
WARNING:  OPTIONAL EXTRA MATERIAL 

•  The material in this video is considerably more difficult 
than in most of the other videos.  I have included it for 
those who want to get some idea of how the HF 
optimizer works. 

•  You do not need to understand how HF works in order to 
understand the remaining videos in lecture 8. 

•  The questions in the weekly quiz and the final test will 
not be about the material in this video, so you can safely 
skip it if you want. 
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Lecture 8a 
A brief overview of “Hessian-Free” optimization 



How much can we reduce the error  
by moving in a given direction? 

•  If we choose a direction to move in and we keep                         
going in that direction, how much does the error                    
decrease before it starts rising again?  We assume                             
the curvature is constant (i.e. it’s a quadratic error surface). 
–  Assume the magnitude of the gradient decreases as we 

move down the gradient (i.e. the error surface is convex 
upward). 

•  The maximum error reduction depends on the ratio of the 
gradient to the curvature. So a good direction to move in is one 
with a high ratio of gradient to curvature, even if the gradient 
itself is small. 
–  How can we find directions like these? 

better 
ratio 



Newton’s method 
•  The basic problem with steepest descent on a quadratic error surface 

is that the gradient is not the direction we want to go in. 
–  If the error surface has circular cross-sections, the gradient is fine. 
–  So lets apply a linear transformation that turns ellipses into circles. 

•  Newton’s method multiplies the gradient vector by the inverse of the 
curvature matrix, H:  

 
–  On a real quadratic surface it jumps to the minimum in one step. 
–  Unfortunately, with only a million weights, the curvature matrix has 

a trillion terms and it is totally infeasible to invert it. 

Δw = − ε H (w)−1 dE
dw



Curvature Matrices 
•  Each element in the curvature matrix 

specifies how the gradient in one 
direction changes as we move in 
some other direction. 
–  The off-diagonal terms correspond 

to twists in the error surface. 
•  The reason steepest descent goes 

wrong is that the gradient for one 
weight gets messed up by the 
simultaneous changes to all the other 
weights. 
–  The curvature matrix determines 

the sizes of these interactions. 
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How to avoid inverting a huge matrix 
•  The curvature matrix has too many terms to be of use in a big network.  

–  Maybe we can get some benefit from just using the terms along the 
leading diagonal (Le Cun). But the diagonal terms are only a tiny 
fraction of the interactions (they are the self-interactions).  

•  The curvature matrix can be approximated in many different ways 
–  Hessian-free methods, LBFGS, … 

•  In the HF method, we make an approximation to the curvature matrix 
and then, assuming that approximation is correct, we minimize the error 
using an efficient technique called conjugate gradient.  Then we make 
another approximation to the curvature matrix and minimize again. 
–  For RNNs its important to add a penalty for changing any of the 

hidden activities too much.  



Conjugate gradient 

•  There is an alternative to going to the minimum in one step by 
multiplying by the inverse  of the curvature matrix. 

•  Use a sequence of steps each of which finds the minimum along 
one direction.  

•  Make sure that each new direction is “conjugate” to the previous 
directions so you do not mess up the minimization you already did.   
–  “conjugate” means that as you go in the new direction, you do 

not change the gradients in the previous directions. 



A picture of conjugate gradient 

The gradient in the direction of 
the first step is zero at all points 
on the green line.  
 
So if we move along the green 
line we don’t mess up the 
minimization we already did in 
the first direction. 



What does conjugate gradient achieve? 

•  After N steps, conjugate gradient is guaranteed to find the minimum 
of an N-dimensional quadratic surface. Why? 
–  After many less than N steps it has typically got the error very 

close to the minimum value. 
•  Conjugate gradient can be applied directly to a non-quadratic error 

surface and it usually works quite well (non-linear conjugate grad.) 
•  The HF optimizer uses conjugate gradient for minimization on a 

genuinely quadratic surface where it excels.  
–  The genuinely quadratic surface is the quadratic approximation 

to the true surface.  
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Lecture 8b 
Modeling character strings  

with multiplicative connections 



Modeling text: Advantages of working with characters 
•  The web is composed of character strings. 
•  Any learning method powerful enough to understand the world by 

reading the web ought to find it trivial to learn which strings make 
words (this turns out to be true, as we shall see). 

