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CSC2515 Fall 2007
Introduction to Machine Learning

Lecture 9: Continuous 
Latent Variable Models
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Example: continuous underlying variables

• What are the intrinsic latent dimensions in these two datasets?

• How can we find these dimensions from the data?
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Dimensionality Reduction vs. Clustering
• Training continuous latent variable models often called 

dimensionality reduction, since there are typically many fewer 
latent dimensions

• Examples: Principal Components Analysis, Factor Analysis, 
Independent Components Analysis

• Continuous causes often more eff icient at representing information 
than discrete

• For example, if there are two factors, with about 256 settings each, 
we can describe the latent causes with two 8-bit numbers

• If  we try to cluster the data, we need 216 ~= 105 numbers
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Generative View

• Each data example generated by first selecting a point from a 
distribution in the latent space, then generating a point from the 
conditional distribution in the input space

• Simple models: Gaussian distributions in both latent and data 
space, linear relationship betwixt

• This view underlies Probabilistic PCA, Factor Analysis
• Will  return to this later
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Standard PCA
• Used for data compression, visualization, feature extraction, 

dimensionality reduction

• Algorithm: to find M components underlying D-dimensional data 
– select the top M eigenvectors of S (data covariance matrix):

– project each input vector x into this subspace, e.g.,

• Full projection onto M dimensions:

• Two views/derivations:
– Maximize variance (scatter of green points)

– Minimize error (red-green distance per datapoint)

zn1 = uT1 xn
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Standard PCA: Variance maximization
• One dimensional example
• Objective: maximize projected variance w.r.t.  U1

– where sample mean and data covariance are:

• Must constrain ||u1||: via Lagrange multiplier, maximize w.r.t u1

• Optimal u1 is principal component (eigenvector with maximal 
eigenvalue)

1N N∑n=1{uT1 xn − uT1 x̄}2 = uT1 Su1
x̄ = 1

N

N∑n=1xn
S = 1

N

N∑n=1(xn − x̄)(xn − x̄)T
uT1 Su1 + λ(1− uT1 u1)
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Standard PCA: Extending to higher dimensions

• Extend solution to additional latent components: find variance-
maximizing directions orthogonal to previous ones

• Equivalent to Gaussian approximation to data

• Think of Gaussian as football  (hyperelli psoid)
– Mean is center of football

– Eigenvectors of covariance matrix are axes of football

– Eigenvalues are lengths of axes

• PCA can be thought of as fitting the football  to the data:  
maximize volume of data projections in M-dimensional subspace

• Alternative formulation: minimize error, equivalent to minimizing 
average distance from datapoint to its projection in subspace
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Standard PCA: Error minimization

• Data points represented by projection onto M-dimensional subspace, 
plus some distortion:

• Objective: minimize distortion w.r.t.  U1 (reconstruction error of xn)

• The objective is minimized when the D-M components are the 
eigenvectors of S with lowest eigenvalues→ same result

J = 1N N∑n=1 D∑i=M+1 bi(xTnui − x̄Tui)2 = D∑i=M+1uTi Sui
znj = xTnuj
bj = x̄Tuj

x̃n =
M∑i=1 zniui + D∑i=M+1 biui

J = 1N N∑n=1 ||xn − x̃Tn ||2
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Applying PCA to faces

• Need to first reduce dimensionality of inputs (will  see in tutorial 
how to handle high-dimensional inputs) – down-sample images

• Run PCA on 2429 19x19 grayscale images (CBCL database)

• Compresses the data: can get good reconstructions with only 3 
components

• Pre-processing: can apply classifier to latent representation --
PPCA w/ 3 components obtains 79% accuracy on face/non-face 
discrimination in test data vs. 76.8% for m.o.Gwith 84 states 

• Can be good for visualization
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Applying PCA to faces: Learned basis
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Probabili stic PCA

• Probabilistic, generative view of data

• Assumptions: 
– underlying latent variable has a Gaussian distribution

– linear relationship between latent and observed variables

– isotropic Gaussian noise in observed dimensions

p(z) = N (z|0, I)
p(x|z) = N (x|Wz+ µ, σ2I)

x = Wz+ µ+ ǫ
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Probabili stic PCA: Marginal data density

