
TRAINING MANY SMALL HIDDEN MARKOV MODELS

G. E. Hinton Gatsby Computational Neuroscience Unit, University College London,
17 Queen Square, London WC1N 3AR.

A. D. Brown Department of Computer Science, University of Toronto,
Toronto, Ontario M5S 3G4 Canada.

1 INTRODUCTION

This paper describes research in progress on two quite different ways of training systems that are
composed of many small Hidden Markov Models (HMM’s). The first is a purely discriminative method
in which all of the parameters of all the HMM’s are adjusted to optimize classification performance.
The second is an unsupervised method in which many little HMM’s are used to model the probability
density of a single set of sequences.

HMM’s have been very successful in automatic speech recognition, mainly because there is an effi-
cient way of fitting an HMM to data: the forward-backward algorithm and the Baum-Welch reestima-
tion formulas. Despite this success, HMM’s have several major limitations as models of sequential
data. They represent the recent history of the sequence using a single, discrete K-state multinomial.
The efficiency of the Baum-Welch restimation algorithm depends on this fact, but it severely limits
the representational power of the model. The hidden state of a single HMM can only convey log2K

bits of information about the recent history. If the generative model had a distributed hidden state
representation [15] consisting of M variables each with K alternative states it could convey M log2K

bits of information, so the information bottleneck scales linearly with the number of variables and only
logarithmically with the number of alternative states of each variable. This suggests that it would be
much better to use generative models composed of many small HMM’s whose outputs are somehow
combined to produce a sequence.

A second limitation of HMM’s is that they have great difficulty in learning to capture long-range de-
pendencies in a sequence [3]. In the case of natural language, there are many examples of word
agreements which span a large portion of a sentence. This should be much easier to model in a sys-
tem that is composed of many small HMM’s since each HMM can then be concerned with a specific
type of long-range regularity and its limited memory capacity does not get used up by having to deal
with all the other intervening regularities in the sequence.

2 TRAINING MULTIPLE HMM’S IN THE SPIRIT OF BACKPROPAGATION

During the 1990’s, many new machine learning algorithms were created by taking an existing algo-
rithm that contained a Gaussian distribution and replacing the Gaussian with some other distribution,



Training many small HMM’s—Hinton and Brown

typically a mixture of Gaussians [11, 9] or a Laplacian [2, 14]. This method of generating new algo-
rithms is far from being exhausted, but more creativity is now required in spotting the Gaussians that
can be fruitfully replaced.

2.1 Discriminative training with one HMM per class

Bridle demonstrated interesting links between backpropagation and HMM’s [5]. Consider a network
with one output unit per class and make the output for class k on training case c be determined by
the “softmax” function:

pc
k
=

exp(zc
k
)P

l
exp(zc

l
)

(1)

where zc
k

is the total input to unit k from some other, adaptive computation and l is an index over all
possible classes. If the aim is to maximize the log probability of the correct answer, we can train zc

k

by changing each parameter, �k, that determines zc
k

in proportion to the derivative of our objective
function:

@ log pc
ans(c)

@�k
= (Æans(c);k � pc

k
)
@zc

k

@�k
(2)

where ans(c) is the correct answer on training case c and Æans(c);k equals 1 if ans(c) = k and 0

otherwise.

Bridle assumed that each zc
k

represented the log probability of observation sequence c under HMMk

and he showed that exp(zc
k
) could be computed by a particular kind of recurrent neural network that

implemented the forward part of the forward-backward algorithm. Backpropagating the derivatives
provided by equation 2 through this recurrent network allows all of the parameters of all of the HMM’s
to be trained discriminatively.

An obvious extension of Bridle’s approach is to use several HMM’s for each class. If we then define
exp(zc

k
) to be the sum of the probabilities produced by the HMM’s used for class k this extension

is vacuous because it amounts to using a single, larger HMM with a partitioned state space. If,
however, we multiply together the probabilities produced by the HMM’s for class k we have a model
that is potentially much more powerful. This is equivalent to adding in the log domain:

zc
k
=
X
m

zc
k;m

(3)

where m is an index over the HMM’s used for class k. Discriminative training thus has two major
advantages: It uses all the parameters for discrimination and it allows a distributed representation of



Training many small HMM’s—Hinton and Brown

the hidden state over many small HMM’s, which is an exponentially more efficient way of capturing the
mutual information over time if the data contains many independent or almost independent temporal
regularities.

