
MATRIX FACTORIZATION METHODS FOR

COLLABORATIVE FILTERING

Andriy Mnih and Ruslan Salakhutdinov
University of Toronto, Machine Learning Group

1

What is collaborative filtering?

• The goal of collaborative filtering (CF) is to infer user
preferences for items given a large but incomplete
collection of preferences for many users.

• For example:

– Suppose you infer from the data that most of the users
who like “Star Wars” also like “Lord of the Rings” and
dislike “Dune”.

– Then if a user watched and liked “Star Wars” you would
recommend him/her “Lord of the Rings” but not
“Dune”.

• Peferences can be explicit or implicit:

– Explicit preferences: ratings given to items by users.
– Implicit preferences: which items were rented or bought

by users.

2

Collaborative filtering vs. content-based filtering

• Content-based filtering makes recommendations based on
item content.

– E.g. for a movie: genre, actors, director, length,
language, number of car chases, etc.

– Can be used to recommend new items for which no
ratings are available yet.

– Does not perform as well as collaborative filtering in
most cases.

• Collaborative filtering does not look at item content.

– Preferences are inferred from rating patterns alone.
– Cannot recommend new items – they all look the same

to the system.
– Very effective when a sufficient amount of data is

available.

3

Netflix Prize: In it for the money

• Two years ago, Netflix has announced a movie rating
predictions competition.

• Whoever improves Netflix’s own baseline score by 10%
will win the 1 million dollar prize.

• The training data set consists of 100,480,507 ratings from
480,189 randomly-chosen, anonymous users on 17,770
movie titles. The data is very sparse, most users rate only
few movies.

• Also, Netflix provides a test set containing 2,817,131
user/movie pairs with the ratings withheld. The goal is to
predict those ratings as accurately as possible.

4

Course projects

• We will provide you with a subset of the Netflix training
data: a few thousand users + a few thousand movies, so
that you can easily run your algorithms on CDF machines.

• We will also provide you with a validation set. You will
report the achieved prediction accuracy on this validation
set.

• There will be two projects based on the following two
models:

– Probabilistic Matrix Factorization (PMF)
– Restricted Boltzmann Machines (RBM’s)

• You can choose which model you would like to work on.

• This tutorial will cover only PMF (the easy 4-5% on
Netflix).

5

CF as matrix completion

• Collaborative filtering can be viewed as a matrix
completion problem.

• Task: given a user/item matrix with only a small subset of
entries present, fill in (some of) the missing entries.

• Perhaps the simplest effective way to do this is to factorize
the rating matrix into a product of two smaller matrices.

6

Matrix factorization: notation

~~ U

V

Features

FeaturesR

User

Movie
N Users

M Movies

T

• Suppose we have M movies, N users, and integer rating
values from 1 to K.

• Let Rij be the rating of user i for movie j, and U ∈ RD×N ,
V ∈ RD×M be latent user and movie feature matrices.

• We will use Ui and Vj to denote the latent feature vectors
for user i and movie j respectively.

7

Matrix factorization: the non-probabilistic view

• To predict the rating given by user i to movie j, we simply
compute the dot product between the corresponding
feature vectors:

– R̂ij = UT
i Vj =

∑

k UikVjk

• Intuition: for each user, we predict a movie rating by
giving the movie feature vector to a linear model.

– The movie feature vector can be viewed as the input.
– The user feature vector can be viewed as the weight

vector.
– The predicted rating is the output.
– Unlike in linear regression, where inputs are fixed and

weights are learned, we learn both the weights and the
inputs (by minimizing squared error).

– Note that the model is symmetric in movies and users.

8

Probabilistic Matrix Factorization (PMF)

UV j i

R ij

j=1,...,M
i=1,...,N

Vσ Uσ

σ

• PMF is a simple probabilistic linear
model with Gaussian observation
noise.

• Given the feature vectors for the
user and the movie, the distribution
of the corresponding rating is:

p(Rij|Ui, Vj, σ2) = N (Rij|U
T
i Vj, σ2)

• The user and movie feature vectors
are given zero-mean spherical
Gaussian priors:

p(U |σ2
U) =

N
∏

i=1

N (Ui|0, σ2
UI), p(V |σ2

V) =
M
∏

j=1

N (Vj|0, σ2
V I)

9

Learning (I)

UV j i

R ij

j=1,...,M
i=1,...,N

Vσ Uσ

σ

• MAP Learning: Maximize the log-
posterior over movie and user
features with fixed hyperparameters.

• Equivalent to minimizing the
sum-of-squared-errors with
quadratic regularization terms:

E =
1

2

N
∑

i=1

M
∑

j=1

Iij

(

Rij − UT
i Vj

)2
+

+
λU

2

N
∑

i=1

‖ Ui ‖2
Fro +

λV

2

M
∑

j=1

‖ Vj ‖2
Fro

λU = σ2/σ2
U , λV = σ2/σ2

V , and Iij = 1 if user i rated movie j
and is 0 otherwise.

10

Learning (II)

E =
1

2

N
∑

i=1

M
∑

j=1

Iij

(

Rij − UT
i Vj

)2

+
λU

2

N
∑

i=1

‖ Ui ‖2
Fro +

λV

2

M
∑

j=1

‖ Vj ‖2
Fro

• Find a local minimum by performing gradient descent in
U and V .

• If all ratings were observed, the objective reduces to the
SVD objective in the limit of prior variances going to
infinity.

• PMF can be viewed as a probabilistic extension of SVD,
which works well even when most entries in R are
missing.

