
CSC2515: Lecture 6 Optimization

1

CSC2515 Fall 2007
Introduction to Machine Learning

Lecture 6: Optimization

CSC2515: Lecture 6 Optimization

2

Regression/Classification & Probabilities

• The “standard” setup
• Assume data are iid from unknown joint distribution

or an unknown conditional
• We see some examples and we want to

infer something about the parameters (weights) of our model
• The most basic thing is to optimize the parameters using

maximum likelihood or maximum conditional likelihood
• A better thing to do is maximum penalized (conditional)

likelihood, which includes regularization terms such as
factorization, shrinkage, input selection, or smoothing

• An even better thing to do is to go Bayesian, but this is often too
computationally demanding

p(y,x|w)
(y1,x1)(y2,x2)...(yn,xn)p(y|x,w)

CSC2515: Lecture 6 Optimization

3

Maximum Likelihood
• Basic ML question: For which setting of the parameters is the data

we saw the most likely?
• Assumes training data are iid, computes the log likelihood, forms

a function which depends on the fixed training set we saw
and on the argument w:

since iid

since

• Maximizing likelihood is equivalent to minimizing sum squared
error, if the noise model is Gaussian and datapoints are iid:

ℓ(w) = log p(y1,x1, y2,x2, ..., yn,xn|w)
= log∏

n

p(yn,xn|w)
= ∑

n

log p(yn,xn|w)

ℓ(w)

ℓ(w) = −
12σ2 ∑n(yn − f(xn;w))2 + const

log∏ = ∑ log

CSC2515: Lecture 6 Optimization

4

Maximum A Posteriori (MAP)
• MAP asks question: Which setting of the parameters is most

likely to be drawn from the prior and then to generate the
data from ?

• It assumes training data are iid, computes the log posterior, and
maximizes a function which depends on the fixed training
set we saw and on the argument w:

• E.g., MAP is equivalent to ridge regression, if the noise model is
Gaussian, the weight prior is Gaussian, and the datapoints are iid:

ℓ(w) = log p(w) + log p(y1,x1, y2,x2, ..., yn,xn|w) + const
= log p(w) + log∏n p(yn,xn|w)
= log p(w) + ∑n log p(yn,xn|w)

ℓ(w)

p(w)
p(X, Y |w)

ℓ(w) = −
12σ2 ∑n(yn −wTxn)2 − λ∑iw2i + const

CSC2515: Lecture 6 Optimization

5

Going Bayesian
• Ideally we would be Bayesian, applying Bayesrule to compute

• This is the posterior distribution of the parameters given the data. A true
Bayesian would integrate over the posterior to make predictions:

but often this is analytically intractable and/or computationally difficult

• We can settle for maximizing and using the argmax to make future
predictions: this is the maximum a posterior (MAP) approach

• Many of the penalized maximum likelihood techniques we used for
regularization are equivalent to MAP with certain parameter priors:
– Quadratic weight decay (shrinkage) Gaussian prior

– Absolute weight decay (lasso) Laplace prior

– Smoothing on multinomial parameters Dirichlet prior

– Smoothing on covariance matrices Wishartprior

p(ynew|xnew, Y,X) = ∫ p(ynew|xnew,w)p(w|Y,X)dw

p(w|y1,x1, y2,x2, ..., yn,xn)

⇔
⇔
⇔
⇔

w∗

CSC2515: Lecture 6 Optimization

6

Error Surfaces and Weight Space

• End result: an “error function” which we want to minimize

• can be the negative of the log likelihood or log posterior

• Consider a fixed training set; think in weight (not input) space.
At each setting of the weights there is some error (given the fixed
training set): this defines an error surface in weight space.

• Learning == descending the error surface

• Notice: if the data are iid, the error function E is a sum of error
functions , one per data point

E(w)
E(w)

En

CSC2515: Lecture 6 Optimization

7

Quadratic Error Surfaces and IID Data

• A very common form for the cost (error) function is the quadratic:

• This comes up as the log probability when using Gaussians, since
if the noise model is Gaussian, each of the is an upside-down
parabola (a “quadratic bowl” in higher dimensions).

• Fact: sum of parabolas (quadratics) is another parabola (quadratic)

• So the overall error surface is just a quadratic bowl

• It is easy to find the minimum of a quadratic bowl:

• For linear regression with Gaussian noise:

E(w) = wTAw + 2wTb+ c

En
E(w) = a+ bw + cw2 ⇒ w∗ = −b/2c
E(w) = a+ bTCw ⇒ w∗ = −12C−1b

C = XXT and b = −2XyT

CSC2515: Lecture 6 Optimization

8

Partial Derivatives of Error
• Question: if we wiggle and keep everything else the same,

does the error get better or worse?
• Calculus provides the answer:
• Plan: use a differentiable cost function and compute partial

derivatives of each parameter with respect to this error:

• Use the chain rule to compute the derivatives
• The vector of partial derivatives is called the gradient of the

error. The negative gradient points in the direction of steepest
error descent in weight space.

