
How to do backpropagation in a brain

Geoffrey Hinton

Canadian Institute for Advanced Research
&

University of Toronto
&

Google Inc.

Prelude

•  I will start with three slides explaining a popular
type of deep learning.

•  It is this kind of deep learning that makes back
propagation easy to implement.

Pre-training a deep network

•  First train a layer of features that receive input directly
from the pixels.
–  The features are trained to be good at reconstructing

the pixels.
•  Then treat the activations of the trained features as if

they were pixels and learn features of features in a
second hidden layer.
–  They are good at reconstructing the activities in the

first hidden layer.
•  Each time we add another layer of features we capture

more complex, longer range, regularities in the
ensemble of training images.

Discriminative fine-tuning

•  First train multiple hidden layers greedily to be good
autoencoders. This is unsupervised learning.

•  Then connect some classification units to the top layer of
features and do back-propagation through all of the layers
to fine-tune all of the feature detectors.

•  On a dataset of handwritten digits called MNIST this
worked much better than standard back-propagation and
better than Support Vector Machines. (2006)

•  On a dataset of spoken sentences called TIMIT it beat the
state of the art and led to a major shift in the way speech
recognition is done. (2009).

Why does pre-training followed by fine-tuning
work so well?

•  Greedily learning one layer at a time scales well to really
big networks, especially if we have locality in each layer.

•  We do not start backpropagation until we already have
sensible features in each layer.
–  So the initial gradients are sensible and back-

propagation only needs to perform a local search.
•  Most of the information in the final weights comes from

modeling the distribution of input vectors.
–  The precious information in the labels is only used for

the final fine-tuning. It slightly modifies the features. It
does not need to discover features.

–  So we can do very well when most of the training data
is unlabelled.

But how can the brain back-propagate
through a multilayer neural network?

•  Some very good researchers have postulated inefficient
algorithms that use random perturbations.

–  Do you really believe that evolution could not find an
efficient way to adapt a feature so that it is more
useful to higher-level features in the same sensory
pathway? (have faith!)

Three obvious reasons why the brain cannot be
doing backpropagation

•  Cortical neurons do not communicate real-valued
activities.
–  They send spikes.

•  The neurons need to send two different types of signal
–  Forward pass: signal = activity = y
–  Backward pass: signal = dE/dx

•  Neurons do not have point-wise reciprocal connections
with the same weight in both directions.

Small data: A good reason for spikes

•  Synapses are much cheaper than training cases.
–  We have 10^14 synapses and live for 10^9 seconds.

•  A good way to throw a lot of parameters at a task is to use big
neural nets with strong, zero-mean noise in the activities.
–  Noise in the activities has the same regularization

advantages as averaging big ensembles of models but
makes much more efficient use of hardware.

•  In the small data regime, noise is good so sending random
spikes from a Poisson process is better than sending real
values.
–  Poisson noise is special because it is exactly neutral about

the sparsity of the codes.
–  Multiplicative noise penalizes sparse codes .

A way to simplify the explanations

•  Lets ignore the Poisson noise for now.
– We are going to pretend that neurons

communicate real analog values.
•  Once we have understood how to do backprop

in a brain, we can treat these real analog values
as the underlying rates of a Poisson.
– We will get the same expected value for the

derivatives from the Poisson spikes, but with
added noise.

– Stochastic gradient descent is very robust to
added noise so long as it is not biased.

A way to encode error derivatives
•  Consider a logistic output unit , j, with a cross-entropy

error function.

−∂E /∂x j = d j − pj
derivative of the error
w.r.t. The total input to j

target
value

output probability
when driven bottom-up

Suppose we start with pure bottom-up output, , and
then we take a weighted average of the target value and
the bottom-up output. We make the weight on the target
value grow linearly with time.

yj (t) = pj + t d j − t pj

pj

A fundamental representational decision:
temporal derivatives represent error derivatives

•  This allows the rate of change of the blended output to
represent the error derivative w.r.t. the neuron’s input

−∂E /∂x j = yj

temporal
derivative

error
derivative =

This allows the same neuron to code both the normal
activity and the error derivative (for a limited time).

The payoff

•  In a pre-trained stack of auto-encoders, this way
of representing error derivatives makes back-
propagation through multiple layers of neurons
happen automatically.

j k

xi = wji yj + wki yk =
dE
dyi

yj yk

wij

wji wki

wik

If we then start moving and
towards their target values,
we get:

If the auto-encoder is perfect,
replacing the bottom-up input to
i by the top down input will have
no effect on the output of i.

yi = wji yj + wki yk() dyidxi
=
dE
dxi

yj yk

The synaptic update rule

•  First do an upward (forward) pass as usual.
•  Then do top-down reconstructions at each level.
•  Then perturb the top-level activities by blending them

with the target values so that the rate of change of
activity of a top-level unit represents the derivative of the
error w.r.t. the total input to that unit.
–  This will make the activity changes at every level

represent error derivatives.
•  Then update each synapse in proportion to:
 pre-synaptic activity X rate-of-change of
 post-synaptic activity

If this is what is happening, what should
neuroscientists see?

•  Spike-time-dependent plasticity is just a derivative
filter. You need a computational theory to
recognize what you discovered!

weight
change

relative time of
post-synaptic spike

0

An obvious prediction

•  For the top-down weights to stay symmetric with
the bottom-up weights, their learning rule should
be:

 rate-of-change of
 pre-synaptic activity X post-synaptic activity

A problem (this is where the woffle starts)

•  This way of performing backpropagation requires
symmetric weights
– But auto-encoders can still be trained if we

first split each symmetric connection into two
oppositely directed connections and then we
randomly remove many of these directed
connections.

Functional symmetry

•  If the representations are highly redundant, the state of a

hidden unit can be estimated very well from the states of
the other hidden units in the same layer that have similar
receptive fields.
–  So top-down connections from these other correlated

units could learn to mimic the effect of the missing
top-down part of a symmetric connection.

–  All we require is functional symmetry on and near the
data manifold.

But what about the backpropagation
required to learn the stack of autoencoders?

•  One step Contrastive Divergence learning was initially
viewed as a poor approximation to running a Markov
chain to equilibrium.
–  The equilibrium statistics are needed for maximum

likelihood learning.

•  But a better view is that its a neat way of doing gradient
descent to learn an auto-encoder when the hidden units
are stochastic with discrete states.
–  It uses temporal derivatives as error derivatives.

Contrastive divergence learning:
 A quick way to learn an RBM

0>< jihv 1>< jihv

i

j

i

j

t = 0 t = 1

)(10 ><−><=Δ jijiij hvhvw ε

Start with a training vector on the
visible units.

Update all the hidden units in
parallel

Update all the visible units in
parallel to get a “reconstruction”.

Update all the hidden units again.

This is not following the gradient of the log likelihood. But it works well.

It is approximately following the gradient of another objective function.

reconstruction data

One-step CD is just backpropagation learning of
an auto-encoder using temporal derivatives

 v

 h h +

W

W
T

hΔ

 v + vΔ
W

vhhv Δ−Δ−

hvvhhvhhvvvh ΔΔ−Δ−Δ−=Δ+Δ+−))((
true gradient

CD:

negligible to
first order

(to first order)

THE END

