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Abstract

We propose a non-linear generative model for human motita theat uses an
undirected model with binary latent variables and realtgdl“visible” variables
that represent joint angles. The latent and visible vaembk each time step re-
ceive directed connections from the visible variables atlést few time-steps.
Such an architecture makes on-line inference efficient dadisius to use a sim-
ple approximate learning procedure. After training, thedeldinds a single set
of parameters that simultaneously capture several diffédads of motion. We
demonstrate the power of our approach by synthesizingwsiriwotion sequences
and by performing on-line filling in of data lost during maticapture.

Website: http://www.cs.toronto.edu/gwtaylor/publications/nips2006mhmublv/

1 Introduction

Recent advances in motion capture technology have fuetedest in the analysis and synthesis
of complex human motion for animation and tracking. Modedsdd on the physics of masses
and springs have produced some impressive results by uspigssicated “energy-based” learning
methods[1] to estimate physical parameters from motiotucemata[2]. But if we want to generate
realistic human motion, we need to model all the complexitiethe real dynamics and this is so
difficult to do analytically that learning is likely to be estial. The simplest way to generate new
motion sequences based on data is to concatenate partmofgrsequences [3]. Another method is
to transform motion in the training data to new sequencegasning to adjusting its style or other
characteristics[4, 5, 6]. In this paper we focus on modefatrianalysis and synthesis but avoid the
complexities involved in imposing physics-based constgirelying instead on a “pure” learning
approach in which all the knowledge in the model comes froerdita.

Data from modern motion capture systems is high-dimensiameé contains complex non-linear
relationships between the components of the observatidnievhich usually represent joint angles
with respect to some skeletal structure. Hidden Markov reocnnot model such data efficiently
because they rely on a single, discratestate multinomial to represent the history of the timeeseri
To modelN bits of information about the past history they requifé hidden states. To avoid this
exponential explosion, we need a model with distributeel Gomponential) hidden state that has a
representational capacity which is linear in the numberoofigonents. Linear dynamical systems
satisfy this requirement, but they cannot model the complax-linear dynamics created by the
non-linear properties of muscles, contact forces of thé doche ground and myriad other factors.



2 An energy-based model for vectors of real-values

In general, using distributed binary representations iidén state in directed models of time series
makes inference difficult. If, however, we use a RestricteitZBhann Machine (RBM) to model
the probability distribution of the observation vector atk time frame, the posterior over latent
variables factorizes completely, making inference eagypichlly, RBMs use binary logistic units
for both the visible data and hidden variables, but in oudiapfion the data (comprised of joint
angles) is continuous. We thus use a modified RBM in which theilfle units” are linear, real-
valued variables that have Gaussian noise[7, 8]. The grapimodel has a layer of visible units
and a layer of hidden units; there are undirected connections between layers but noections
within a layer. For any setting of the hidden units, the disition of each visible unit is defined by
a parabolic log likelihood function that makes extreme galuery improbablé:
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whereo; is the standard deviation of the Gaussian noise for visibieiu(In practice, we rescale our
data to have zero mean and unit variance. We have found tiveg éixat 1 makes the learning work
well even though we would expect a good model to predict the wi&h much higher precision).

The main advantage of using this undirected, “energy-basedel rather than a directed “belief
net” is that inference is very easy because the hidden uedsrhe conditionally independent when
the states of the visible units are observed. The conditiistxibutions (assuming; = 1) are:
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wheref () is the logistic function/'(x, V) is a Galjssiarhj andc; are the “biases” of hidden unit
j and visible unit respectively, ana;; is the symmetric weight between them.