2.2 Using pairs of HMM’s to define features

Instead of using one or several HMM’s per class, we propose to use many different pairs of relatively
simple HMM’s and to train each pair to extract a temporally extended feature that is useful for dis-
criminating between classes. We arrived at this method by considering what the hidden units do in a
standard backpropagation net that has one hidden layer and output units that obey equation 1. Each
hidden unit, j, produces an output yj which is given by:

yc
j
=

1

1 + exp (�bj �
P

i
wjix

c

i
)

(4)

where bj is the bias of hidden unit j, wji is the weight on the connection from input unit i to hidden
unit j, and xc

i
is the activity of input unit i. We can interpret yc

j
as the posterior probability that

the input data was generated by one of two competing Gaussians that have the same covariance
matrix. Without further loss of generality we can assume that this matrix is the identity matrix. If
the Gaussians have means �+j and ��j in the input space and mixing proportions �+

j
and ��

j
the

posterior probability of the Gaussian with mean �+j given input vector xc is given by:

yc
j
=

�+
j
exp

�
�

1
2

P
i
(xc

i
� �+

ji
)2
�

��
j
exp

�
�

1
2

P
i
(xc

i
� ��

ji
)2
�
+ �+

j
exp

�
�

1
2

P
i
(xc

i
� �+

ji
)2
�

=
1

1 + exp

�
� log

�
+

j

�
�

j

�
1
2

P
i
(xc

i
� ��

ji
)2 � (xc

i
� �+

ji
)2
� (5)

Equation 5 is identical to equation 4 if we set:

bj = log
�+
j

��
j

+
1

2

X
i

(��
ji
)2 � (�+

ji
)2 ; wji = �+

ji
� ��

ji

The fact that the activity of a hidden unit can be interpreted as the posterior probability distribution
over a mixture of two Gaussians immediately suggests several generalizations. Instead of using a
pair of Gaussians for each hidden unit we could use m Gaussians in the mixture and represent the
posterior for each multinomial hidden unit by m numbers that sum to one1. A different extension is

1The extreme version of this approach is to have a single multinomial hidden unit, which is known in the literature as a
normalized Gaussian Radial Basis Function network.



Training many small HMM’s—Hinton and Brown

Sequence

HMM
Log−likelihoods

Pairwise
Comparisons

Classes

Figure 1: A backpropagation network with the log-probabilities of HMM’s as inputs and hidden units
which represent the relative probability of a sequence under pairs of HMM’s.

to replace the two Gaussians by two HMM’s which allows standard backpropagation to be applied to
sequential data. Equation 4 then becomes

yc
j
=

1

1 + exp
�
� log p(xcjHMM+

j
) + log p(xcjHMM�

j
)
� (6)

where x
c is now a sequence. Note that this is quite different from the idea of using a neural network

as a more sophisticated output model for each hidden state of an HMM. We are putting multiple
HMM’s inside a neural network as opposed to putting multiple neural networks inside an HMM.

When pairs of HMM’s are used to define hidden features, it generally requires much more computa-
tion to get the probability of the input sequence under each HMM than to compute the probabilities
of classes given the hidden activities. It therefore makes computational sense to reuse each HMM in
defining many different features (figure 1). With m HMM’s it is possible to define n = m(m � 1)=2

features and although the n posterior probabilities only have m degrees of freedom they should nev-
ertheless be in a form that makes it easier to compute the class probabilities.

Each hidden feature, j, learns weights, v, to all of the output units. These weights represent the log-
arithm of a probability distribution over all possible classes. The activity of the hidden unit represents
a multiplicative coefficient on the log probability distribution which is equivalent to an exponent on the
distribution itself. The combination rule for the outputs of the hidden features is:

zc
k
=
X
j

yc
j
vkj (7)

This is equivalent to multiplying together the distributions specified by each hidden feature. To simplify



Training many small HMM’s—Hinton and Brown

the interpretation of the hidden units, we can use the hyperbolic tangent function to determine the
hidden activities. This simply scales and shifts the posterior probabilities that would be produced by
the logistic in equation 6.

yc
j
= tanh

�
log p(xcjHMM+

j
)� log p(xcjHMM�

j
)
�

(8)

Each hidden unit then outputs one probability distribution over classes if one of its two HMM’s fits the
data much better than the other, and a complementary distribution if the other HMM fits much better.
When there is no clear winner, the hidden unit uses the posterior distribution over the two HMM’s to
geometrically interpolate between the two distributions.