• Three fundamental questions:
1. How do we compute the gradient efficiently?
2. Once we have the gradient, how do we minimize the error?
3. Where will we end up in weight space?

∂E∂wk
∇E(w) = (∂E

∂w1 , ..., ∂E
∂wM)

wk
E

CSC2515: Lecture 6 Optimization

9

Steepest Descent
• Once we have the gradient of the error function, how do we

minimize the weights?
• Steepest descent:

• If the steps are small enough, then this is guaranteed to
converge to at least a local minimum

• But if we are interested in the rate of convergence, this may not
be the best approach

– Stepsize is a free parameter that has to be chosen carefully for each
problem

– The error surface may be curved differently in different directions. This
means that the gradient does not necessarily point directly to the nearest
local minimum.

wt+1 = wt − ǫ∇E(w)

CSC2515: Lecture 6 Optimization

10

Steepest Descent: Far from Ideal

CSC2515: Lecture 6 Optimization

11

Error Surface: Curvature

• The local geometry of curvature is measured by the Hessian: the
matrix of second-order partial derivatives:

• Eigenvectors/eigenvalues of the Hessian describe the directions of
principal curvature and the amount of curvature in each direction.

• Maximum sensible stepsize is

• Rate of convergence depends on

2/λmax
(1− 2 λminλmax)

Hij = ∂2E/∂wiwj

CSC2515: Lecture 6 Optimization

12

Adaptive Stepsize

• No general prescriptions for selecting appropriate learning rate;
typically no fixed learning rate appropriate for entire learning
period

• “Bold driver” heuristic: monitor error after each epoch (sweep
through entire training set)

1. If error decreases, increase learning rate:

2. If error increases, decrease rate, reset parameters:

• Sensible choices for parameters:

• This is batch gradient descent

ǫ = ǫ ∗ ρ

ǫ = ǫ ∗ σ; wt = wt−1
ρ = 1.1, σ = 0.5

CSC2515: Lecture 6 Optimization

13

Momentum

• If the error surface is a long and narrow valley, gradient descent goes quickly
down the valley walls, but very slowly along the valley floor

• We can alleviate this problem by updating parameters using a combination of
the previous update and the gradient update:

• Usually is set quite high, about 0.95.
• This is like giving momentum to the weights

∆wtj = β∆wt−1 + (1− β) (−ǫ ∂E/∂wj(wt))
β

CSC2515: Lecture 6 Optimization

14

Convexity, Local Optima
• Unfortunately, many error functions while differentiable are not

unimodal.
• When using gradient descent we can get stuck in local minima;

where we end up depends on where we start.

• Some very nice error functions (e.g. linear least squares, logistic
regression, lasso) are convex, and thus have a unique (global)
minimum.

• Convexity means that the second derivative is always positive.
No linear combination of weights can have greater error than
thelinear combination of the original errors.

• But most settings do not lead to convex optimization problems.

CSC2515: Lecture 6 Optimization

15

Mini-Batch and Online Optimization

• When the dataset is large, computing the exact gradient is expensive

• This seems wasteful since the only thing we use the gradient for is to compute a
small change in the weights, then throw this out and recompute the gradient all
over again

• An approximate gradient is useful as long as it points in roughly the same
direction as the true gradient

• One easy way to do this is to divide the dataset into small batches of examples,
compute the gradient using a single batch, make an update, then move to the
next batch of examples: mini-batch optimization

• In the limit, if each batch contains just one example, then this is the ‘online’
learning, or stochastic gradient descent mentioned in Lecture 2.

• These methods are much faster than exact gradient descent, and are very
effective when combined with momentum, but care must be taken to ensure
convergence

CSC2515: Lecture 6 Optimization

16

Line Search

• Rather than take a fixed step in the direction of the negative
gradient or the momentum-smoothed negative gradient, it is
possible to do a search along that direction to find the minimum
of the function

• Usually the search is a bisection, which bounds the nearest local
minimum along the line between any two points such that there
is a third pointw3 with E(w3) < E(w1) and E(w3) < E(w2)

CSC2515: Lecture 6 Optimization

17

Local Quadratic Approximation

• By taking a Taylor series of the error function around any point
in weight space, we can make a local quadratic approximation
based on the value, slope, and curvature:

• Newton’s method: jump to the minimum of this quadratic,
repeat:

w∗ = w −H−1(w) ∂E∂w

E(w −w0) ≈ E(w0) + (w −w0)T ∂E∂w + (w −w0)T H(w0)2 (w −w0)

CSC2515: Lecture 6 Optimization

18

Second Order Methods

• Newton’s method is an example of a second order optimization
method because it makes use of the curvature or Hessian matrix

• Second order methods often converge much more quickly, but it
can be very expensive to calculate and store the Hessian matrix.