•  Pre-processing text to get words is a big hassle 
–  What about morphemes (prefixes, suffixes etc) 
–  What about subtle effects like “sn” words? 
–  What about New York?   
–  What about Finnish 

•  ymmartamattomyydellansakaan ..                           ..                           ..                           ..                           ..                           ..                           ..                           ..                           



An obvious recurrent neural net 
1500	  
hidden	  
units	  

character:	  
1-‐of-‐86	  

1500	  
hidden	  
units	  

c 
predicted	  distribu8on	  	  
for	  next	  character.	  	  	  

It’s	  a	  lot	  easier	  to	  predict	  86	  characters	  than	  100,000	  words.	  

softmax 



A sub-tree in the tree of all character strings 

•  If the nodes are implemented as hidden states in an RNN, different 
nodes can share structure because they use distributed representations. 

•  The next hidden representation needs to depend on the conjunction of 
the current character and  the current hidden representation. 

...fix 

…fixi 

…fixin 
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n 

In an RNN, each 
node is a hidden 
state vector. The 
next character 
must transform this 
to a new node. 
 

…fixe 

There are 
exponentially many 
nodes in the tree of 
all character strings 
of length N. 
 



Multiplicative connections 
•  Instead of using the inputs to the recurrent net to provide additive 

extra input to the hidden units, we could use the current input 
character to choose the whole hidden-to-hidden weight matrix. 
–  But this requires 86x1500x1500 parameters 
–  This could make the net overfit. 

•  Can we achieve the same kind of multiplicative interaction using 
fewer parameters? 
–  We want a different transition matrix for each of the 86 

characters, but we want these 86 character-specific weight 
matrices to share parameters (the characters 9 and 8 should 
have similar matrices). 



Using factors to implement multiplicative interactions 
•  We can get groups a and b to interact multiplicatively by using 

“factors”. 
–  Each factor first computes a weighted sum for each of its input 

groups.  
–  Then it sends the product of the weighted sums to its output group. 
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Using factors to implement a set of basis matrices 
•  We can think about factors 

another way: 
–  Each factor defines a rank 

1 transition matrix from a 
to c. 

c f = bTw f( ) aTu f( ) v f
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1500	  
hidden	  
units	  

character:	  1-‐of-‐86	  

Using 3-way factors to allow a character to create a whole 
transition matrix 

predicted	  distribu8on	  	  
for	  next	  character	  

1500	  
hidden	  
units	  

fu fv
f

Each factor, f, defines a 
rank one matrix ,  T

ff vu

Each character, k, determines a gain            for each of these matrices. 

wkf

wkf
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Lecture 8c 
Learning to predict the next character using HF 



Training the character model 
•  Ilya Sutskever used 5 million strings of 100 characters taken from 

wikipedia. For each string he starts predicting at the 11th character. 
•  Using the HF optimizer, it took a month on a GPU board to get a 

really good model. 
•  Ilya’s current best RNN is probably the best single model for 

character prediction (combinations of many models do better). 
•  It works in a very different way from the best other models. 

–  It can balance quotes and brackets over long distances. Models 
that rely on matching previous contexts cannot do this. 



How to generate character strings from the model 

•  Start the model with its default hidden state. 
•  Give it a “burn-in” sequence of characters and let it update its 

hidden state after each character. 
•  Then look at the probability distribution it predicts for the next 

character. 
•  Pick a character randomly from that distribution and tell the net that 

this was the character that actually occurred. 
–  i.e. tell it that its guess was correct, whatever it guessed. 

•  Continue to let it pick characters until bored. 
•  Look at the character strings it produces to see what it “knows”. 



 
He was elected President during the Revolutionary 
War and forgave Opus Paul at Rome. The regime 
of his crew of England, is now Arab women's icons 
in  and the demons that use something between 
the characters‘ sisters in lower coil trains were 
always operated on the line of the ephemerable 
street, respectively, the graphic or other facility for 
deformation of a given proportion of large 
segments at RTUS). The B every chord was a 
"strongly cold internal palette pour even the white 
blade.” 
 



