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Lecture 7a 
Modeling sequences: A brief overview 



Getting targets when modeling sequences 
 
•  When applying machine learning to sequences, we often want to turn an input 

sequence into an output sequence that lives in a different domain. 
–  E. g. turn a sequence of sound pressures into a sequence of word identities. 

•  When there is no separate target sequence, we can get a teaching signal by trying 
to predict the next term in the input sequence.  
–  The target output sequence is the input sequence with an advance of 1 step. 
–  This seems much more natural than trying to predict one pixel in an image 

from the other pixels, or one patch of an image from the rest of the image. 
–  For temporal sequences there is a natural order for the predictions. 

•  Predicting the next term in a sequence blurs the distinction between supervised 
and unsupervised learning. 
–  It uses methods designed for supervised learning, but it doesn’t require a 

separate teaching signal. 
 



Memoryless models for sequences 

•  Autoregressive models          
Predict the next term in a  
sequence from a fixed number of 
previous terms using “delay taps”. 

•  Feed-forward neural nets        
These generalize autoregressive 
models by using one or more 
layers of non-linear hidden units. 
e.g. Bengio’s first language 
model. 
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Beyond memoryless models 
•  If we give our generative model some hidden state, and if we give this 

hidden state its own internal dynamics, we get a much more interesting 
kind of model. 
–  It can store information in its hidden state for a long time. 
–  If the dynamics is noisy and the way it generates outputs from its 

hidden state is noisy, we can never know its exact hidden state. 
–  The best we can do is to infer a probability distribution over the 

space of hidden state vectors. 
•  This inference is only tractable for two types of hidden state model. 

–  The next three slides are mainly intended for people who already 
know about these two types of hidden state model. They show how 
RNNs differ. 

–  Do not worry if you cannot follow the details. 



Linear Dynamical Systems (engineers love them!) 
•  These are generative models. They have a real-

valued hidden state that cannot be observed 
directly.  
–  The hidden state has linear dynamics with 

Gaussian noise and produces the 
observations using a linear model with 
Gaussian noise.  

–  There may also be driving inputs. 
•  To predict the next output (so that we can shoot 

down the missile) we need to infer the hidden 
state.  
–  A linearly transformed Gaussian is a 

Gaussian. So the distribution over the hidden 
state given the data so far is Gaussian. It can 
be computed using “Kalman filtering”.  
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Hidden Markov Models (computer scientists love them!) 
•  Hidden Markov Models have a discrete one-

of-N hidden state. Transitions between states 
are stochastic and controlled by a transition 
matrix. The outputs produced by a state are 
stochastic.  
–  We cannot be sure which state produced 

a given output. So the state is “hidden”. 
–  It is easy to represent a probability 

distribution across N states with N 
numbers. 

•  To predict the next output we need to infer the 
probability distribution over hidden states. 
–  HMMs have efficient algorithms for 

inference and learning. 
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A fundamental limitation of HMMs 
•  Consider what happens when a hidden Markov model generates 

data. 
–  At each time step it must select one of its hidden states. So with 

N hidden states it can only remember log(N) bits about what it 
generated so far. 

•  Consider the information that the first half of an utterance contains 
about the second half: 
–  The syntax needs to fit (e.g. number and tense agreement). 
–  The semantics needs to fit. The intonation needs to fit. 
–  The accent, rate, volume, and vocal tract characteristics must all 

fit. 
•  All these aspects combined could be 100 bits of information that the 

first half of an utterance needs to convey to the second half. 2^100 
is big! 



Recurrent neural networks 
•  RNNs are very powerful, because they 

combine two properties: 
–  Distributed hidden state that allows 

them to store a lot of information 
about the past efficiently. 

–  Non-linear dynamics that allows 
them to update their hidden state in 
complicated ways. 

•  With enough neurons and time, RNNs 
can compute anything that can be 
computed by your computer.  
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Do generative models need to be stochastic? 

•  Linear dynamical systems and 
hidden Markov models are 
stochastic models. 
–  But the posterior probability 

distribution over their 
hidden states given the 
observed data so far is a 
deterministic function of the 
data. 

•  Recurrent neural networks are 
deterministic.  
–  So think of the hidden state 

of an RNN as the 
equivalent of the 
deterministic probability 
distribution over hidden 
states in a linear dynamical 
system or hidden Markov 
model. 



Recurrent neural networks 
•  What kinds of behaviour can RNNs exhibit? 

–  They can oscillate. Good for motor control? 
–  They can settle to point attractors. Good for retrieving memories? 
–  They can behave chaotically. Bad for information processing? 
–  RNNs could potentially learn to implement lots of small programs 

that each capture a nugget of knowledge and run in parallel, 
interacting to produce very complicated effects. 