Maximum likelihood learning is slow in an RBM but learninglstvorks well if we approximately
follow the gradient of another function called the contrestlivergence[9]. The learning rule is:

sz‘j X <'Uihj>data_ <'Uihj>rec0na (4)
where the first expectation (over hidden unit activatioesyith respect to the data distribution and
the second expectationis with respect to the distributféregonstructed” data. The reconstructions
are generated by starting a Markov chain at the data disinuupdating all the hidden units in
parallel by sampling (Eq. 2) and then updating all the vésilmits in parallel by sampling (Eq. 3).
For both expectations, the states of the hidden units amditbtomal on the states of the visible units,
notvice versa. The learning rule for the hidden biases is just a simplifiedsion of Eq. 4:

Abj X <hj>data_ <hj>recon (5)
2.1 Theconditional RBM model

The RBM we have described above models static frames of blat@oes not incorporate any tem-
poral information. We can model temporal dependencies éwtitrg the visible variables in the
previous time slice as additional fixed inputs [10]. Fortiehg this does not complicate inference.
We add two types of directed connections (Figure 2): autessjve connections from the past
configurations (time steps) of the visible units to the cuotrrgsible configuration, and connections
from the pastn visibles to the current hidden configuration. The additibithese directed con-
nections turns the RBM into a conditional RBM (CRBM). In owperiments, we have chosen
n = m = 3. These are, however, tunable parameters and need not bantieefsr both types of
directed connections. To simplify discussion, we will assw = m and refer ton as the order of
the model.

For any setting of the parameters, the gradient of the qgtiadeg likelihood will always overwhelm the
gradient due to the weighted input from the binary hidderisupiovided the value; of a visible unit is far
enough from its bias;;.
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Figure 1: In a trained model, probabilities of each featwgimtp “on” conditional on the data at the
visible units. Shown is a 100-hidden unit model, and a secgigrich contains (in order) walking,
sitting/standing (three times), walking, crouching, andning. Rows represent features, columns
represent sequential frames.

Inference in the CRBM is no more difficult than in the standard Hidden layer
RBM. Given the data at time, ¢t — 1,...,¢t — n, the hidden units

at timet are conditionally independent. We can still use contrastiv @
divergence for training the CRBM. The only change is that nwve
update the visible and hidden units, we implement the dicecon-
nections by treating data from previous time steps as a dipadiyn
changing bias. The contrastive divergence learning ruldidden
biases is given in Eq. 5 and the equivalent learning ruleHertém- A
poral connections that determine the dynamically changiddgen
unit biases is:
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wheredz(.;’q) is the log-linear parameter (weight) connecting visibje
unit 7 at timet¢ — ¢ to hidden unitj for ¢ = 1..n. Similarly, the I
learning rule for the autoregressive connections thatraete the
dynamically changing visible unit biases is:
Aal(:i_q) X v]tch (’Uf — <U£>recon) . (7)
wherea!'”? is the weight from visible unit at timet — g to visible \/V
unit 4.
Visible layer

The autoregressive weights can model short-term tempiotaitsre
very well, leaving the hidden units to model longer-terng/tar level {_o t-1 t
structure. During training, the states of the hidden uniésdeter-

mined by both the input they receive from the observed dadal@ Figyre 2: Architecture of
input they receive from the previous time slices. The leagmiile oyr model (in our experi-
for W remains the same as a standard RBM, but has a differentgints, we use three previous
fect because the states of the hidden units are now infludnctite  {ime steps)

previous visible units. We do not attempt to model the firftames

of each sequence.

While learning a model of motion, we do not need to proceedeetiglly through the training data
sequences. The updates are only conditional on therptiste steps, not the entire sequence. As
long as we isolate “chunks” of frames (the size dependindnerotder of the directed connections),
these can be mixed and formed into mini-batches. To speetlaifeérning, we assemble these
chunks of frames into “balanced” mini-batches of sigé.

We randomly assign chunks to different mini-batches so thatchunks in each mini-batch are
as uncorrelated as possible. To save computer memory, tanee§ are not actually replicated in
mini-batches; we simply use indexing to simulate the “chingkof frames.



2.2 Approximations

Our training procedure relies on several approximatiornsstrof which are chosen based on ex-
perience training similar networks. While training the Q®RBwe replacedy; in Eq. 4 and Eq. 7
by its expected value and we also used the expected valugwatien computing the probability
of activation of the hidden units. However, to compute the-step reconstructions of the data, we
used stochastically chosen binary values of the hiddes.uhitis prevents the hidden activities from
transmitting an unbounded amount of information from theada the reconstruction [11].