Some completions produced by the model 

•  Sheila thrunges                               (most frequent) 
•  People thrunge   (most frequent next character is space) 
•  Shiela, Thrungelini del Rey                       (first try) 
•  The meaning of life is literary recognition.  (6th try) 

•  The meaning of life is the tradition of the ancient human reproduction: it is 
less favorable to the good boy for when to remove her bigger.                      
(one of the first 10 tries for a model trained for longer). 

 



What does it know? 

•  It knows a huge number of words and a lot about proper names, 
dates, and numbers. 

•  It is good at balancing quotes and brackets. 
–  It can count brackets: none, one, many 

•  It knows a lot about syntax but its very hard to pin down exactly 
what form this knowledge has. 
–  Its syntactic knowledge is not modular. 

•  It knows a lot of weak semantic associations 
–  E.g. it knows Plato is associated with Wittgenstein and 

cabbage is associated with vegetable. 



RNNs for predicting the next word 

•  Tomas Mikolov and his collaborators have recently trained quite large 
RNNs on quite large training sets using BPTT. 
–  They do better than feed-forward neural nets. 
–  They do better than the best other models.  
–  They do even better when averaged with other models.  

•  RNNs require much less training data to reach the same level of 
performance as other models. 

•  RNNs improve faster than other methods as the dataset gets bigger. 
–  This is going to make them very hard to beat. 
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Lecture 8d 
Echo state networks 



The key idea of echo state networks (perceptrons again?) 

•  A very simple way to learn a 
feedforward network is to make 
the early layers random and fixed. 

•  Then we just learn the last layer 
which is a linear model that                               
uses the transformed                  
inputs to predict the                     
target outputs. 
–  A big random                      

expansion of                          
the input vector                    
can help. 

•  The equivalent idea for RNNs is 
to fix the inputàhidden 
connections and the 
hiddenàhidden connections at 
random values and only learn the 
hiddenàoutput connections. 
–  The learning is then very 

simple (assuming linear 
output units). 

–  Its important to set the 
random connections very 
carefully so the RNN does not 
explode or die. 



Setting the random connections in an Echo State 
Network 

•  Set the hiddenàhidden weights 
so that the length of the activity 
vector stays about the same 
after each iteration. 
–  This allows the input to echo 

around the network for a 
long time. 

•  Use sparse connectivity (i.e. set 
most of the weights to zero). 
–  This creates lots of loosely 

coupled oscillators. 

•  Choose the scale of the 
inputàhidden connections very 
carefully. 
–  They need to drive the 

loosely coupled oscillators 
without wiping out the 
information from the past 
that they already contain. 

•  The learning is so fast that we 
can try many different scales for 
the weights and sparsenesses. 
–  This is often necessary. 



A simple example of an echo state network 
INPUT SEQUENCE 
A real-valued time-varying value that specifies the frequency of 
a sine wave. 
 
TARGET OUTPUT SEQUENCE   
A sine wave with the currently specified frequency. 
 
LEARNING METHOD 
Fit a linear model that takes the states of the hidden units as 
input and produces a single scalar output. 



Example from 
Scholarpedia 



The target and predicted outputs after learning 



Beyond echo state networks 
•  Good aspects of ESNs               

Echo state networks can be 
trained very fast because they just 
fit a linear model. 

•  They demonstrate that its very 
important to initialize weights 
sensibly. 

•  They can do impressive modeling 
of one-dimensional time-series. 
–  but they cannot compete 

seriously for high-dimensional 
data like pre-processed 
speech. 

•  Bad aspects of ESNs             
They need many more hidden 
units for a given task than an 
RNN that learns the 
hiddenàhidden weights. 

•  Ilya Sutskever (2012) has 
shown that if the weights are 
initialized using the ESN 
methods, RNNs can be 
trained very effectively. 
–  He uses rmsprop with 

momentum. 


