
Improving a statistical language model by

modulating the effects of context words

Zhang Yuecheng, Andriy Mnih, Geoffrey Hinton

University of Toronto - Dept. of Computer Science
Toronto, Ontario, Canada

Abstract. We show how to improve a state-of-the-art neural network
language model that converts the previous “context” words into feature
vectors and combines these feature vectors to predict the feature vector
of the next word. Significant improvements in predictive accuracy are
achieved by using higher-level features to modulate the effects of the con-
text words. This is more effective than using the higher-level features to
directly predict the feature vector of the next word, but it is also possible
to combine both methods.

1 Introduction

Given a sequence of n words, our goal is to design a statistical language model
that uses distributed representations of words and exploits semantic and syn-
tactic features of the first n − 1 words to predict the nth word. We will refer to
the first n − 1 words and the nth word as the context words and the next word
respectively. Our starting point is the log-bilinear model with a context size of
5 from [1] which we will call Model 0. Unlike other statistical language models
based on distributed representations ([2], [3], [4], [5]), the log-bilinear model has
been shown to outperform the best n-gram models on a large dataset [1] without
resorting to model averaging.

This model learns to convert each word into a vector of real-valued features
in such a way that the feature vectors of the n − 1 context words are good at
predicting the next word. The prediction is done by using n−1 different, learned
weight matrices to linearly transform and combine the contextual feature vectors
to produce a predicted feature vector, r̂. The predicted probability of word i is
defined to be proportional to exp(rT

i r̂), where ri is the distributed representation
of word i.

It is convenient to define the conditional distribution over the next word
wn given the context words w1, ..., wn−1 by first specifying an energy function
E(wn; w1:n−1) that assigns a score to each possible value of wn. For notational
convenience we stack the feature vectors for all the words in the dictionary to
form a feature matrix R. We will represent the ith word in the dictionary using
a binary vector v with 1 in the ith position and zeros in all other positions. Then
the feature vector for word i is given by RT v and the energy function specifying

493



Model 0 can be written as1

E(wn; w1:n−1) = −
(

n−1∑
i=1

vT
i RCi

)
RT vn, (1)

where {Ci} are the weight matrices used to combine the context feature vectors
to obtain the predicted feature vector r̂ =

∑n−1
i=1 CT

i RT vi. The distribution over
wn is then given by

P (wn; w1:n−1) =
exp(−E(wn; w1:n−1)∑
wn

exp(−E(wn; w1:n−1)
, (2)

where the sum is over all the words in the dictionary. The matrix R containing
word feature vectors and the weight matrices {Ci} used to combine feature
vectors are all learned by maximizing the log-likelihood using steepest descent.

As shown in [1], Model 0 is a very good language model, significantly beating
the very best n-gram models [6] as well as the neural probabilistic language model
of Bengio et al. [2], and our aim was to make it still better by removing some
of its obvious limitations without adding too many free parameters.

2 Extending the log-bilinear model

A major limitation of Model 0 is that interactions between context words are
not taken into account when computing the conditional probability of the next
word. For example, in the 6-word2 sequence, “was Tuesday . We gathered
together”, due to the period, “was” and “Tuesday” are much less important
than “We gathered” for predicting the next word. Hence, an effective model
should reduce the effects of “was” and “Tuesday” and amplify the effects of
“We” and “gathered” on the probability of the next word.

2.1 Model 1

To address this problem, we elaborate Model 0 by adding a gating network with
one hidden layer that produces weighting coefficients, one per context word.
Each coefficient represents the relative importance of the corresponding context
word. The hidden layer in the gating network receives inputs from all the fea-
ture vectors of context words and the learned higher-order features are used to
compute a weighting coefficient for each context word. The predictive effect of
each context word is weighted by its coefficient before being incorporated into
the predicted representation for the next word.

Let f be the vector obtained by concatenating the feature vectors for the
context words in the order they appear in the context. The activity of the hidden
unit hj is a logistic function of its total input: hj = 1/(1+exp(−∑k fkAkj−aj)),

1To simplify the notation we omitted the bias terms in the energy function. The complete
energy function is given in [1].

2We treat punctuation marks as special words.

