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Why the perceptron learning procedure cannot be 
generalised to hidden layers 

•  The perceptron convergence procedure works by ensuring that 
every time the weights change, they get closer to every “generously 
feasible” set of  weights. 
–  This type of guarantee cannot be extended to more complex 

networks in which the average of two good solutions may be a 
bad solution. 

•  So “multi-layer” neural networks do not use the perceptron learning 
procedure. 
–  They should never have been called multi-layer perceptrons. 



A different way to show that  
a learning procedure makes progress 

•  Instead of showing the weights get closer to a good set of weights, 
show that the actual output values get closer the target values. 
–  This can be true even for non-convex problems in which there are 

many quite different sets of weights that work well and averaging 
two good sets of weights may give a bad set of weights.  

–  It is not true for perceptron learning. 

•   The simplest example is a linear neuron with a squared error 
measure. 

 



Linear neurons (also called linear filters) 

•  The neuron has a real-
valued output which is a 
weighted sum of its inputs 

•  The aim of learning is to 
minimize the error summed 
over all training cases. 
–  The error is the squared 

difference between the 
desired output and the 
actual output. 
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Why don’t we solve it analytically? 

•  It is straight-forward to write down a set of equations, one per training 
case, and to solve for the best set of weights. 
–  This is the standard engineering approach so why don’t we use it? 

•  Scientific answer: We want a method that real neurons could use. 
•  Engineering answer: We want  a method that can be generalized to 

multi-layer, non-linear neural networks. 
–  The analytic solution relies on it being linear and having a squared 

error measure. 
–  Iterative methods are usually less efficient but they are much 

easier to generalize. 



A toy example to illustrate the iterative method 
•  Each day you get lunch at the cafeteria. 

–  Your diet consists of fish, chips, and ketchup. 
–  You get several portions of each. 

•  The cashier only tells you the total price of the meal 
–  After several days, you should be able to figure out the price of 

each portion. 
•  The iterative approach: Start with random guesses for the prices and 

then adjust them to get a better fit to the observed prices of whole 
meals. 



Solving the equations iteratively 

•  Each meal price gives a linear constraint on the prices of the 
portions: 

 

•  The prices of the portions are like the weights in of a linear neuron. 

•  We will start with guesses for the weights and then adjust the 
guesses slightly to give a better fit to the prices given by the cashier. 

w = (wfish ,wchips ,wketchup )

price = x fishw fish + xchipswchips + xketchupwketchup



The true weights used by the cashier 
Price of meal = 850 = target 

portions 
of fish 

portions 
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portions of 
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 150             50                   100 

     2                     5                 3                    

linear 
neuron 



•  Residual error = 350 
•  The “delta-rule” for learning is: 

•  With a learning rate      of 1/35, 
the weight changes are      
+20,  +50,  +30 

•  This gives new weights of    
70, 100, 80.  
–  Notice that the weight for 

chips got worse! 

A model of the cashier with arbitrary initial weights 

Δwi = ε xi (t − y)

price of meal = 500 
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Deriving the delta rule 

•  Define the error as the squared 
residuals summed over all 
training cases: 

•  Now differentiate to get error 
derivatives for weights 

•  The batch delta rule changes 
the weights in proportion to 
their error derivatives summed 
over all training cases 
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Behaviour of the iterative learning procedure 

•  Does the learning procedure eventually get the right answer?  
–  There may be no perfect answer. 
–  By making the learning rate small enough we can get as close as we 

desire to the best answer. 

•  How quickly do the weights converge to their correct values?  
–  It can be very slow if two input dimensions are highly correlated. If you 

almost always have the same number of portions of ketchup and chips, 
it is hard to decide how to divide the price between ketchup and chips. 



The relationship between the online delta-rule 
and the learning rule for perceptrons 

•  In perceptron learning, we increment or decrement the weight vector 
by the input vector. 
–  But we only change the weights when we make an error. 

•  In the online version of the delta-rule we increment or decrement the 
weight vector by the input vector scaled by the residual error and the 
learning rate. 
–  So we have to choose a learning rate. This is annoying. 



 
Neural Networks for Machine Learning 

 
Lecture 3b  

The error surface for a linear neuron 
 
 
 
 

Geoffrey Hinton  
with 
Nitish Srivastava  
Kevin Swersky 



The error surface in extended weight space 
•  The error surface lies in a space with a 

horizontal axis for each weight and one 
vertical axis for the error.  
–  For a linear neuron with a squared 

error, it is a quadratic bowl.  
–  Vertical cross-sections are 

parabolas.  
–  Horizontal cross-sections are 

ellipses. 
•  For multi-layer, non-linear nets the error 

surface is much more complicated. 
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•  The simplest kind of batch 
learning does steepest descent 
on the error surface. 
–  This travels perpendicular to 

the contour lines. 

•  The simplest kind of online 
learning zig-zags around the 
direction of steepest descent: 
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Why learning can be slow 

•  If the ellipse is very elongated, the 
direction of steepest descent is almost 
perpendicular to the direction towards 
the minimum! 
–  The red gradient vector has a large 

component along the short axis of 
the ellipse and a small component 
along the long axis of the ellipse. 

–  This is just the opposite of what we 
want. 

w1 
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Logistic neurons 

•  These give a real-valued 
output that is a smooth 
and bounded function of 
their total input. 

