(33.50)
F̃ is bounded below by minus the evidence, lnP ({x(n)}N

n=1 |H). We can now
make an iterative algorithm with an ‘assignment’ step and an ‘update’ step.
In the assignment step, Qk({kn}N

n=1) is adjusted to reduce F̃ , for fixed Q � ; in
the update step, Q � is adjusted to reduce F̃ , for fixed Qk.

If we wish to obtain exactly the soft K-means algorithm, we impose a
further constraint on our approximating distribution: Q � is constrained to be
a delta function centred on a point estimate of θ, θ = θ

∗:

Q � (θ) = δ(θ − θ
∗). (33.51)
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Figure 33.5. Illustration of the
Jaakkola–Jordan variational
method. Upper and lower bounds
on the logistic function (solid line)
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These upper and lower bounds are
exponential or Gaussian functions
of a, and so easier to integrate
over. The graph shows the
sigmoid function and upper and
lower bounds with µ = 0.505 and
ν = −2.015.

Unfortunately, this distribution contributes to the variational free energy an
infinitely large integral

∫

dD
θ Q � (θ) ln Q � (θ), so we’d better leave that term

out of F̃ , treating it as an additive constant. [Using a delta function Q� is not
a good idea if our aim is to minimize F̃ !] Moving on, our aim is to derive the
soft K-means algorithm.

. Exercise 33.2.[2 ] Show that, given Q � (θ) = δ(θ − θ
∗), the optimal Qk, in the

sense of minimizing F̃ , is a separable distribution in which the probabil-

ity that kn = k is given by the responsibility r
(n)
k .

. Exercise 33.3.[4 ] Show that, given a separable Qk as described above, the op-
timal θ

∗, in the sense of minimizing F̃ , is obtained by the update step
of the soft K-means algorithm. (Assume a uniform prior on θ.)

Exercise 33.4.[4 ] We can instantly improve on the infinitely large value of F̃
achieved by soft K-means clustering by allowing Q � to be a more general
distribution than a delta-function. Derive an update step in which Q � is
allowed to be a separable distribution, a product of Qµ({µ}), Qσ({σ}),
and Qπ(π). Discuss whether this generalized algorithm still suffers from
soft K-means’s ‘kaboom’ problem, where the algorithm glues an ever-
shrinking Gaussian to one data point.

Sadly, while it sounds like a promising generalization of the algorithm
to allow Q� to be a non-delta-function, and the ‘kaboom’ problem goes
away, other artefacts can arise in this approximate inference method,
involving local minima of F̃ . For further reading, see (MacKay, 1997a;
MacKay, 2001).

33.8 Variational methods other than free energy minimization

There are other strategies for approximating a complicated distribution P (x),
in addition to those based on minimizing the relative entropy between an
approximating distribution Q and P . One approach pioneered by Jaakkola
and Jordan is to create adjustable upper and lower bounds QU and QL to P ,
as illustrated in figure 33.5. These bounds (which are unnormalized densities)
are parameterized by variational parameters which are adjusted in order to
obtain the tightest possible fit. The lower bound can be adjusted to maximize

∑

x

QL(x), (33.52)

and the upper bound can be adjusted to minimize

∑

x

QU(x). (33.53)
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Using the normalized versions of the optimized bounds we then compute ap-
proximations to the predictive distributions. Further reading on such methods
can be found in the references (Jaakkola and Jordan, 2000a; Jaakkola and Jor-
dan, 2000b; Jaakkola and Jordan, 1996; Gibbs and MacKay, 2000).

Further reading

The Bethe and Kikuchi free energies

In Chapter 26 we discussed the sum–product algorithm for functions of the
factor-graph form (26.1). If the factor graph is tree-like, the sum–product algo-
rithm converges and correctly computes the marginal function of any variable
xn and can also yield the joint marginal function of subsets of variables that
appear in a common factor, such as xm.

The sum–product algorithm may also be applied to factor graphs that are
not tree-like. If the algorithm converges to a fixed point, it has been shown
that that fixed point is a stationary point (usually a minimum) of a function
of the messages called the Kikuchi free energy. In the special case where all
factors in factor graph are functions of one or two variables, the Kikuchi free
energy is called the Bethe free energy.

