
Geoffrey Hinton
Nitish Srivastava,
Kevin Swersky
Tijmen Tieleman
Abdel-rahman Mohamed

Neural Networks for Machine Learning

Lecture 7a
Modeling sequences: A brief overview

Getting targets when modeling sequences

•  When applying machine learning to sequences, we often want to turn an input

sequence into an output sequence that lives in a different domain.
–  E. g. turn a sequence of sound pressures into a sequence of word identities.

•  When there is no separate target sequence, we can get a teaching signal by trying
to predict the next term in the input sequence.
–  The target output sequence is the input sequence with an advance of 1 step.
–  This seems much more natural than trying to predict one pixel in an image

from the other pixels, or one patch of an image from the rest of the image.
–  For temporal sequences there is a natural order for the predictions.

•  Predicting the next term in a sequence blurs the distinction between supervised
and unsupervised learning.
–  It uses methods designed for supervised learning, but it doesn’t require a

separate teaching signal.

Memoryless models for sequences

•  Autoregressive models
Predict the next term in a
sequence from a fixed number of
previous terms using “delay taps”.

•  Feed-forward neural nets
These generalize autoregressive
models by using one or more
layers of non-linear hidden units.
e.g. Bengio’s first language
model.

input(t-2) input(t-1) input(t)

wt−2

hidden

wt−1

input(t-2) input(t-1) input(t)

Beyond memoryless models
•  If we give our generative model some hidden state, and if we give this

hidden state its own internal dynamics, we get a much more interesting
kind of model.
–  It can store information in its hidden state for a long time.
–  If the dynamics is noisy and the way it generates outputs from its

hidden state is noisy, we can never know its exact hidden state.
–  The best we can do is to infer a probability distribution over the

space of hidden state vectors.
•  This inference is only tractable for two types of hidden state model.

–  The next three slides are mainly intended for people who already
know about these two types of hidden state model. They show how
RNNs differ.

–  Do not worry if you cannot follow the details.

Linear Dynamical Systems (engineers love them!)
•  These are generative models. They have a real-

valued hidden state that cannot be observed
directly.
–  The hidden state has linear dynamics with

Gaussian noise and produces the
observations using a linear model with
Gaussian noise.

–  There may also be driving inputs.
•  To predict the next output (so that we can shoot

down the missile) we need to infer the hidden
state.
–  A linearly transformed Gaussian is a

Gaussian. So the distribution over the hidden
state given the data so far is Gaussian. It can
be computed using “Kalman filtering”.

driving
input

hidden

hidden

hidden

output

output

output
time à

driving
input

driving
input

Hidden Markov Models (computer scientists love them!)
•  Hidden Markov Models have a discrete one-

of-N hidden state. Transitions between states
are stochastic and controlled by a transition
matrix. The outputs produced by a state are
stochastic.
–  We cannot be sure which state produced

a given output. So the state is “hidden”.
–  It is easy to represent a probability

distribution across N states with N
numbers.

•  To predict the next output we need to infer the
probability distribution over hidden states.
–  HMMs have efficient algorithms for

inference and learning.

output

output

output

time à

A fundamental limitation of HMMs
•  Consider what happens when a hidden Markov model generates

data.
–  At each time step it must select one of its hidden states. So with

N hidden states it can only remember log(N) bits about what it
generated so far.

•  Consider the information that the first half of an utterance contains
about the second half:
–  The syntax needs to fit (e.g. number and tense agreement).
–  The semantics needs to fit. The intonation needs to fit.
–  The accent, rate, volume, and vocal tract characteristics must all

fit.
•  All these aspects combined could be 100 bits of information that the

first half of an utterance needs to convey to the second half. 2^100
is big!

Recurrent neural networks
•  RNNs are very powerful, because they

combine two properties:
–  Distributed hidden state that allows

them to store a lot of information
about the past efficiently.

–  Non-linear dynamics that allows
them to update their hidden state in
complicated ways.

•  With enough neurons and time, RNNs
can compute anything that can be
computed by your computer.

input

input

input

hidden

hidden

hidden

output

output

output
time à

Do generative models need to be stochastic?

•  Linear dynamical systems and
hidden Markov models are
stochastic models.
–  But the posterior probability

distribution over their
hidden states given the
observed data so far is a
deterministic function of the
data.

•  Recurrent neural networks are
deterministic.
–  So think of the hidden state

of an RNN as the
equivalent of the
deterministic probability
distribution over hidden
states in a linear dynamical
system or hidden Markov
model.

Recurrent neural networks
•  What kinds of behaviour can RNNs exhibit?

–  They can oscillate. Good for motor control?
–  They can settle to point attractors. Good for retrieving memories?
–  They can behave chaotically. Bad for information processing?
–  RNNs could potentially learn to implement lots of small programs

that each capture a nugget of knowledge and run in parallel,
interacting to produce very complicated effects.

•  But the computational power of RNNs makes them very hard to train.
–  For many years we could not exploit the computational power of

RNNs despite some heroic efforts (e.g. Tony Robinson’s speech
recognizer).