3 PRELIMINARY RESULTS OF THE DISCRIMINATIVE ALGORITHM

One of the benefits of using more HMM’s than classes is that no single HMM is necessarily respon-
sible for identifying each class. Several HMM’s may discover features useful for discriminating one
class from the others. A network consisting of many HMM’s should, therefore, be less susceptible to
noise than one in which a single HMM is assigned to model each class. This insight is the basis for
the recent interest in subband-based speech and speaker recognition [4, 12, 1], where rather than
trying to build models of all the spectral information at once, classification is performed on indepen-
dent frequency subbands and the decisions of the subband models are combined to make a global
decision. Here we present a simple example of speaker classification to demonstrate this effect.
However, rather than explictly modelling spectral subbands, we provide all the channel information
to each of the constituent models and allow the learning procedure to determine how the HMM’s
specialize on parts of the spectrum.

Using data from the CSLU Speaker Recognition corpus [7], we took examples of two individuals
uttering strings of connected digits. The telephone quality speech, sampled at 8kHz was processed
with a bank of 24 Mel frequency, triangular bandpass filters, with centers between 55 and 3655 Hz.
The data was collected in multiple sessions under different recording conditions, but for the purposes
of this experiment training and test sets were drawn randomly from all recording sessions so that the
training and testing sets were drawn from the same distribution. We used 64 cases for training and
32 for testing. Thus, this experimental set up is not reflective of a a realistic speaker verification task
where the training and testing conditions are expected to differ.

The task was to learn to discriminate two speakers with and without artificial bandlimited noise added
to the spectral information. We compared a network with 6, 3-state HMM’s and

�
6
2

�
hidden units, with

one that had 2, 8-state HMM’s and a single hidden unit. Such a model is equivalent to discriminatively
training two HMM’s as described by Bridle [5]. The two models are matched for parameters as closely
as possible given the integer number of hidden states in the respective HMM’s, and the number of
parameters is kept quite small. Since we are only modelling the conditional class densities and not
the data density it is very easy to overfit by using too many parameters.



Training many small HMM’s—Hinton and Brown

In the first test condition no noise was added to the data set and in multiple training sessions of
the two models they both generalized to the training data equally well. In the second condition, 4
adjacent channels of each training and test sequence were corrupted with 0db Gaussian noise. The
frequencies of the 4 adjacent channels were chosen at random in each sequence. As expected, the
model with more small HMM’s generalizes better to test data than the one with just one HMM per
class.

4 PRODUCTS OF HMM’S

It is also possible to train multiple HMM’s in a non-discriminative way. This is more appropriate for
tasks such as novelty detection in which a model is trained on one set of sequences and is then used
to decide if a test sequence comes from the same distribution. We first formulate a generative model
in which the outputs of many separate HMM’s are combined to produce a sequence and then we
adapt the parameters of all the HMM’s to maximize the likelihood of the observed sequences or to
optimize some other similar objective function.

One such generative model assumes that all of the HMM’s choose paths through their state spaces
independently and then, at each time in the sequence, the hidden states selected by each HMM
jointly determine the observation. This way of combining HMM’s is known as a Factorial HMM [8]
and is shown in Fig. 2.

Vt+1V tVt−1

St+1
(2)

t−1S(1) St
(1)

St+1
(1)

t−1S(2) St
(2)

Figure 2: Factorial HMM

In a causal belief network each local probability distribution can be independently estimated given
the posterior distribution of the hidden variables conditioned on the evidence. However, it is exponen-
tially expensive to compute this posterior distribution exactly because observing the visible variables
induces dependencies among the hidden variables. Ghahramani and Jordan [8] handle this problem
by approximating the posterior with a factored, variational distribution.

There is a very different, non-causal, way of combining multiple HMM’s which we call a “Product
of HMM’s” or PoHMM. As before, we allow each HMM to independently choose a path through its
state space. But we also allow each HMM to independently generate an output symbol at each time
step. If all of the HMM’s happen to produce exactly the same sequence, we output that sequence.
Otherwise we try again. It is immediately apparent that this is not an efficient way of generating



Training many small HMM’s—Hinton and Brown

sequences. It is, nevertheless, a perfectly legitimate generative model because, given the individual
HMM’s, it does define a probability distribution over sequences. Although it is hard to generate from
a PoHMM, inferring the hidden states is much easier than in a factorial HMM because, given the
data, the hidden states of different HMM’s are conditionally independent. Conversely, when the data
is unobserved, the hidden states of different HMM’s are marginally dependent2 so this generative
model is just the opposite of a the factorial HMM which has conditional dependence and marginal
independence.

