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Regression/Classification & Probabilities

* The “standard” setup
« Assume data are iid from unknown joint distribut p(y, x|w)
or an unknown condition:p(y|x, w)

* We see some examp(y1, x1)(y2,X2)...(yn,Xn)  and we want tq
infer something about the parameters (weightsuoioodel

» The most basic thing is to optimize the paramaisimsg
maximum likelihood or maximum conditional likelihood

» A better thing to do is maximum penalized (coruhal)
likelihood, which includes regularization terms k&s
factorization, shrinkage, input selection, or srhaaj

* An even better thing to do is to go Bayesian,thig is often too
computationally demanding
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Maximum Likelihood

» Basic ML question: For which setting of the partengis the data
we saw the most likely?

» Assumes training data are iid, computes the kajihood, forms
a function 4(w) which depends on the fixening set we saw
and on the argument w:

((w) = logp(y1,X1,Y2,X2, ..., Yn, Xn|W)
= IOng(yn,Xn|W) since iid
n

= Z 109 p(yn, Xn|W) since log[] =" log
n

» Maximizing likelihood is equivalent to minimizirgum squared
error, if the noise model is Gaussian and datap@ird iid:

U(w) = —2%2 > (Yn — f(xn;w))? + const
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Maximum A Posteriori (MAP)

* MAP asks question: Which setting of the paramagmsost
likely to be drawn from the pricp(w)  andnhie generate the
data fromp(X,Y|w) ?

» [t assumes training data are iid, computes theptjerior, and
maximizes a functiot/(w)  which depends anfiked training
set we saw and on the argument w:

t(w) = logp(w) + 109 p(y1,X1,Y2,X2; ..., Yn, Xn|W) + coOnst

= logp(w) + log [[ p(yn, xn|w)
= logp(w) 4+ > 109 p(yn, Xn|w)

 E.g., MAP is equivalent to ridge regression, & tibise model is
Gaussian, the weight prior is Gaussian, and thepoatts are iid:

W) = —55 >, (Yn — Wwx,)2 = XX, w? + const
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Going Bayesian
Ideally we would be Bayesian, applying Bayeke to compute
p(W’yl, X1,Y2, X2y o0y Yny, Xn)

» This is theposterior distribution of the parameters given the data. A true
Bayesian would integrate over the posterior to maleelictions:
p(yne'w ‘xnew’ Y, X) — f p(yne'w ‘xnew’ W)p(W|Y, X)dw
but often this is analytically intractable and/ongputationally difficult
* We can settle for maximizing and using the argrw* 0 make future
predictions: this is thenaximum a posterior (MAP) approach
* Many of the penalized maximum likelihood techniguee used for
regularization are equivalent to MAP with certaargmeter priors:
— Quadratic weight decay (shrinkac& Gauagsiaor
— Absolute weight decay (lass < Laplacerprio
— Smoothing on multinomial paramete< Dietlprior
— Smoothing on covariance matric<= Wishiaot
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End result: an “error functior £(w)
E(w) can be the negative of the log likelihood or |lagterior

Consider a fixed training set; think in weight (mgput) space.
At each setting of the weights there is some dgiven the fixed

Error Surfaces and Weight Space

which we want tommize

training set): this defines an error surface inghiespace.
Learning == descending the error surface

Notice: if the data are iid, the error functionsea sum of error
functions £/, , one per data point

E

E(w)

wj

E(w)
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Quadratic Error Surfaces and IID Data

* A very common form for the cost (error) functiathe quadratic:
E(w)=wlTAw+2wTb +c
* This comes up as the log probability when using<sans, since

if the noise model is Gaussian, each of E,2is an upside-down
parabola (a “quadratic bowl!” in higher dimensions).

» Fact: sum of parabolas (quadratics) is anothealjmda (quadratic)
» So the overall error surface is just a quadrabiwlb
 Itis easy to find the minimum of a quadratic bowl

E(w) =a+bw+cw? = w"=-b/2c

E(w) =a+biCw = w*= —%C_lb
» For linear regression with Gaussian noise:

C =XXT and b= —-2Xy”

L . 7




CSC2515: Lecture 6 Opiti

Partial Derivatives of Error

Question: if we wigglew,, and keep everythaige the same,

does the error get better or worse?