Geoffrey Hinton
Nitish Srivastava,
Kevin Swersky
Tijmen Tieleman
Abdel-rahman Mohamed

Neural Networks for Machine Learning

Lecture 7b
Training RNNs with backpropagation

The equivalence between feedforward nets and recurrent
nets

w1 w2

w3 w4

w1
w2

w3 w4

w1
w2

w3 w4

w1
w2

w3 w4

time=0

time=2

time=1

time=3

Assume that there is a time
delay of 1 in using each
connection.

The recurrent net is just a
layered net that keeps
reusing the same weights.

Reminder: Backpropagation with weight
constraints

•  It is easy to modify the backprop
algorithm to incorporate linear
constraints between the
weights.

•  We compute the gradients as
usual, and then modify the
gradients so that they satisfy the
constraints.
–  So if the weights started off

satisfying the constraints,
they will continue to satisfy
them.

21
21

21

21

21

:

:
:

wandwfor
w
E

w
Euse

w
Eand

w
Ecompute

wwneedwe
wwconstrainTo

∂

∂
+

∂

∂

∂

∂

∂

∂

Δ=Δ

=

Backpropagation through time

•  We can think of the recurrent net as a layered, feed-forward
net with shared weights and then train the feed-forward net
with weight constraints.

•  We can also think of this training algorithm in the time domain:
–  The forward pass builds up a stack of the activities of all

the units at each time step.
–  The backward pass peels activities off the stack to

compute the error derivatives at each time step.
–  After the backward pass we add together the derivatives at

all the different times for each weight.

An irritating extra issue

•  We need to specify the initial activity state of all the hidden and output
units.

•  We could just fix these initial states to have some default value like 0.5.
•  But it is better to treat the initial states as learned parameters.
•  We learn them in the same way as we learn the weights.

–  Start off with an initial random guess for the initial states.
–  At the end of each training sequence, backpropagate through time

all the way to the initial states to get the gradient of the error function
with respect to each initial state.

–  Adjust the initial states by following the negative gradient.

Providing input to recurrent networks
•  We can specify inputs in several

ways:
–  Specify the initial states of all

the units.
–  Specify the initial states of a

subset of the units.
–  Specify the states of the same

subset of the units at every time
step.

•  This is the natural way to
model most sequential data.

w1
w2

w3 w4

w1
w2

w3 w4

w1
w2

w3 w4

time

à

Teaching signals for recurrent networks
•  We can specify targets in several

ways:
–  Specify desired final activities of

all the units
–  Specify desired activities of all

units for the last few steps
•  Good for learning attractors
•  It is easy to add in extra error

derivatives as we
backpropagate.

–  Specify the desired activity of a
subset of the units.

•  The other units are input or
hidden units.

w1
w2

w3 w4

w1
w2

w3 w4

w1
w2

w3 w4

Geoffrey Hinton
Nitish Srivastava,
Kevin Swersky
Tijmen Tieleman
Abdel-rahman Mohamed

Neural Networks for Machine Learning

Lecture 7c
A toy example of training an RNN

A good toy problem for a recurrent network
•  We can train a feedforward net to do

binary addition, but there are obvious
regularities that it cannot capture
efficiently.
–  We must decide in advance the

maximum number of digits in each
number.

–  The processing applied to the
beginning of a long number does not
generalize to the end of the long
number because it uses different
weights.

•  As a result, feedforward nets do not
generalize well on the binary addition
task.

00100110 10100110

11001100

hidden units

The algorithm for binary addition

no carry
print 1

carry
print 1

no carry
print 0

carry
print 0

1
1

1
0

1
0

1
0

1
0

0
1

0
1

0
1

0
1

0
0

0
0

0
0

0
0

1
1

1
1

This is a finite state automaton. It decides what transition to make by looking at the next
column. It prints after making the transition. It moves from right to left over the two input
numbers.

1
1

A recurrent net for binary addition
•  The network has two input units

and one output unit.
•  It is given two input digits at each

time step.
•  The desired output at each time

step is the output for the column
that was provided as input two time
steps ago.
–  It takes one time step to update

the hidden units based on the
two input digits.

–  It takes another time step for the
hidden units to cause the
output.

0 0 1 1 0 1 0 0

0 1 0 0 1 1 0 1

1 0 0 0 0 0 0 1
time

The connectivity of the network

•  The 3 hidden units are fully
interconnected in both
directions.
–  This allows a hidden

activity pattern at one
time step to vote for the
hidden activity pattern at
the next time step.

•  The input units have
feedforward connections that
allow then to vote for the
next hidden activity pattern.

3 fully interconnected hidden units

What the network learns
•  It learns four distinct patterns of

activity for the 3 hidden units.
These patterns correspond to the
nodes in the finite state
automaton.
–  Do not confuse units in a

neural network with nodes in a
finite state automaton. Nodes
are like activity vectors.

–  The automaton is restricted to
be in exactly one state at each
time. The hidden units are
restricted to have exactly one
vector of activity at each time.