While updating the directed visible-to-hidden connedigkq. 6) and the symmetric undirected
connections (Eqg. 4) we used the stochastically chosenybirzdwes of the hidden units in the first
term (under the data), but repladegby its expected value in the second term (under the recanstru
tion). We took this approach because the reconstructioneofiata depends on the binary choices
made when selecting hidden state. Thus when we infer theehg&glftom the reconstructed data,
the probabilities are highly correlated with the binaryded states inferred from the data. On the
other hand, we stop after one reconstruction, so the birfaige of hiddens from the reconstruction
doesn’t correlate with any other terms, and there is no poahtiding this extra noise.

Lastly, we note that the fine-tuning procedure as a whole lsmgaa crude approximation in addition

to the one made by contrastive divergence. The inferenpe staditional on past visible states,
is approximate because it ignores the future (it does notnamothing). Because of the directed
connections, exact inference within the model should ielboth a forward and backward pass
through each sequence (we currently perform only a forwass) We have avoided a backward
pass because missing values create problems in undirecigelsnso it is hard to perform learning

efficiently using the full posterior. Compared with an HMMegtlack of smoothing is a loss, but this
is more than offset by the exponential gain in representatipower.

3 Datagathering and preprocessing

We used data from the CMU Graphics Lab Motion Capture Datlaaswell as from [12] (see
acknowledgments). The processed data consists of 3D jogiea derived from 30 (CMU) or 17
(MIT) markers plus a root (coccyx, near the base of the backnhtation and displacement. For
both datasets, the original data was captured at 120Hz; weedmvnsampled it to 30Hz.

Six of the joint angle dimensions in the original CMU data lcadstant values, so they were elim-
inated. Each of the remaining joint angles had between odetare degrees of freedom. All of
the joint angles and the root orientation were convertechfiEmler angles to the “exponential map”
parameterization [13]. This was done to avoid “gimbal loekid discontinuities. (The MIT data
was already expressed in exponential map form and did nolttodse converted.)

We treated the root specially because it encodes a tranafiammwith respect to a fixed global
coordinate system. In order to respect physics, we wantediral representation to be invariant
to ground-plane translation and to rotation about the tational vertical. We represented each
ground-plane translation by an incremental “forwardsteeand an incremental “sideways” vector
relative to the direction the person was currently facing yie represented height non-incrementally
by the distance above the ground plane. We representedaiitenaround the gravitational vertical
by the incremental change, but we represented the otheratatianal degrees of freedom by the
absolute pitch and roll relative to the direction the pensas currently facing.

The final dimensionality of our data vectors was 62 (for thelCtata) and 49 (for the MIT data).
Note that we eliminated exponential map dimensions thaewenstant zero (corresponding to
joints with a single degree of freedom). As mentioned in Qe@ach component of the data was
normalized to have zero mean and unit variance.

One advantage of our model is the fact that the data does edttoebe heavily preprocessed or
dimensionality reduced. Brand and Hertzmann [4] apply PG Aetluce noise and dimensionality.
The autoregressive connections in our model can be thodigktdning a kind of “whitening” of the
data. Urtasun et al. [6] manually segment data into cycldssample at regular time intervals using
quaternion spherical interpolation. Dimensionality retibn becomes problematic when a wider
range of motions is to be modeled.



4 Experiments

After training our model using the updates described abaecan demonstrate in several ways
what it has learned about the structure of human motion. dparthe most direct demonstration,
which exploits the fact that it is a probability density mbdésequences, is to use the model to
generatale-novo a number of synthetic motion sequences. Video files of thegeences are avail-
able on the website mentioned in the abstract; these madtiavis not been retouched by hand in
any motion editing software. Note that we also do not haveetepka reservoir of training data
sequences around for generation - we only need the weigthie ofiodel and a few valid frames for
initialization.

Causal generation from a learned model can be done on-lthewaismoothing, just like the learning
procedure. The visible units at the last few time steps detes the effective biases of the visible
and hidden units at the current time step. We always keep ibd@qus visible states fixed and
perform alternating Gibbs sampling to obtain a joint sanifden the conditional RBM. This picks
new hidden and visible states that are compatible with ealocr@nd with the recent (visible)
history. Generation requires initialization withtime steps of the visible units, which implicitly
determine the “mode” of motion in which the synthetic sequeewill start. We used randomly
drawn consecutive frames from the training data as an lieiafiguration.