• In general, most people prefer clever first order methods which
need only the value of the error function and its gradient with
respect to the parameters. Often the sequence of gradients (first
order derivatives) can be used to approximate the second order
curvature. This can even be better than the true Hessian,
because we can constrain the approximation to always be
positive definite.

CSC2515: Lecture 6 Optimization

19

Newton and Quasi-Newton Methods

• Broyden-Fletcher-Goldfarb-Shanno (BFGS); Conjugate-
Gradients (CG); Davidon-Fletcher-Powell (DVP); Levenberg-
Marquardt (LM)

• All approximate the Hessian using recent function and gradient
evaluations (e.g., by averaging outer products of gradient
vectors, but tracking the ``twist'' in the gradient; by projecting
out previous gradient directions...).

• Then they use this approximate gradient to come up with a new
search direction in which they do a combination of fixed-step,
analytic-step and line-search minimizations.

• Very complex area -- we will go through in detail only the CG
method, and a bit of the limited-memory BFGS,

CSC2515: Lecture 6 Optimization

20

Conjugate Gradients
• Observation: at the end of a line search, the new gradient is (almost)

orthogonal to the direction we just searched in.

• So if we choose the next search direction to be the new gradient, we will
always be searching successively orthogonal directions and things will be
very slow.

• Instead, select a new direction so that, to first order, as we move in the new
direction the gradient parallel to the old direction stays zero. This involves
blending the current negative gradient with the previous search direction:

d(t+ 1) = −g(t+ 1) + β(t)d(t)

CSC2515: Lecture 6 Optimization

21

More Conjugate Gradients
• To first order, all three expressions below satisfy our constraint that along

the new search direction gTd(t) = 0

d(t+1) = −g(t+1)+ β(t)d(t)

β(t) = gT (t+1)∆g(t+1)
dT (t)∆g(t+1) Hestenes− Stiefel

β(t) = gT (t+1)∆g(t+1)
gT (t)g(t) Polak−Ribiere

β(t) = gT (t+1)g(t+1)
gT (t)g(t) Fletcher −Reeves

where ∆g(t+ 1) = g(t+ 1)− g(t)

CSC2515: Lecture 6 Optimization

22

Conjugate Gradients: Example

CSC2515: Lecture 6 Optimization

23

BFGS
• One-step memoryless quasi-Newton method

• A secant method – iteratively constructing approximation to
Hessian matrix

• Every N steps, where N is number of parameters, search is
restarted in the direction of the negative gradient

d(t) = −g(t) +A(t)∆w(t) +B(t)∆g(t)
where ∆w(t) = w(t)−w(t− 1)

A(t) = −

(

1+ ∆g(t)T∆g(t)
∆w(t)T∆g(t)

) ∆w(t)Tg(t)
∆w(t)T∆g(t) + ∆g(t)Tg(t)

∆w(t)T∆g(t)
B(t) = ∆w(t)Tg(t)

∆w(t)T∆g(t)

CSC2515: Lecture 6 Optimization

24

Constrained Optimization

• Sometimes we want to optimize with some constraints
on the parameters, e.g.,:

– Variances are always positive

– Priors are non-negative and sum to unity (live on the
simplex)

• There are two ways to get around this:
1. Re-parametrize so that the new parameters are

unconstrained. For example, we can use log(variances) or
use softmax(inputs) for priors.

2. Explicitly incorporate the constraints into our cost function

CSC2515: Lecture 6 Optimization

25

Lagrange Multipliers
• Imagine that our parameters have to live inside the constraint surface

• To optimize our function we want to look at the component of the
gradient that lies within the surface, i.e., with zero dot product to the normal
of the constraint.

• At the constrained optimum, this gradient component is zero. In other words
the gradient of the function is parallel to the gradient of the constraint
surface.

c(w) = 0E(w)

CSC2515: Lecture 6 Optimization

26

More Lagrange Multipliers
• At the constrained optimum, the gradient of the function is parallel to the

gradient of the constraint surface:

• The constant of proportionality is called the Lagrange multiplier. Its value
can be found by forcing

• In general, the Lagrangian function has the property that when its gradient is
zero, the constraints are satisfied and there is no gradient within the
constraint surface

c(w) = 0

∂E
∂w = λ

∂c
∂w

L(w, λ) = E(w) + λTc(w)
∂L/∂w = ∂E/∂w+ λT∂c/∂w
∂L/∂λ = c(w)

CSC2515: Lecture 6 Optimization

27

• Find the maximum over x of the quadratic form

subject to the K conditions

• Answer: use Lagrange multipliers:

Now set

where the kth column of C is

Lagrange Multipliers: Example

ck(x) = 0

x∗ = Ab+ACλ
λ = −4(CTAC)CTAb

∂L∂x = 0 and ∂L∂λ = 0 :

E(x) = bTx−
12xTA−1x

∂ck(x)/∂x
L(x, λ) = E(x) + λT c(x)