•  But the computational power of RNNs makes them very hard to train. 
–  For many years we could not exploit the computational power of 

RNNs despite some heroic efforts (e.g. Tony Robinson’s speech 
recognizer). 
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Lecture 7b 
Training RNNs with backpropagation 



The equivalence between feedforward nets and recurrent 
nets 
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Assume that there is a time 
delay of 1 in using each 
connection. 

The recurrent net is just a 
layered net that keeps 
reusing the same weights. 



Reminder: Backpropagation with weight 
constraints 

•  It is easy to modify the backprop 
algorithm to incorporate linear 
constraints between the 
weights. 

•  We compute the gradients as 
usual, and then modify the 
gradients so that they satisfy the 
constraints. 
–  So if the weights started off 

satisfying the constraints, 
they will continue to satisfy 
them. 
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Backpropagation through time 

•  We can think of the recurrent net as a layered, feed-forward 
net with shared weights and then train the feed-forward net 
with weight constraints. 

•  We can also think of this training algorithm in the time domain:  
–  The forward pass builds up a stack of the activities of all 

the units at each time step.  
–  The backward pass peels activities off the stack to 

compute the error derivatives at each time step.  
–  After the backward pass we add together the derivatives at 

all the different times for each weight. 



An irritating extra issue 

•  We need to specify the initial activity state of all the hidden and output 
units.  

•  We could just fix these initial states to have some default value like 0.5. 
•  But it is better to treat the initial states as learned parameters. 
•  We learn them in the same way as we learn the weights. 

–  Start off with an initial random guess for the initial states. 
–  At the end of each training sequence, backpropagate through time 

all the way to the initial states  to get the gradient of the error function 
with respect to each initial state. 

–  Adjust the initial states by following the negative gradient. 



Providing input to recurrent networks 
•  We can specify inputs in several 

ways: 
–  Specify the initial states of all 

the units. 
–  Specify the initial states of a 

subset of the units. 
–  Specify the states of the same 

subset of the units at every time 
step.  

•  This is the natural way to 
model most sequential data. 

w1                      
w2 

w3 w4 

w1                      
w2 

w3 w4 

w1                      
w2 

w3 w4 

time 

à
 



Teaching signals for recurrent networks 
•  We can specify targets in several 

ways: 
–  Specify desired final activities of 

all the units 
–  Specify desired activities of all 

units for the last few steps 
•  Good for learning attractors 
•  It is easy to add in extra error 

derivatives as we 
backpropagate. 

–  Specify the desired activity of a 
subset of the units. 

•  The other units are input or 
hidden units. 
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Lecture 7c 
A toy example of training an RNN 



A good toy problem for a recurrent network 
•  We can train a feedforward net to do 

binary addition, but there are obvious 
regularities that it cannot capture 
efficiently. 
–  We must decide in advance the 

maximum number of digits in each 
number. 

–  The processing applied to the 
beginning of a long number does not 
generalize to the end of the long 
number because      it uses different 
weights. 

•  As a result, feedforward nets do not 
generalize well on the binary addition 
task. 
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The algorithm for binary addition 

no carry 
print 1 

carry 
print 1 

no carry 
print 0 

carry 
print 0 
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This is a finite state automaton. It decides what transition to make by looking at the next 
column.    It prints after making the transition. It moves from right to left over the two input 
numbers. 
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A recurrent net for binary addition 
•  The network has two input units 

and one output unit. 
•  It is given two input digits at each 

time step. 
•  The desired output at each time 

step is the output for the column 
that was provided as input two time 
steps ago. 
–  It takes one time step to update 

the hidden units based on the 
two input digits. 

–  It takes another time step for the 
hidden units to cause the 
output. 
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The connectivity of the network 

•  The 3 hidden units are fully 
interconnected in both 
directions. 
–  This allows a hidden 

activity pattern at one 
time step to vote for the 
hidden activity pattern at 
the next time step. 

•  The input units have 
feedforward connections that 
allow then to vote for the 
next hidden activity pattern. 

3 fully interconnected hidden units 



What the network learns 
•  It learns four distinct patterns of 

activity for the 3 hidden units. 
These patterns correspond to the 
nodes in the finite state 
automaton. 
–  Do not confuse units in a 

neural network with nodes in a 
finite state automaton. Nodes 
are like activity vectors. 

–  The automaton is restricted to 
be in exactly one state at each 
time. The hidden units are 
restricted to have exactly one 
vector of activity at each time. 

•  A recurrent network can emulate 
a finite state automaton, but it is 
exponentially more powerful. With 
N hidden neurons it has 2^N 
possible binary activity vectors     
(but only N^2 weights) 
–  This is important when the 

input stream has two separate 
things going on at once.  