4.1 Generation of walking and running sequences from a single model

In our first demonstration, we train a single model on dataaaoimg both walking and running
motions; we then use the learned model to generate both tfpestion, depending on how it is
initialized. We trained on 23 sequences of walking and 10 sequences of jogging (fubject 35
in the CMU database). After downsampling to 30Hz, the trajrdata consisted of 2813 frames.

Figure 3: After training, the same

model can generate walking (top)
— and running (bottom) motion (see

videos on the website). Each skele-
ton is 4 frames apart.

Figure 3 shows a walking sequence and a running sequenceagghby the same model, using al-
ternating Gibbs sampling (with the probability of hiddertafeing “on” conditional on the current
and previous three visible vectors). Since the training daies not contain any transitions between
walking and running (anglice-versa), the model will continue to generate walking or running mo-
tions depending on where it is initialized.

4.2 Learningtransitionsbetween various styles

In our second demonstration, we show that our model is cepdldéarning not only several homo-
geneous motion styles but also the transitions between, tivbien the training data itself contains

2A 200 hidden-unit CRBM was trained for 4000 passes throughrdining data, using a third-order model
(for directed connections). Weight updates were made atieh mini-batch of size 100. The order of the
sequences was randomly permuted such that walking andngiseiquences were distributed throughout the
training data.



examples of such transitions. We trained on 9 sequencans {fre MIT database, fil@ogl_M con-
taining long examples of running and jogging, as well as atfawsitions between the two styles.
After downsampling to 30Hz, this provided us with 2515 fram&raining was done as before, ex-
cept that after the model was trained, an identical 200 meldgt model was trained on top of the
first model (see Sec. 5). The resulting two-level model wasliis generate data. A video available
on the website demonstrates our model’s ability to stoatelht transition between various motion
styles during a single generated sequence.

4.3 Introducing transitionsusing noise

In our third demonstration, we show how transitions betwmetion styles can be generated even
when such transitions are absent in the data. We use the sadw and data as described in Sec.
4.1, where we have learned on separate sequences of walidmgiianing. To generate, we use the
same sampling procedure as before, except that at each gnstoehastically choose the hidden
states (given the current and previous three visible vertwe add a small amount of Gaussian
noise to the hidden state biases. This encourages the nmégptore more of the hidden state
space without deviating too far the current motion. Applythis “noisy” sampling approach, we
see that the generated motion occasionally transitionsdsgt learned styles. These transitions
appear natural (see the video on the website).

4.4 Fillingin missing data

Due to the nature of the motion capture process, which cardbersely affected by lighting and
environmental effects, as well as noise during recordir@ion capture data often contains missing
or unusable data. Some markers may disappear (“dropoutipifiy periods of time due to sen-
sor failure or occlusion. The majority of motion editing twedire packages contain interpolation
methods to fill in missing data, but this leaves the data wrally smooth. These methods also
rely on the starting and end points of the missing data, soniagker goes missing until the end
of a sequence, naive interpolation will not work. Such rodthoften only use the past and future
data from the single missing marker to fill in that marker'ssimg values, but since joint angles are
highly correlated, substantial information about the praent of one marker could be gained from
the others. Our trained model has the ability to easily fiburch missing data, regardless of where
the dropouts occur in a sequence. Due to its approximateeindée method which does not rely on
a backward pass through the sequence, it also has the dbiliity in such missing data on-line.
Filling in missing data with our model is very similar to geagon. We simply clamp the known
data to the visible units, initialize the missing data to stinng reasonable (for example, the value
at the previous frame), and alternate between stochdgtigadiating the hidden and visible units,
with the known visible states held fixed.

To demonstrate filling in, we trained a model exactly as dbedrin Sec. 4.1 except that one walking
and one running sequence were left out of the training dabe tesed as test data. For each of these
walking and running test sequences, we erased two diffeegatof joint angles, starting halfway
through the test sequence. These sets were the joints ihd1ft leg, and (2) the entire upper
body. As seen in the video files on the website, the qualitheffilled-in data is excellent and is
hardly distinguishable from the original ground truth of tiest sequence. Figure 4 demonstrates the
model’s ability to predict the three angles of rotation df taft hip.