For articles on this idea, and new approximate inference algorithms mo-
tivated by it, see Yedidia (2000); Yedidia et al. (2000c); Welling and Teh
(2001); Yuille (2001); Yedidia et al. (2000b); Yedidia et al. (2000a).

33.9 Further exercises

Exercise 33.5.[2, p.435] This exercise explores the assertion, made above, that
the approximations given by variational free energy minimization al-
ways tend to be more compact than the true distribution. Consider a
two dimensional Gaussian distribution P (x) with axes aligned with the
directions e(1) = (1, 1) and e(2) = (1,−1). Let the variances in these two
directions be σ2

1 and σ2
2. What is the optimal variance if this distribution

is approximated by a spherical Gaussian with variance σ2
Q, optimized by

variational free energy minimization? If we instead optimized the objec-
tive function

G =

∫

dx P (x) ln
P (x)

Q(x;σ2)
, (33.54)

what would be the optimal value of σ2? Sketch a contour of the true
distribution P (x) and the two approximating distributions in the case
σ1/σ2 = 10.

[Note that in general it is not possible to evaluate the objective func-
tion G, because integrals under the true distribution P (x) are usually
intractable.]

Exercise 33.6.[2, p.436] What do you think of the idea of using a variational
method to optimize an approximating distribution Q which we then use
as a proposal density for importance sampling?

Exercise 33.7.[2 ] Define the relative entropy or Kullback–Leibler divergence be-
tween two probability distributions P and Q, and state Gibbs’ inequality.

Consider the problem of approximating a joint distribution P (x, y) by a
separable distribution Q(x, y) = QX(x)QY (y). Show that if the objec-
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tive function for this approximation is

G(QX , QY ) =
∑

x,y

P (x, y) log2

P (x, y)

QX(x)QY (y)

that the minimal value of G is achieved when QX and QY are equal to
the marginal distributions over x and y.

Now consider the alternative objective function

F (QX , QY ) =
∑

x,y

QX(x)QY (y) log2
QX(x)QY (y)

P (x, y)
;

the probability distribution P (x, y) shown in the margin is to be ap-

P (x, y) x
1 2 3 4

1 1/8 1/8 0 0

y 2 1/8 1/8 0 0

3 0 0 1/4 0

4 0 0 0 1/4

proximated by a separable distribution Q(x, y) = QX(x)QY (y). State
the value of F (QX , QY ) if QX and QY are set to the marginal distribu-
tions over x and y.

Show that F (QX , QY ) has three distinct minima, identify those minima,
and evaluate F at each of them.

33.10 Solutions

Solution to exercise 33.5 (p.434). We need to know the relative entropy be-
tween two one-dimensional Gaussian distributions:

∫

dx Normal(x; 0, σQ) ln
Normal(x; 0, σQ)

Normal(x; 0, σP )

=

∫

dx Normal(x; 0, σQ)

[

ln
σP

σQ

− 1

2
x2

(

1

σ2
Q

− 1

σ2
P

)]

(33.55)

=
1

2

(

ln
σ2

P

σ2
Q

− 1 +
σ2

Q

σ2
P

)

. (33.56)

So, if we approximate P , whose variances are σ2
1 and σ2

2 , by Q, whose variances
are both σ2

Q, we find

F (σ2
Q) =

1

2

(

ln
σ2

1

σ2
Q

− 1 +
σ2

Q

σ2
1

+ ln
σ2

2

σ2
Q

− 1 +
σ2

Q

σ2
2

)

; (33.57)

differentiating,

d

d ln(σ2
Q)

F =
1

2

[

−2 +

(

σ2
Q

σ2
1

+
σ2

Q

σ2
2

)]

, (33.58)

which is zero when
1

σ2
Q

=
1

2

(

1

σ2
1

+
1

σ2
2

)

. (33.59)

Thus we set the approximating distribution’s inverse variance to the mean
inverse variance of the target distribution P .

In the case σ1 = 10 and σ2 = 1, we obtain σQ '
√

2, which is just a factor
of

√
2 larger than σ2, pretty much independent of the value of the larger

standard deviation σ1. Variational free energy minimization typically leads to

approximating distributions whose length scales match the shortest length scale

of the target distribution. The approximating distribution might be viewed as
too compact.