494



Fig. 1: The diagram for the model that uses a gating network to modulate the
effects of context words (Model 1).

where Akj is the weight on the connection from k to j, and aj is the bias of unit
j. The activity of a gating unit si is a logistic function of the total input it
receives from the hidden layer, scaled by a factor of 2 to make the gating unit
output 1 when its total input is 0: si = 2/(1 + exp(−∑j hjBji − bi)), where
Bji is the weight on the connection from j to i, and bi is the bias of the gating
unit i. The gating unit activities are incorporated into the energy function as
follows:

E(wn; w1:n−1) = −
(

n−1∑
i=1

vT
i RCisi

)
RT vn, (3)

where Ci represents the interaction between the features of the ith context word
and the features of the candidate word wn. As before, the predictive distribution
P (wn; w1:n−1) is obtained applying Eq. 1 to the energy function.

2.2 Model 2

Our second model extension also uses a hidden layer to capture the interactions
between the context words when predicting the next word. However, instead of
using the hidden layer as a part of a gating network, we use a linear combination
of the hidden unit activities as an additional term in the predicted feature vector
of the next word. Thus, this approach makes the predicted feature vector a fairly
general non-linear function of the context feature vectors by making the energy
function take to following form:

E(wn; w1:n−1) = −
(

n−1∑
i=1

vT
i RCi + hS

)
RT vn. (4)

Here h represents the vector of hidden unit activities and S is the matrix of
weights between h and the predicted feature vector for the next word.

495



Table 1: Test set perplexity scores for the models trained on the APNews dataset.
The reduction of perplexity for each model relative to the log-bilinear model
is also shown. The mixture test perplexity was computed by averaging the
predictions of the model with those of the Kneser-Ney 5-gram model. The score
for NPLM, the language model of Bengio et al., is from [2]. All network models
in the comparison have a context size of 5.

Model Number of Test set Perplexity Mixture test

type hidden units perplexity reduction perplexity

KN 5-gram – 123.2 −5.3% 123.2

NPLM Model – – – 109

Model 0 – 117.0 – 97.3

Model 1 100 113.9 2.7% 96.0

Model 1 200 107.3 8.3% 93.3

Model 1 300 105.9 9.5% 92.7

Model 1 500 104.3 10.8% 91.9

Model 2 100 113.9 2.7% 96.0

Model 2 200 112.8 3.6% 95.7

Model 2 300 112.7 3.5% 95.9

Model 2 500 110.1 5.9% 96.9

Model 3 100 110.1 5.9% 94.5

Model 3 200 109.4 6.5% 94.3

Model 3 300 109.2 6.7% 93.6

Model 3 500 109.0 6.8% 93.6

2.3 Model 3

If each of the two extensions above improves model performance, it might be
possible to achieve further performance gains by incorporating both extensions
into a single model. Model 3 combines the gating network of Model 1 with the
general non-linear prediction of the feature vector for the next word used by
Model 2. The following energy function includes both extensions:

E(wn; w1:n−1) = −
(

n−1∑
i=1

vT
i RCisi + hS

)
RT vn. (5)

3 Experimental results

We trained our models on 6-word sequences from the Associated Press News
(APNews) dataset used in [1]. The dataset has been preprocessed by replacing
all proper nouns and rare words with special symbols, reducing the number of
unique words to 17964. For a more detailed description of the preprocessing
procedure see [2]. The dataset was split into a training set of 14 million words,
a validation set of 1 million words, and a test set of 1 million words.

496



We used the log-bilinear model (Model 0) with 100-dimensional word feature
vectors and a context size of 5 from [1] both as a baseline for comparison as well
as the starting point from which we trained our extended models. That is, in
all of our experiments we initialized R and {Ci} by copying the corresponding
values from Model 0. The remaining parameters of Model 1 were initialized as
follows: the weights A on the connections between the context feature vectors
and the hidden units were set to small random values, while all other parameters
not present in Model 0 (i.e. B, a, b) were initialized to zero. This initialization
procedure ensured that initially Model 1 weighted all context words equally by
setting si = 1 and hence produced exactly the same predictions as Model 0.
Steepest descent was then used to learn all model parameters except for the
word features (R) which were kept fixed to reduce the time required to reach
convergence. Weight decay of 10−5 was applied to all parameters, including
biases. We used the following learning rates: 10−3 for C, 10−1 for A, and 10−5

for B. Momentum of 0.5 was used for updating context weights, while for all
other parameters the value of momentum depended on the number of hidden
units: 0.9 was used for 100 hidden units, 0.8 for 200, 0.8 for 300, and 0.5 for 500.