For the walking sequence (of length 124 frames), we compauedodel’s performance to nearest
neighbor interpolation, a simple method where for each &aime values on known dimensions are
compared to each example in the training set to find the dlosatch (measured by Euclidean dis-
tance in the normalized angle space). The unknown dimessienthen filled in using the matched
example. As reconstruction from our model is stochasticiepeated the experiment 100 times and
report the mean. For the missing leg, mean squared recotistrerror per joint using our model
was8.78, measured in normalized joint angle space, and summed logéRtirames of interest.
Using nearest neighbor interpolation, the error was gredte68. For the missing upper body,
mean squared reconstruction error per joint using our madsl20.52. Using nearest neighbor
interpolation, again the error was great2?:20.
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Figure 4: The model successfully fills in missing data usinty dhe previous values of the joint
angles (through the temporal connections) and the curragiés of other joints (through the RBM
connections). Shown are two of the three angles of rotatiothk left hip joint (the plot of the third

is similar to the first). The original data is shown on a soii) the model’s prediction is shown
on a dashed line, and the results of nearest neighbor in&tiggoare shown on a dotted line (see a
video on the website).

5 Higher level models

Once we have trained the model, we can add layers like in a Bebef

Network [14]. The previous layer CRBM is kept, and the se@eaf hidden ®
state vectors, while driven by the data, is treated as a nad & “fully
observed” data. The next level CRBM has the same archieetuthe first

i@

(though we can alter the number of its units) and is traingdérexact same
way. Upper levels of the network can then model higher-ostiercture.

This greedy procedure is justified using a variational bold4d. A two-
level model is shown in Figure 5.

We can also consider two special cases of the higher-leveemdf we

keep only the visible layer, and itsth order directed connections, we have O,
a standard AR{) model with Gaussian noise. If we take the two-hidden

layer model and delete the first-level autoregressive adiores, as well as

both sets of visible-to-hidden directed connections, weeha simplified
model that can be trained in 2 stages: first learning a stisdicrodel of 2t ot
pairs or triples of time frames, then using the inferred kiddtates to train

a “fully-observed” sigmoid belief net that captures the pemal structure of Figure 5: Higher-
the hidden states. level models

6 Discussion

We have introduced a generative model for human motion basebe idea that local constraints
and global dynamics can be learned efficiently by a condifié&estricted Boltzmann Machine.
Once trained, our models are able to efficiently capture dexnmon-linearities in the data without
sophisticated pre-processing or dimensionality redacfitne model has been designed with human
motion in mind, but should lend itself well to other high-dinsional time series.

In relatively low-dimensional or unstructured data (foample if we were to model a single isolated
joint) a single-layer model might be expected to have difficsince such cyclic time series contain
several subsequences which are locally very similar butioit different phases of the overall
cycle. It would be possible to preserve the global phasetimdtion by using a much higher order
model, but for higher dimensional data such as full body orotiapture this is unnecessary because
the whole configuration of joint angles and angular velesithever has any phase ambiguity. So
the single-layer version of our model actually performs mbetter on higher-dimensional data.



Models with more hidden layers are able to implicitly moaelder-term temporal information, and
thus will mitigate this effect.

We have demonstrated that our model can effectively ledfardnt styles of motion, as well as
the transitions between these styles. This differentiatesapproach from PCA-based approaches
which only accurately model cyclic motion, and additiogatiust build separate models for each
type of motion. The ability of the model to transition smdgtthowever, is dependent on having
sufficient examples of such transitions in the training d&t& plan to train on larger datasets en-
compassing such transitions between various styles ofomotf we augment the data with some
static skeletal and identity parameters (in essence mgagierson’s unique identity to a set of fea-
tures), we should be able to use the same generative modeéfor different people, and generalize
individual characteristics from one type of motion to arssttFinally, our model is not limited to a
single source of data. In the future, we hope to integratelésel vision data captured at the same
time as motion; we could then learn the correlations betvtleerision stream and the joint angles.
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