• Columns of W are the principal components, σ2 is sensor noise

• Product of Gaussians is Gaussian: the joint p(z,x), the marginal 
data distribution p(x) and the posterior p(z|x) are also Gaussian

• Marginal data density (predictive distribution):

• Can derive by completing square in exponent, or by just 
computing mean and covariance given that it is Gaussian:

p(x) = ∫z p(z)p(x|z)dz = N (x|µ,WWT + σ2I)
E[x] = E[µ+Wz+ ǫ] = µ+WE[z] +E[ǫ]

= µ+W0 + 0 = µ
C = Cov[x] = E[(z− µ)(z− µ)T ]

= E[(µ+Wz+ ǫ− µ)(µ+Wz+ ǫ− µ)T ]
= E[(Wz+ ǫ)(Wz+ ǫ)T ]
= WWT + σ2I
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• Joint density for PPCA (x is D-dim., z is M-dim):

– where cross-covariance terms from:

• Note that evaluating predictive distribution involves inverting C: 
reduce O(D3) to O(M3) by applying matrix inversion lemma:

Probabili stic PCA: Joint distribution

Cov[z,x] = E[(z− 0)(x− µ)T ] = E[z(µ+Wz+ ǫ− µ)T ]
= E[z(Wz+ ǫ)T ] = WT

C−1 = σ−1I− σ−2W(WTW + σ2I)−1WT



CSC2515: Lecture 8    Continuous Latent Variables

14

• Inference in PPCA produces posterior distribution over latent z
• Derive by applying Gaussian conditioning formulas (see 2.3 in 

book) to joint distribution

• Mean of inferred z is projection of centered x – linear operation
• Posterior variance does not depend on the input x at all !

Probabili stic PCA: Posterior distribution

p(z|x) = N(z|m,V)
m = WT (WWT + σ2I)−1(x− µ)
V = I−WT (WWT + σ2I)−1W
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Standard PCA: Zero-noise limit of PPCA

• Can derive standard PCA as limit of Probabilistic PCA (PPCA) as 
σ2 → 0. 

• ML  parameters W*  are the same

• Inference is easier: orthogonal projection

• Posterior covariance is zero

limσ2→0WT (WWT + σ2WT )−1 = (WTW)−1WT
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• Marginal density for PPCA (x is D-dim., z is M-dim):

– where θ = W, µ, σ
• Effective covariance is low-rank outer product of two long skinny 

matrices plus a constant diagonal matrix

• So PPCA is just a constrained Gaussian model: 
– Standard Gaussian has D + D(D+1)/2 effective parameters
– Diagonal-covariance Gaussian has D+D, but cannot capture correlations
– PPCA: DM + 1 – M(M-1)/2, can represent M most significant correlations

Probabili stic PCA: Constrained covariance

p(x|θ) = N (x|µ,WWT + σ2I)
Cov[x] W

WT
σI
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Probabili stic PCA: Maximizing likelihood

• Fit parameters (θ = W, µ, σ) to max likelihood: make model 
covariance match observed covariance; distance is trace of ratio

• Sufficient statistics: mean µ = (1/N)∑n xn and sample covariance S

• Can solve for ML params directly: kth column of W is the Mth

largest eigenvalueof S times the associated eigenvector; σ is the 
sum of all  eigenvalues less than Mth one 

L(θ;X) = log p(X|θ) =∑n log p(xn|θ)
= −N

2 log |C| − 1
2
∑n (xn − µ)C−1(xn − µ)T

= −N
2 log |C| − 1

2Tr[C−1∑n (xn − µ)(xn − µ)T ]
= −N

2 log |C| − 1
2Tr[C−1S]
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Probabili stic PCA: EM

• Rather than solving directly, can apply EM

• Need complete-data log likelihood

• E step: compute expectation of complete log likelihood with 
respect to posterior of latent variables z, using current parameters –
can derive E[zn] and E[zn zn

T] from posterior p(z|x)

• M step: maximize with respect to parameters W and σ
• Iterative solution, updating parameters given current expectations, 

expectations give current parameters

• Nice property – avoids direct O(ND2) construction of covariance 
matrix, instead involves sums over data cases: O(NDM); can be 
implemented online, without storing data

log p(X,Z|µ,W, σ2) = ∑n[log p(xn|zn) + log p(zn)]
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Probabili stic PCA: Why bother?