–  They have nice 
derivatives which 
make learning easy. 

y = 1

1+ e−z

0.5 

0 
0 

1 

z

y

z = b+ xi
i
∑ wi



The derivatives of a logistic neuron 

•  The derivatives of the logit, z, 
with respect to the inputs and 
the weights are very simple: 

•  The derivative of the output with 
respect to the logit is simple if 
you express it in terms of the 
output: 
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The derivatives of a logistic neuron 
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Using the chain rule to get the derivatives needed 
for learning the weights of a logistic unit 

•  To learn the weights we need the derivative of the output with 
respect to each weight: 
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Learning with hidden units (again) 

•  Networks without hidden units are very limited in the input-output 
mappings they can model. 

•  Adding a layer of hand-coded features (as in a perceptron) makes 
them much more powerful but the hard bit is designing the features. 
–  We would like to find good features without requiring insights into the 

task or repeated trial and error where we guess some features and see 
how well they work. 

•  We need to automate the loop of designing features for a particular 
task and seeing how well they work. 



Learning by perturbing weights 
(this idea occurs to everyone who knows about evolution) 

•  Randomly perturb one weight and see if 
it improves performance. If so, save the 
change. 
–  This is a form of reinforcement learning. 
–  Very inefficient. We need to do multiple 

forward passes  on a representative set 
of training cases just to change one 
weight. Backpropagation is much better. 

–  Towards the end of learning, large 
weight perturbations will nearly always 
make things worse, because the weights 
need to have the right relative values. 

hidden units 

output units 

input units 



Learning by using perturbations 

•  We could randomly perturb all the weights in parallel 
and correlate the performance gain with the weight 
changes.  
–  Not any better because we need lots of trials on each 

training case to “see” the effect of changing one 
weight through the noise created by all the changes to 
other weights. 

•  A better idea: Randomly perturb the activities of the 
hidden units. 
–  Once we know how we want a hidden activity to 

change on a given training case, we can compute how 
to change the weights. 

–  There are fewer activities than weights, but 
backpropagation still wins by a factor of the number of 
neurons.  



The idea behind backpropagation 

•  We don’t know what the hidden units ought to do, but we can 
compute how fast the error changes as we change a hidden activity. 
–   Instead of using desired activities to train the hidden units, use 

error derivatives w.r.t. hidden activities. 
–  Each hidden activity can affect many output units and can 

therefore have many separate effects on the error. These effects 
must be combined. 

•  We can compute error derivatives for all the hidden units efficiently at 
the same time.  
–  Once we have the error derivatives for the hidden activities, its 

easy to get the error derivatives for the weights going into a 
hidden unit. 



Sketch of the backpropagation algorithm on a single case 

•  First convert the discrepancy 
between each output and its target 
value into an error derivative. 

•  Then compute error derivatives in 
each hidden layer from error 
derivatives in the layer above. 

•  Then use error derivatives w.r.t. 
activities to get error derivatives 
w.r.t. the incoming weights. 
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Backpropagating dE/dy 

∂E
∂z j

=
dyj
dz j

∂E
∂yj

= yj (1− yj )
∂E
∂yj

yj
j

yi
i

z j

∂E
∂yi

=
dzj
dyi

∂E
∂z jj

∑ = wij
∂E
∂z jj

∑

∂E
∂wij

=
∂z j
∂wij

∂E
∂z j

= yi
∂E
∂z j



 
Neural Networks for Machine Learning 

 
Lecture 3e 

How to use the derivatives computed by the 
backpropagation algorithm 

 
 
 
 
 

Geoffrey Hinton  
with 
Nitish Srivastava  
Kevin Swersky 



Converting error derivatives into a learning procedure 

•  The backpropagation algorithm is an efficient way of computing the 
error derivative  dE/dw  for every weight on a single training case.  

•  To get a fully specified learning procedure, we still need to make a lot 
of other decisions about how to use these error derivatives: 
–  Optimization issues: How do we use the error derivatives on 

individual cases to discover a good set of weights? (lecture 6) 
–  Generalization issues: How do we ensure that the learned weights 

work well for cases we did not see during training? (lecture 7) 
•  We now have a very brief overview of these two sets of issues. 



Optimization issues in using the weight derivatives 

•  How often to update the weights 
–  Online: after each training case.  
–  Full batch: after a full sweep through the training data. 
–  Mini-batch: after a small sample of training cases. 

•  How much to update (discussed further in lecture 6) 
–  Use a fixed learning rate? 
–  Adapt the global learning rate? 
–  Adapt the learning rate on each connection 

separately? 
–  Don’t use steepest descent? 
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Overfitting: The downside of using powerful models  
•  The training data contains information about the regularities in the 

mapping from input to output. But it also contains two types of noise. 
–  The target values may be unreliable (usually only a minor worry). 
–  There is sampling error. There will be accidental regularities just 

because of the particular training cases that were chosen. 
•  When we fit the model, it cannot tell which regularities are real and 

which are caused by sampling error.  
–  So it fits both kinds of regularity. 
–  If the model is very flexible it can model the sampling error really 

well. This is a disaster. 



A simple example of overfitting 

•  Which model do you trust? 
–  The complicated model fits the 

data better. 
–  But it is not economical. 

•  A model is convincing when it fits a 
lot of data surprisingly well. 
–  It is not surprising that a 

complicated model can fit a 
small amount of data well. Which output value should 

you predict for this test input? 

input = x 

ou
tp

ut
 =

 y
 



Ways to reduce overfitting 
 
•  A large number of different methods have been developed. 

–  Weight-decay  
–  Weight-sharing  
–  Early stopping 
–  Model averaging 
–  Bayesian fitting of neural nets 
–  Dropout 
–  Generative pre-training 

•  Many of these methods will be described in lecture 7.  