–  A finite state automaton 
needs to square its number of 
states. 

–  An RNN needs to double its   
number of units. 
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Lecture 7d 
Why it is difficult to train an RNN 

 



The backward pass is linear 
•  There is a big difference between the 

forward and backward passes. 
•  In the forward pass we use squashing 

functions (like the logistic) to prevent the 
activity vectors from exploding. 

•  The backward pass, is completely linear. If 
you double the error derivatives at the final 
layer, all the error derivatives will double.  
–  The forward pass determines the slope 

of the linear function used for 
backpropagating through each neuron. 



The problem of exploding or vanishing gradients 

•  What happens to the magnitude of the 
gradients as we backpropagate 
through many layers?  
–  If the weights are  small, the 

gradients shrink exponentially. 
–  If the weights are big the gradients 

grow exponentially. 
•  Typical feed-forward neural nets can 

cope with these exponential effects 
because they only have a few hidden 
layers. 

•  In an RNN trained on long sequences 
(e.g. 100 time steps) the gradients 
can easily explode or vanish. 
–  We can avoid this by initializing 

the weights very carefully. 
•  Even with good initial weights, its very 

hard to detect that the current target 
output depends on an input from 
many time-steps ago. 
–  So RNNs have difficulty dealing 

with long-range dependencies. 



Why the back-propagated gradient blows up 

•  If we start a trajectory within an attractor, small changes in where we 
start make no difference to where we end up. 

•  But if we start almost exactly on the boundary, tiny changes can make a 
huge difference. 



Four effective ways to learn an RNN 

•  Long Short Term Memory                
Make the RNN out of little 
modules that are designed to 
remember values for a long time.  

•  Hessian Free Optimization: Deal 
with the vanishing gradients 
problem by using a fancy 
optimizer that can detect 
directions with a tiny gradient but 
even smaller curvature. 
–  The HF optimizer ( Martens & 

Sutskever, 2011) is good at 
this.  

•  Echo State Networks:  Initialize the 
inputàhidden and hiddenàhidden and 
outputàhidden connections very 
carefully so that the hidden state has a 
huge reservoir of weakly coupled 
oscillators which can be selectively driven 
by the input. 
–  ESNs only need to learn the 

hiddenàoutput connections. 
•  Good initialization with momentum    

Initialize like in Echo State Networks, but 
then learn all of the connections using 
momentum. 
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Lecture 7e 
Long term short term memory 



Long Short Term Memory (LSTM) 

•  Hochreiter & Schmidhuber 
(1997) solved the problem of 
getting an RNN to remember 
things for a long time (like 
hundreds of time steps).  

•  They designed a memory cell 
using logistic and linear units 
with multiplicative interactions.  

•  Information gets into the cell 
whenever its “write” gate is on. 

•  The information stays in the 
cell so long as its “keep” gate 
is on. 

•  Information can be read from 
the cell by turning on its “read” 
gate. 



Implementing a memory cell in a neural network 

•  To preserve information for a long time in 
the activities of an RNN, we use a circuit 
that implements an analog memory cell. 
–  A linear unit that has a self-link with a 

weight of 1 will maintain its state. 
–  Information is stored in the cell by 

activating its write gate.  
–  Information is retrieved by activating 

the read gate. 
–  We can backpropagate through this 

circuit because logistics are have nice 
derivatives. 

output to 
rest of RNN 

input from 
rest of RNN 

read 
gate 

write 
gate 

keep 
gate 

 1.73 



Backpropagation through a memory cell 
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Reading cursive handwriting 

•  This is a natural task for an 
RNN. 

•  The input is a sequence of 
(x,y,p) coordinates of the tip of 
the pen, where p indicates 
whether the pen is up or down. 

•  The output is a sequence of 
characters. 

•  Graves & Schmidhuber (2009) 
showed that RNNs with LSTM 
are currently the best systems 
for reading cursive writing. 
–  They used a sequence of 

small images as input 
rather than pen 
coordinates. 



A demonstration of online handwriting recognition by an 
RNN with Long Short Term Memory (from Alex Graves) 

•  The movie that follows shows several different things: 
•  Row 1:  This shows when the characters are recognized. 

–  It never revises its output so difficult decisions are more delayed. 
•  Row 2:  This shows the states of a subset of the memory cells. 

–  Notice how they get reset when it recognizes a character. 
•  Row 3:  This shows the writing. The net sees the x and y coordinates. 

–  Optical input actually works a bit better than pen coordinates. 
•  Row 4:  This shows the gradient backpropagated all the way to the x and 

y inputs from the currently most active character. 
–  This lets you see which bits of the data are influencing the decision. 