•  A recurrent network can emulate
a finite state automaton, but it is
exponentially more powerful. With
N hidden neurons it has 2^N
possible binary activity vectors
(but only N^2 weights)
–  This is important when the

input stream has two separate
things going on at once.

–  A finite state automaton
needs to square its number of
states.

–  An RNN needs to double its
number of units.

Geoffrey Hinton
Nitish Srivastava,
Kevin Swersky
Tijmen Tieleman
Abdel-rahman Mohamed

Neural Networks for Machine Learning

Lecture 7d
Why it is difficult to train an RNN

The backward pass is linear
•  There is a big difference between the

forward and backward passes.
•  In the forward pass we use squashing

functions (like the logistic) to prevent the
activity vectors from exploding.

•  The backward pass, is completely linear. If
you double the error derivatives at the final
layer, all the error derivatives will double.
–  The forward pass determines the slope

of the linear function used for
backpropagating through each neuron.

The problem of exploding or vanishing gradients

•  What happens to the magnitude of the
gradients as we backpropagate
through many layers?
–  If the weights are small, the

gradients shrink exponentially.
–  If the weights are big the gradients

grow exponentially.
•  Typical feed-forward neural nets can

cope with these exponential effects
because they only have a few hidden
layers.

•  In an RNN trained on long sequences
(e.g. 100 time steps) the gradients
can easily explode or vanish.
–  We can avoid this by initializing

the weights very carefully.
•  Even with good initial weights, its very

hard to detect that the current target
output depends on an input from
many time-steps ago.
–  So RNNs have difficulty dealing

with long-range dependencies.

Why the back-propagated gradient blows up

•  If we start a trajectory within an attractor, small changes in where we
start make no difference to where we end up.

•  But if we start almost exactly on the boundary, tiny changes can make a
huge difference.

Four effective ways to learn an RNN

•  Long Short Term Memory
Make the RNN out of little
modules that are designed to
remember values for a long time.

•  Hessian Free Optimization: Deal
with the vanishing gradients
problem by using a fancy
optimizer that can detect
directions with a tiny gradient but
even smaller curvature.
–  The HF optimizer (Martens &

Sutskever, 2011) is good at
this.

•  Echo State Networks: Initialize the
inputàhidden and hiddenàhidden and
outputàhidden connections very
carefully so that the hidden state has a
huge reservoir of weakly coupled
oscillators which can be selectively driven
by the input.
–  ESNs only need to learn the

hiddenàoutput connections.
•  Good initialization with momentum

Initialize like in Echo State Networks, but
then learn all of the connections using
momentum.

Geoffrey Hinton
Nitish Srivastava,
Kevin Swersky
Tijmen Tieleman
Abdel-rahman Mohamed

Neural Networks for Machine Learning

Lecture 7e
Long term short term memory

Long Short Term Memory (LSTM)

•  Hochreiter & Schmidhuber
(1997) solved the problem of
getting an RNN to remember
things for a long time (like
hundreds of time steps).

•  They designed a memory cell
using logistic and linear units
with multiplicative interactions.

•  Information gets into the cell
whenever its “write” gate is on.

•  The information stays in the
cell so long as its “keep” gate
is on.

•  Information can be read from
the cell by turning on its “read”
gate.

Implementing a memory cell in a neural network

•  To preserve information for a long time in
the activities of an RNN, we use a circuit
that implements an analog memory cell.
–  A linear unit that has a self-link with a

weight of 1 will maintain its state.
–  Information is stored in the cell by

activating its write gate.
–  Information is retrieved by activating

the read gate.
–  We can backpropagate through this

circuit because logistics are have nice
derivatives.

output to
rest of RNN

input from
rest of RNN

read
gate

write
gate

keep
gate

 1.73

Backpropagation through a memory cell

read
1

write
0

keep
1

 1.7

read
0

write
0

 1.7

read
0

write
1

 1.7

 1.7 1.7

keep
1

keep
0

keep
0

time à

Reading cursive handwriting

•  This is a natural task for an
RNN.

•  The input is a sequence of
(x,y,p) coordinates of the tip of
the pen, where p indicates
whether the pen is up or down.

•  The output is a sequence of
characters.

•  Graves & Schmidhuber (2009)
showed that RNNs with LSTM
are currently the best systems
for reading cursive writing.
–  They used a sequence of

small images as input
rather than pen
coordinates.

A demonstration of online handwriting recognition by an
RNN with Long Short Term Memory (from Alex Graves)

•  The movie that follows shows several different things:
•  Row 1: This shows when the characters are recognized.

–  It never revises its output so difficult decisions are more delayed.
•  Row 2: This shows the states of a subset of the memory cells.

–  Notice how they get reset when it recognizes a character.
•  Row 3: This shows the writing. The net sees the x and y coordinates.

–  Optical input actually works a bit better than pen coordinates.
•  Row 4: This shows the gradient backpropagated all the way to the x and

y inputs from the currently most active character.
–  This lets you see which bits of the data are influencing the decision.