• Seems like a lot of formulas, algebra to get to similar model to
standard PCA, but…

• Leads to understanding of underlying data model, assumptions 
(e.g., vs. standard Gaussian, other constrained forms)

• Derive EM version of inference/learning: more eff icient

• Can understand other models as generalizations, modifications

• More readily extend to mixtures of PPCA models

• Principled method of handling missing values in data

• Can generate samples from data distribution
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Factor Analysis

• Can be viewed as generalization of PPCA 

• Historical aside – controversial method, based on attempts to 
interpret factors: e.g., analysis of IQ data identified factors related 
to race

• Assumptions: 
– underlying latent variable has a Gaussian distribution

– linear relationship between latent and observed variables

– diagonal Gaussian noise in data dimensions

• W: factor loading matrix (D x M)

• Ψ : data covariance (diagonal, or axis-aligned; vs. PCA’s spherical)

p(z) = N (z|0, I)
p(x|z) = N (x|Wz+ µ,Ψ)
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Factor Analysis: Distributions

• As in PPCA, the joint p(z,x), the marginal data distribution p(x) 
and the posterior p(z|x) are also Gaussian

• Marginal data density (predictive distribution):

• Joint density: 

• Posterior, derived via Gaussian conditioning

p(x) = ∫z p(z)p(x|z)dz = N (x|µ,WWT +Ψ)

p(z|x) = N(z|m,V)
m = WT (WWT +Ψ)−1(x− µ)
V = I−WT (WWT +Ψ)−1W
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• Parameters are coupled, making it impossible to solve for ML 
parameters directly, unlike PCA 

• Must use EM, or other nonlinear optimization

• E step: compute posterior p(z|x) – use matrix inversion to convert 
D x D matrix inversions to M x M

• M step: take derivatives of expected complete log likelihood with 
respect to parameters

Factor Analysis: Optimization
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Factor Analysis vs. PCA: Rotations

• In PPCA, the data can be rotated without changing anything: 
multiply data by matrix Q, obtain same fit to data

• But the scale is important
• PCA looks for directions of large variance, so it will  grab large 

noise directions

µ ← Qµ
W ← QW
Ψ ← Ψ
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Factor Analysis vs. PCA: Scale

• In FA, the data can be re-scaled without changing anything
• Multiply xi by αi: 

• But rotation in data space is important
• FA looks for directions of large correlation in the data, so it will  

not model large variance noise

µi ← αiµi
Wij ← αiWij
Ψi ← α2i Ψi
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Factor Analysis : Identifiabilit y

• Factors in FA are non-identifiable: notguaranteed to find same 
set of parameters – not just local minimum but invariance 

• Rotate W by any unitary Q and model stays the same – W only 
appears in model as outer product WWT

• Replace W with WQ: (WQ)(WQ)T = W(Q QT) WT = WWT

• So no single best setting of parameters

• Degeneracy makes unique interpretation of learned factors 
impossible
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Independent Components Analysis (ICA)
• ICA is another continuous latent variable model, but it has a 

non-Gaussian and factorized prior on the latent variables 
• Good in situations where most of the factors are small  most of 

the time, do not interact with each other
• Example: mixtures of speech signals

• Learning problem same as before: find weights from factors to 
observations, infer the unknown factor values for given input

• ICA: factors are called “sources” , learning is “unmixing”
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ICA Intuition

• Since latent variables assumed to be independent, trying to find
linear transformation of data that recovers independent causes

• Avoid degeneracies in Gaussian latent variable models: assume 
non-Gaussian prior distribution for latents(sources)

• Often we use heavy-tailed source priors, e.g., 

• Geometric intuition: find spikes in histogram

p(zj) = 1
π cosh(zj) = 1

π(exp(zj)+exp(−zj))
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ICA Details

• Simplest form of ICA has as many outputs as sources (square) 
and no sensor noise on the outputs:

• Learning in this case can be done with gradient descent (plus 
some “covariant” tricks to make updates faster and more stable)

• If  keep V square, and assume isotropic Gaussian noise on the 
outputs, there is a simple EM algorithm

• Much more complex cases have been studied also: non-square, 
time delays, etc.

p(z) = ∏
k
p(zk)

x = Vz