11

Automatic Complexity Control for PMF (I)

UVj i

Rij

j=1,...,M
i=1,...,N

σ

ΘV UΘ

ααV U• Model complexity is controlled by
the noise variance σ2 and the
parameters of the priors (σ2

U and σ2
V).

• Approach: Find a MAP estimate
for the hyperparameters after
introducing priors for them.

• Learning: Find a point estimate of
parameters and hyperparameters by
maximizing the log-posterior:

ln p(U, V, σ2, ΘU , ΘV |R) = ln p(R|U, V, σ2) +

ln p(U |ΘU) + ln p(V |ΘV) + ln p(ΘU) + ln p(ΘV) + C

12

Automatic Complexity Control for PMF (II)

UVj i

Rij

j=1,...,M
i=1,...,N

σ

ΘV UΘ

ααV U
• Can use more sophisticated
regularization methods than
simple penalization of the Frobenius
norm of the feature matrices:

• priors with diagonal or full
covariance matrices and
adjustable means, or even mixture of
Gaussians priors.

• Using spherical Gaussian priors for feature
vectors leads to the standard PMF with
λU and λV chosen automatically.

• Automatic selection of the hyperparameter values worked
considerably better than the manual approach that used a
validation set.

13

Constrained PMF (I)

• Two users that have rated similar movies are likely to have
preferences more similar than two randomly chosed users.

• Make the prior for the user feature vector depend on the
movies the user has rated.

• This will force users who have seen the same (or similar)
movies to have similar prior distributions for their feature
vectors.

14

Constrained PMF (II)

iY

V j

R ij

j=1,...,M

U i iI

i=1,...,N

Vσ
Uσ

W

k=1,...,M

k

Wσ

σ

• Let W ∈ RD×M be a latent
similarity constraint matrix.

• We define the feature
vector for user i as:

Ui = Yi +

∑M
k=1 IikWk
∑M

k=1 Iik

• I is the observed indicator matrix, Iij = 1 if user i rated
movie j and 0 otherwise.

• Performs considerably better on infrequent users.

15

Constrained PMF (III)

iY

V j

R ij

j=1,...,M

U i iI

i=1,...,N

Vσ
Uσ

W

k=1,...,M

k

Wσ

σ

• The feature vector for user i:

Ui = Yi +

∑M
k=1 IikWk
∑M

k=1 Iik

• For standard PMF, Ui and Yi

are equal because the prior
mean is fixed at zero.

• The model:

p(R|Y, V, W, σ2) =
N
∏

i=1

M
∏

j=1

[

N (Rij|
[

Yi +

∑M
k=1 IikWk
∑M

k=1 Iik

]T
Vj, σ2)

]Iij

with

p(W |σW) =
M
∏

k=1

N (Wk|0, σ2
W I)

16

The Netflix Dataset

• The Netflix dataset is large, sparse, and imbalanced.

• The training set: 100,480,507 ratings from 480,189 users on
17,770 movies.

• The validation set: 1,408,395 ratings. The test set: 2,817,131
user/movie pairs with ratings withheld.

• The dataset is very imbalanced. The number of ratings
entered by each user ranges from 1 to over 15000.

• Performance is assessed by submitting predictions to
Netflix, which prevents accidental cheating since the test
answers are known only to Netflix.

17

Experimental Results

0 10 20 30 40 50 60 70 80 90 100
0.91

0.92

0.93

0.94

0.95

0.96

0.97

Epochs

R
M

S
E

PMF1

PMF2

Netflix
Baseline Score

SVD

PMFA

0 5 10 15 20 25 30 35 40 45 50 55 60
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

Epochs

R
M

S
E

PMF

Constrained
PMF

Netflix
Baseline Score

SVD

10D features 30D features

• Performance of SVD, PMF and PMF with adaptive priors,
using 10D and 30D feature vectors, on the full Netflix
validation set.

18

Experimental Results

 1−5 6−10 −20 −40 −80 −160 −320 −640 >641
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

Number of Observed Ratings

R
M

S
E

PMF

Constrained
PMF

Movie Average

 1−5 6−10 −20 −40 −80 −160 −320 −640 >641
0

5

10

15

20

Number of Observed Ratings

U
se

rs
 (

%
)

• Left Panel: Performance of constrained PMF, PMF and
movie average algorithm that always predicts the average
rating of each movie.

• Right panel: Distribution of the number of ratings per user
in the training dataset.

19

Experimental Results

0 5 10 15 20 25 30 35 40 45 50 55 60
0.9

0.902

0.904

0.906

0.908

0.91

0.912

0.914

0.916

0.918

0.92

Epochs

R
M

S
E

Constrained PMF
(using Test rated/unrated id)

Constrained
PMF

• Performance of constrained PMF that uses an additional
rated/unrated information from the test dataset.

• Netflix tells us in advance which user/movie pairs occur
in the test set.

20

Bayesian PMF?

• Training PMF models are trained efficiently by finding
point estimates of model parameters and
hyperparameters.

• Can we take a fully Bayesian approach by place proper
priors over the hyperparameters and resorting to MCMC
methods?

• With 100 million ratings, 0.5 million users, and 18
thousand movies?

• Initially this seemed infeasible to us due to the great
computational cost of handing a dataset of this size.

21

Bayesian PMF!

• Bayesian PMF implemented using MCMC can be
surprisingly efficient.

• Going fully Bayesian improves performance by nearly
1.5% compared to just doing MAP.

22

Variations on PMF

• Many variations on PMF are possible:

– Non-negative matrix factorization.
– Training methods: stochastic, minibatch, alternating

least squares, variational Bayes, particle filtering.
– Etc.

23

THE END

24