. OFE
Calculus provides the answeg,,,

Plan: use a differentiable cost funct En  aachputepartial
derivatives of each parameter with respect to this error:

VE(w) = (22, ..., 22 )

Oowi’ """ Qwpng
Use thechain rule to compute the derivatives
The vector of partial derivatives is called thadjent of the
error. The negative gradient points in the dimchf steepest
error descent in weight space.

Three fundamental questions:
1. How do we compute the gradient efficiently?

2. Once we have the gradient, how do we minimizesther?
3. Where will we end up in weight space?
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Steepest Descent

« Once we have the gradient of the error functiaw kdo we
minimize the weights?

. Steepest descent:
P witl = wt — eVE(w)

* If the steps are small enough, then this is guaeahto
converge to at least a local minimum

 Butif we are interested in the rate of convergertlasis may not
be the best approach

—  Stepsize is a free parameter that has to be clvasefully for each
problem

—  The error surface may be curved differently ifiedtént directions. This
means that the gradient does not necessarily doeattly to the nearest
local minimum [T




Steepest Descent: Far from Ideal

\
L

A




CSC2515: Lecture 6 Optimi

Error Surface: Curvature

* The local geometry of curvature is measured byHessian: the
matrix of second-order partial derivativiH;; = 0*E/dw;w;

» Eigenvectors/eigenvalues of the Hessian describditiections of
principal curvature and the amount of curvatureaoh direction.

« Maximum sensible stepsize 2/ naz
* Rate of convergence depends(1 — zfmim)

max
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Adaptive Stepsize

No general prescriptions for selecting appropriesening rate;

typically no fixed learning rate appropriate fotiesmlearning

period

“Bold driver” heuristic: monitor error after eae€poch (sweep
through entire training set)

1. If error decreases, increase learning rate = € * p

2. If error increases, decrease rate, reset paresnete

e=exo; W =wi"

Sensible choices for parameterp =1.1, ¢ =0.5
This isbatch gradient descent

1
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Momentum

» If the error surface is a long and narrow vallgnadient descent goes quickly
down the valley walls, but very slowly along thélea floor

. We can alleviate this problem by updating paramsaising a combination of
the previous update and the gradient update:

Awh = AW + (1 = 3) (—e OE /Ow;(w?))

« Usually 3 is set quite high, about 0.95.
» This is like giving momentum to the weights
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Convexity, Local Optima

* Unfortunately, many error functions while diffetenle are not
unimodal.

When using gradient descent we can get stuckcal lminima;
where we end up depends on where we start.

vl

parameter space

«  Some very nice error functions (e.g. linear |leagtares, logistic
regression, lasso) acenvex, and thus have a unique (global)
minimum.

«  Convexity means that the second derivative is ydymsitive.
No linear combination of weights can have greateréhan
thelinear combination of the original errors.

But most settings do not lead to convex optima@agroblems.
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Mini-Batch and Online Optimization

* When the dataset is large, computing the exacligmais expensive

» This seems wasteful since the only thing we usagtiadient for is to compute a
small change in the weights, then throw this out @@Tompute the gradient all
over again

* An approximate gradient is useful as long as ih{san roughly the same
direction as the true gradient

* One easy way to do this is to divide the datagetsmall batches of examples,
compute the gradient using a single batch, makgodate, then move to the
next batch of examples: mini-batch optimization

* In the limit, if each batch contains just one epéanthen this is the ‘online’
learning, or stochastic gradient descent mentiaméecture 2.

» These methods are much faster than exact gradiésicent, and are very
effective when combined with momentum, but caretrbegaken to ensure
convergence
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Line Search

» Rather than take a fixed step in the directiothefnegative
gradient or the momentum-smoothed negative gradiaat
possible to do a search along that direction t fire minimum
of the function

E(w)

wl
w2

w3
search direction

 Usually the search is a bisection, which bounédsikarest local
minimum along the line between any two points siheti there

is a third pointW3 with E(w3) < E(wy) and E(ws3) < E(w»)
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Local Quadratic Approximation

By taking a Taylor series of the error functionwnd any point
in weight space, we can makéoaal quadratic approximation
based on the value, slope, and curvature:

E(w —wo) ~ E(wo) + (W — wo)T9Z 4 (w — WO)TW(W — W)

eITor

parameter space

Newton’s method: jump to the minimum of this quatdr,
repeat:
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Second Order Methods

* Newton’s method is an example o$azond order optimization
method because it makes use of the curvature @idematrix

 Second order methods often converge much mordlgulaut it
can be very expensive to calculate and store tlssibi@ matrix.