We considered two approaches to training Model 2. The first approach in-
volved copying the weights A between the context feature vectors and the hidden
units from the trained Model 1 and learning only the weights S from the hidden
units to the predicted feature vector. The second approach involved learning
A, S, and C after initializing A to small random values. In both cases S and
all the biases were initialized to zero. We compared the speed with which the
two approaches reduced the perplexity of a validation set using a model with
100 hidden units. A learning rate of 10−5, momentum of 0.5, and weight decay
of 10−4 were used for S in both experiments. In the second method, the same
learning rate, momentum, and weight decay as in the experiments for Model 1
were used for A and C. Our experiments showed that the first approach reduced
model perplexity twice as quickly as the second one, which lead us to use the first
approach when training various instances of Model 2 for the main comparison.

In the experiments with Model 3, we used the same initialization and learning
parameters for C, A, and B as for Model 1 and the same initialization and
learning parameters for S as for Model 2.

In all of our experiments parameters were updated after processing each mini-
batch of 1000 training cases. Each model was trained until its performance on
the validation set stopped improving.

Table 1 shows the test set perplexities for the trained models. We report two
perplexity scores as the baselines for comparison. First is the score for the back-
off 5-gram with modified Kneser-Ney discounting fitted using the SRILM toolkit
[7], which is the best-performing standard n-gram model [6] on this dataset.
The second baseline score is for the log-bilinear model from [1] (Model 0) which
achieves state-of-the-art performance, outperforming the n-gram model by over
5%. The results show that both extensions to the log-bilinear model result in
a reduction in perplexity. Interestingly, when the number of hidden units is
at least 200, adding the gating network to Model 0 leads to greater reductions

497



in perplexity than introducing a seemingly more general second extension. The
best results are achieved adding a gating network with 500 hidden units to Model
0, which reduces its perplexity by almost 11%. The perplexity of the resulting
model is over 15% lower than the perplexity of the 5-gram. Using both extensions
in the same model does not lead to significant reductions in perplexity. In fact,
in most cases a model with both extensions does not perform as well as a model
that only has a gating network (with the same number of hidden units). For
all model types increasing the number of hidden units lead to better predictive
performance. We also included the score for the neural probabilistic language
model (NPLM) of Bengio at el. from [2]. Since that paper includes the score
for the mixture of the model and an 5-gram on the APNews dataset but not the
score for the NPLM on its own, we computed the corresponding mixture scores
for our models as well. The scores show that when mixed with a 5-gram our
models outperform the corresponding NPLM mixture, sometimes by as much as
15%. More impressively, Model 1 with 200 or more hidden units, even when not
mixed with a 5-gram, outperforms the NPLM mixture.

4 Discussion

Our results suggest that using a gating network to modulate the effects of the
context words is a very effective way to improve the performance of a neural
network language model. Incorporating a gating network into a log-bilinear
model resulted in a language model that had 15% lower test set perplexity than
the best n-gram model. Surprisingly, using a more general model to capture the
interaction between the context words when predicting the next word appears
to be counterproductive as it does not usually lead to an improvement over a
model that modulates the context word effects.

References

[1] Andriy Mnih and Geoffrey E. Hinton. Three new graphical models for statistical language
modelling. In ICML, pages 641–648, 2007.

[2] Yoshua Bengio, Rejean Ducharme, Pascal Vincent, and Christian Jauvin. A neural prob-
abilistic language model. Journal of Machine Learning Research, 3:1137–1155, 2003.

[3] John Blitzer, Kilian Weinberger, Lawrence Saul, and Fernando Pereira. Hierarchical dis-
tributed representations for statistical language modeling. In Advances in Neural Infor-
mation Processing Systems 18, Cambridge, MA, 2005. MIT Press.

[4] John Blitzer, Amir Globerson, and Fernando Pereira. Distributed latent variable models
of lexical co-occurrences. In Proceedings of the Tenth International Workshop on Artificial
Intelligence and Statistics, January 2005.

[5] Holger Schwenk and Jean-Luc Gauvain. Training neural network language models on very
large corpora. In Proceedings of Human Language Technology Conference and Conference
on Empirical Methods in Natural Language Processing, pages 201–208, 2005.

[6] Stanley F. Chen and Joshua Goodman. An empirical study of smoothing techniques for
language modeling. In Proceedings of the Thirty-Fourth Annual Meeting of the Association
for Computational Linguistics, pages 310–318, San Francisco, 1996.

[7] A. Stolcke. SRILM – an extensible language modeling toolkit. In Proceedings of the
International Conference on Spoken Language Processing, volume 2, pages 901–904, 2002.

498