The PoHMM generative model is equivalent to multiplying together the distributions over sequences
defined by the individual HMM’s and then renormalizing (Fig. 3):

� Parameters: � = f�gM
m=1, � = fAm; Bm; �mg

� Observed Variables: V 1:T = fV 0 : : : V T
g 2 V

� Hidden Variables: S1:T
m

= fS0
m
: : : ST

m
g 2 Sm

Pm(V
1:T ; S1:T

m
j�m) = P (S0

m
j�m)

TY
t=2

P (St
m
jSt�1

m
; Am)

TY
t=1

P (V t
jSt

m
; Bm) (9)

Pm(V
1:T

j�m) =
X
Sm

Pm(V
1:T ; S1:T

m
j�m) (10)

P (V 1:T
j�) =

Q
M

m=1 Pm(V
1:T

j�m)

Z(T;�)
; (11)

Z(T;�) =
X

U1:T
2V

MY
m=1

Pm(U
1:T

j�m); (12)

where �m is the set of parameters for each HMM in the product, and �m, Am and Bm are the param-
eterizations of the initial state, the transition and the output distributions respectively. The summation
in (10) is tractable due to the Markov property of the hidden states and can be efficiently computed,
but the partition function, Z, a summation over all possible observed strings, does not have such a
nice decompostion. The existence of Z in the denominator of (11) makes it intractable to compute
the exact gradient of the log likelihood of the observed data w.r.t the parameters, so it appears to
be very hard to fit a PoHMM to data. Gibbs sampling can be used to estimate the derivatives of the
partition function but this is very slow and noisy. Fortunately, there is an alternative objective function
for learning whose gradient can be approximated accurately and efficiently [10]. It has been shown
that optimizing this alternative objective function leads to good generative models for non-sequential
data [10] and Brown and Hinton [6] have shown that the same approach works for PoHMM’s when the
data consists of sequences of discrete symbols. In the following sections we summarize the results
of Brown and Hinton [6] and then describe preliminary results of applying PoHMM’s to speech.

2Although the PoHMM generative model chooses paths through the different HMM’s independently, it rejects all choices
that do not result in identical sequences over the visible variables and this rejection induces dependencies among the hidden
paths in the successful attempts.



Training many small HMM’s—Hinton and Brown

Vt+1V tVt−1

St+1
(2)

t−1S(1) St
(1)

St+1
(1)

t−1S(2) St
(2)

Figure 3: Product of HMM’s

4.1 Training products of HMM’s using contrastive divergence

Maximizing the log likelihood of the data is equivalent to minimizing the Kullback-Leibler divergence
KL(P 0

jjP1) between the observed data distribution, P0, and the equilibrium distribution, P1, pro-
duced by the generative model3. Instead of simply minimizing KL(P0

jjP1) we minimize the “con-
trastive divergence” KL(P 0

jjP1) � KL(P 1
jjP1), where P 1 is the distribution over one-step re-

constructions of the data that are produced by running a Gibbs sampler for one full step, starting at
the data. The advantage of using the contrastive divergence as the objective function for learning is
that the intractable derivatives of the partition function cancel out and, if we are prepared to ignore a
term that turns out to be negligible in practice [10], it is easy to follow the gradient of the contrastive
divergence using the following procedure:

1. Calculate each model’s gradient @

@�m
P (V 1:T

j�m) on a sequence using the forward-backward
algorithm.

2. For each model, pick a path from the posterior distribution over paths through state space.

3. At each time step, get the distribution over symbols specified by the hidden state for that time
step in the path chosen for each HMM. Multiply these output distributions together and renor-
malize to get the reconstruction distribution at that time step.

