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Prelude 

•  I will start with three slides explaining a popular 
type of deep learning.  

•  It is this kind of deep learning that makes back 
propagation easy to implement. 



Pre-training a deep network 

•  First train a layer of features that receive input directly 
from the pixels. 
–  The features are trained to be good at reconstructing 

the pixels. 
•  Then treat the activations of the trained features as if 

they were pixels and learn features of features in a 
second hidden layer. 
–  They are good at reconstructing the activities in the 

first hidden layer. 
•  Each time we add another layer of features we capture 

more complex, longer range,  regularities in the 
ensemble of training images. 



Discriminative fine-tuning 

•  First  train multiple hidden layers greedily to be good 
autoencoders. This is unsupervised learning. 

•  Then connect some classification  units to the top layer of 
features and do back-propagation through all of the layers 
to fine-tune all of the feature detectors. 

•  On a dataset of handwritten digits called MNIST this 
worked much better than standard back-propagation and 
better than Support Vector Machines. (2006) 

•  On a dataset of spoken sentences called TIMIT it beat the 
state of the art and led to a major shift in the way speech 
recognition is done. (2009). 



Why does pre-training followed by fine-tuning 
work so well? 

•  Greedily learning one layer at a time scales well to really 
big networks, especially if we have locality in each layer. 

•  We do not start backpropagation until we already have 
sensible features in each layer.  
–  So the initial gradients are sensible and back-

propagation only needs to perform a local search. 
•  Most of the information in the final weights comes from 

modeling the distribution of input vectors.  
–  The precious information in the labels is only used for 

the final fine-tuning. It slightly modifies the features. It 
does not need to discover features. 

–  So we can do very well when most of the training data 
is unlabelled. 



But how can the brain back-propagate 
through a multilayer neural network? 

•  Some very good researchers have postulated inefficient 
algorithms that use random perturbations. 

–  Do you really believe that evolution could not find an 
efficient way to adapt a feature so that it is more 
useful to higher-level features in the same sensory 
pathway? (have faith!)  



Three obvious reasons why the brain cannot be 
doing backpropagation 

•  Cortical neurons do not communicate real-valued 
activities. 
–  They send spikes.  

•  The neurons need to send two different types of signal 
–  Forward pass:     signal = activity = y 
–  Backward pass:  signal = dE/dx 

•  Neurons do not have point-wise reciprocal connections 
with the same weight in both directions. 

  



Small data: A good reason for spikes 

•  Synapses are much cheaper than training cases.  
–  We have 10^14 synapses and live for 10^9 seconds. 

•  A good way to throw a lot of parameters at a task is to use big 
neural nets with strong, zero-mean noise in the activities. 
–  Noise in the activities has the same regularization 

advantages as averaging big ensembles of models but 
makes much more efficient use of hardware. 

•  In the small data regime, noise is good so sending random 
spikes from a Poisson process is better than sending real 
values. 
–  Poisson noise is special because it is exactly neutral about 

the sparsity of the codes. 
–   Multiplicative noise penalizes sparse codes  .  



A way to simplify the explanations 

•  Lets ignore the Poisson noise for now. 
– We are going to pretend that neurons 

communicate real analog values. 
•  Once we have understood how to do backprop 

in a brain, we can treat these real analog values 
as the underlying rates of a Poisson.  
– We will get the same expected value  for the 

derivatives from the Poisson spikes, but with 
added noise. 

– Stochastic gradient descent is very robust to 
added noise so long as it is not biased. 



A way to encode error derivatives 
•  Consider a logistic output unit , j, with a cross-entropy 

error function. 

−∂E /∂x j = d j − pj
derivative of the error 
w.r.t. The total input to j 

target 
value 

output probability      
when driven bottom-up 

Suppose we start with pure bottom-up output,        , and 
then we take a weighted average of the target value and 
the bottom-up output. We make the weight on the target 
value grow linearly with time.  

yj (t) = pj + t d j − t pj

pj



A fundamental representational decision:  
temporal derivatives represent error derivatives 

•  This allows the rate of change of the blended output to 
represent the error derivative w.r.t. the neuron’s input 

−∂E /∂x j = yj

temporal 
derivative 

error 
derivative = 

This allows the same neuron to code both the normal 
activity and the error derivative (for a limited time).  



The payoff 

•  In a pre-trained stack of auto-encoders, this way 
of representing error derivatives makes back-
propagation through multiple layers of neurons 
happen automatically.  
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xi = wji yj + wki yk =
dE
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If we then start moving     and      
towards their target values,  
we get: 

If the auto-encoder is perfect, 
replacing the bottom-up input to 
i by the top down input will have 
no effect on the output of i. 

yi = wji yj + wki yk( ) dyidxi
=
dE
dxi

yj yk



The synaptic update rule 

•  First do an upward (forward) pass as usual. 
•  Then do top-down reconstructions at each level. 
•  Then perturb the top-level activities by blending them 

with the target values so that the rate of change of 
activity of a top-level unit represents the derivative of the 
error w.r.t. the total input to that unit. 
–  This will make the activity changes at every level 

represent error derivatives. 
•  Then update each synapse in proportion to: 
    pre-synaptic activity   X   rate-of-change of  
                                            post-synaptic activity 



If this is what is happening, what should 
neuroscientists see? 

•  Spike-time-dependent plasticity is just a derivative 
filter. You need a computational theory to 
recognize what you discovered! 

weight 
change 

relative time of 
post-synaptic spike 

0 



An obvious prediction 

•  For the top-down weights to stay symmetric with 
the bottom-up weights, their learning rule should 
be: 

       rate-of-change of  
       pre-synaptic activity   X     post-synaptic activity 
 
 



A problem (this is where the woffle starts) 

•  This way of performing backpropagation requires 
symmetric weights 
– But auto-encoders can still be trained if we 

first split  each symmetric connection into two 
oppositely directed connections and then we 
randomly remove many of these directed 
connections. 



Functional symmetry 
  
•  If the representations are highly redundant, the state of a 

hidden unit can be estimated very well from the states of 
the other hidden units in the same layer that have similar 
receptive fields.  
–  So top-down connections from these other correlated 

units could learn to mimic the effect of the missing 
top-down part of a symmetric connection.  

–  All we require is functional symmetry on and near the 
data manifold. 



But what about the backpropagation 
required to learn the stack of autoencoders? 

•  One step Contrastive Divergence learning was initially 
viewed as a poor approximation to running a Markov 
chain to equilibrium. 
–  The equilibrium statistics are needed for maximum 

likelihood learning. 

•  But a better view is that its a neat way of doing gradient 
descent to learn an auto-encoder when the hidden units 
are stochastic with discrete states. 
–  It uses temporal derivatives as error derivatives. 



Contrastive divergence learning: 
 A quick way to learn an RBM 
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Start with a training vector on the 
visible units. 

Update all the hidden units in 
parallel 

Update all the visible units in 
parallel to get a “reconstruction”. 

Update all the hidden units again.  

This is not following the gradient of the log likelihood. But it works well.  

It is approximately following the gradient of another objective function. 

reconstruction data 



One-step CD is just backpropagation learning of 
an auto-encoder using temporal derivatives 
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(to first order) 



THE  END   