* In general, most people prefer clever first onaethods which
need only the value of the error function and redgent with
respect to the parameters. Often the sequenaadiegts (first
order derivatives) can be usedafuproximate the second order
curvature. This can even be better than the tregsidn,
because we can constrain the approximation to a\way
positive definite.
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Newton and Quasi-Newton Methods

Broyden-Fletcher-Goldfarb-Shanno (BFGS); Conjugate-
Gradients (CG); Davidon-Fletcher-Powell (DVP); Lelberny-
Marquardt (LM)

All approximate the Hessian using recent funcaod gradient
evaluations (e.g., by averaging outer productsadignt
vectors, but tracking the ““twist" in the gradjdmt projecting
out previous gradient directions...).

Then they use this approximate gradient to comeitipa new
search direction in which they do a combinatiofixad-step,
analytic-step and line-search minimizations.

Very complex area -- we will go through in detailpthe CG
method, and a bit of the limited-memory BFGS,

. 19
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Conjugate Gradients

. Observation: at the end of a line search, the giagient is (almost)
orthogonal to the direction we just searched in.

. So if we choose the next search direction to bentw gradient, we will
always be searching successively orthogonal dinestand things will be
very slow.

. Instead, select a new direction so thafjrst order, as we move in the new
direction the gradient parallel to the old direntgiays zero. This involves
blending the current negative gradient with thevjanes search direction:

d(t+1)=—g(t+1)+ 8(t)d(t)

d(t+1)

d(t)
| . =0 \
v"'n
< 1
ﬁz dt+l) &
Y/ wi(t)

d(t-1)
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More Conjugate Gradients

. To first order, all three expressions below sgt@ir constraint that along
the new search direction gTd(t) —0

dt+1) = —gt+1)+p@1®)d(1)

T
Bt) = g é;?;)z):(;g(-i—ll_)l) Hestenes — Stiefel

gl(t+ 1)Ag(t+ 1)

B(t) = T(De() Polak — Ribiere
B(t) = gT(tg_;(gig)-i_ L) Fletcher — Reeves

where Ag(t+1) =g(t+1)— g(t)
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BFGS

One-step memoryless quasi-Newton method

A secant method — iteratively constructing approximation to
Hessian matrix

d(t) = —g(t) + A()Aw(t) + B(t) Ag(t
0

where Aw(t) =w(t) —w(t—1)

A) = — (14 Ag(t)' Ag(t) | Aw(t)'g(t) | Ag(t)'g(t)
N Aw(t)TAg(t)) Aw(t)TAg(t)  Aw(t)TAg(t)
Bt = Av®) g

Aw(t)TAg(t)

 Every N steps, where N is number of parameteeschds
restarted in the direction of the negative gradient
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Constrained Optimization

Sometimes we want to optimize with some constsair

on the parameters, e.g.,:
— Variances are always positive
Priors are non-negative and sum to unity (livehen
simplex)
 There are two ways to get around this:

1. Re-parametrize so that the new parameters are
unconstrained. For example, we can use log(vaegnr

use softmax(inputs) for priors.
2. Explicitly incorporate the constraints into omstfunction

t
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of the constraint.

surface.

Lagrange Multipliers

. To optimize our functior E(w)
gradient that liesvithin the surface, i.e., with zero dot product to thenmedr

w2,

. Imagine that our parameters have to live insigecthnstraint surfacc(w) = 0

we want to loakthe component of the

wl

. At the constrained optimum, this gradient compaierero. In other words
the gradient of the function is parallel to thedjeat of the constraint

25
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More Lagrange Multipliers

At the constrained optimum, the gradient of thection is parallel to the
gradient of the constraint surface: OE A\ dc.

ow ' ow

The constant of proportionality is called thagrange multiplier. Its value
can be found by forcinic(w) = 0

In general, the Lagrangian function has the propbet when its gradient is
zero, the constraints are satisfied and there gradient within the
constraint surface

L(w,)\) = EWw)+ Mc(w)
OL/Ow = OE /0w + \'oc/ow
OL /O = c(w)
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Lagrange Multipliers: Example

Find the maximum over x of the quadratic form
E(x)=bTx - ;xTA 'x
subject to the K conditionc,(x) = 0
Answer: use Lagrange multipliers:

L(x,\) = B(x) + Me(x)
Now set3L = 0 and 2% =
x* Ab + AC)
A = —4(CcTAC)CTAb

where the kth column of C d¢g(x) /Ox
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