4. Draw a sample from the reconstruction distribution at each time step to get a reconstructed
sequence. Compute each model’s gradient on the new sequence @

@�m
P (V̂ 1:T

j�m)

5. Update the parameters:

��m /

@ logP (V 1:T
j�)

@�m
�

@ logP (V̂ 1:T
j�)

@�m

3We call this distribution P1 because one way to get exact samples from it is to run a Gibbs sampler for an infinite number
of iterations



Training many small HMM’s—Hinton and Brown

There is an intuitive justification for the contrastive divergence objective function. The one-step re-
constructions of the data are always, on average, more probable under the PoHMM than the data
itself unless the model is perfect or the one-step Markov Chain used for producing the reconstruc-
tions fails to mix. The increase in probability caused by reconstructing the data from the model is a
way of measuring how much the model would like to change the data distribution. A perfect model
would still allow an individual reconstruction to be different from the individual sequence from which
it was produced, but the distributions of the two and hence their average probabilities would be the
same. So by minimizing the extent to which the reconstructions are more probable than the data we
are eliminating the tendency of the model to prefer sequences that have lower probability in the data
distribution than the actual data.

To compute the gradient of the HMM we use an EM-like trick. Directly computing the gradient of an
HMM is difficult due to the fact that all the parameters are coupled through their influence on the
hidden states. If the HMM were visible and the hidden states were known then the gradient of the
log-likelihood for each parameter would decouple into an expression involving only local variables.
As in EM, we use the posterior distribution over the hidden states in place of actual values by using
the identity:

@

@�
logP (V 1:T

j�) =
@

@�



logP (V 1:T ; S1:T

j�)
�
P (S1:T jV 1:T )

(13)

This says that if we compute the posterior of the HMM using the forward-backward algorithm we
can take the gradient of the complete data log-likelihood using the sufficient statistics of the hidden
variables in place of actual values.

A second optimization trick which we have used is to re-parameterize the probabilities of the HMM,
using the softmax function. Working in this domain allows us to do unconstrained gradient descent
over the real numbers. Doing gradient optimization directly in the probability domain would involve
the more difficult proposition of constraining the parameters to the probability simplex. An added
advantage of this re-paramaterization is that the probabilities cannot go to zero anywhere. It is
clearly desirable in the PoHMM framework that none of the individual HMM’s assigns zero probability
to a sequence, as this would effectively veto the other HMM’s.

As an example we look at the gradient rule for the transition probabilities of an HMM, P (St = jjSt�1 =

i) = Aij . If we re-parameterize using the softmax function:

Aij =
exp(aij)P
j
exp(aij)

: (14)

Taking the derivative with respect to aij yields

@

@aij



logP (V 1:T ; S1:T )

�
=

TX
t=1

hSt = j; St�1 = ii � (

TX
t=1

hSt�1 = ii)Aij ; (15)

As before the angle brackets indicate an expectation with respect to the posterior of the hidden
states. This has the intuitive interpretation that the derivative for the softmax parameter aij regresses



Training many small HMM’s—Hinton and Brown

.  # * A B C D E
F G H I J K L M N

O P Q R S T U V W

X Y Z a b c d e f

g h i j k l m n o

p q r s t u v w x

y z

.  # * A B C D E

F G H I J K L M N

O P Q R S T U V W

X Y Z a b c d e f

g h i j k l m n o

p q r s t u v w x

y z

Figure 4: An ’eye-chart’ diagram of the output distributions of the 2-state HMM in the PoHMM. Each
chart corresponds to a single state’s output distribution and the size of each symbol is proportional
to the probability mass on that symbol.

.  # * A B CD E

F G H I J K L M N

O P Q R S T U V W

X Y Z a b c d e f

g h i j k l m n o

p q r s t u v w x

y z

.  # * AB C D E

F G H I J K L M N

OP Q R S T U V W

X Y Z a b c d e f

g h i j k l m n o
p q r s t u v w x

y z

Figure 5: Eye-chart diagram of the output distributions of two of the states of the 30 state HMM

toward the point where Aij is equal to the expected transition probability under the posterior. If we
set the derivative to zero and solved this equation directly, we would recover the Baum-Welch update
equation.

5 RESULTS ON A TOY TEXT-MODELING PROBLEM

To demonstrate the relative merits of a product of HMM’s versus a single HMM, we tried modelling
character strings from a corpus of English text, but we modified the task to better demonstrate the
advantages of a product model. Rather than training the model on a single case, or mixed case text,
we trained it on data in which the characters in a sentence were either all upper case or all lower
case. Thus there really are independent factors underlying this sequence: the binary decision of
upper case or lower case and the statistics of the case-independent letter sequences.

We used 8600 sentences4 and converted them to all upper and all lower case to yield over 17,000
training sentences. 56 symbols were allowed: 4 symbols for space and punctuation, 26 upper and
26 lower case letters. We compared a single HMM with 32 hidden states against a product of a
2 state and a 30 state hidden Markov model. In the product model the 2 state HMM learns to
differentiate upper and lower case. It ‘votes’ to put probability mass on the upper or lower case letters
respectively (Fig. 4), and it enforces the continuity through its transition matrix. Then the 30-state

4from Thomas Hardy’s “Tess of the d’Urbervilles” available from Project Gutenberg (http://www.gutenberg.net)



Training many small HMM’s—Hinton and Brown

HMM need only learn the case-independent statistics of the characters and the fact that the upper
and lower case characters are analogous, placing proportional amounts of probability mass on the
two halves of the symbol set. In Fig. 5 we see an example of two of the big HMM’s 30 hidden states.
Its output distributions are symmetric over the upper and lower case letters, indicating that it has left
the modelling of case to the smaller 2-state HMM model.

By contrast, the single HMM has to partition its data space into two parts, one each for upper and
lower case. In effect it has to model the caseless letter statistics with a much smaller number of
hidden states. This can be seen in Fig. 6a) where the observation distributions of the 32 states fall
into 3 categories: punctuation, upper case, and lower case. Similarly we can see in the transition
matrix (Fig. 6b) that the upper case states only transition to upper case states and likewise for the
lower case states.

We cannot compute the log likelihood of a string under the PoHMM becasue of the intractable parti-
tion function, but we can easily compute the probability of a single symbol conditioned on the other
symbols in a sentence. This leads to a simple, interesting test of the models which we refer to as the
“symmetric Shannon game”. In the original Shannon game [13], a prediction of the next symbol in
a sequence is made given the previous N symbols. In the symmetric Shannon game the model is
given both past and future symbols and is asked to predict the current one. We can compute this dis-
tribution exactly since we need only normalize over the missing symbol and not all strings of symbols.
For models based on directed acyclic graphs, such as an HMM, it is easy to compute the probability
of the next symbol in a sequence given the symbols so far. Somewhat surprisingly, this is not true
for undirected models like a PoHMM. If the data after time t is missing, the posterior distribution over
paths through each HMM up to time t depends on how easily these paths can be extended in time
so as to reach agreement on future data.

Table 7 shows a comparison of several PoHMM models with a single large HMM. They were scored
on a set of 60 hold-out sentences with an equal number of upper and lower case. The product of
a 2-state and 30-state HMM with 2728 parameters, while capturing the componential structure we
were hoping for, does not outperform a single 32 state HMM which has been roughly matched for
the number of parameters (2848 parameters). This is mainly an optimization problem, because if we
train a 2-state model alone and a 30-state model on uni-case text, and then use their parameters
to initialize the PoHMM then it does much better than the single HMM. If we use a product of many,
simple HMM’s then the optimization problem is eased. A product of 10, 4-state HMM’s, which has
still fewer parameters (2440), performs as well as a hand initialized product of 2 HMM’s. Increas-
ing, the number of HMM’s in the product provides further improvements while the parameters and
computation time scale linearly with the number of HMM’s in the model.

6 AN EXTENSION FOR BIGGER ALPHABETS OF SYMBOLS

One concern that we have about the PoHMM is that each HMM has it’s own output distribution over
the data, which could include many parameters if there are a large number of symbols. One way
to deal with this is to add an extra layer of shared hidden features between the hidden variables of



Training many small HMM’s—Hinton and Brown

a)

. −# * A B C D E

F G H I J K L M N

O P Q R S T U V W

X Y Z a b c d e f

g h i j k l m n o

p q r s t u v w x

y z

. −# * A B C D E

F G H I J K L M N

O P Q R S T U V W

X Y Z a b c d e f

g h i j k l m n o

p q r s t u v w x

y z

. − #* A B C D E

F G H I J K L M N

O P Q R S T U V W

X Y Z a b c d e f

g h i j k l m n o

p q r s t u v w x

y z

. −# * A B C D E

F G H I J K L M N

O P Q R S T U V W

X Y Z a b c d e f

g h i j k l m n o

p q r s t u v w x

y z

. −# * A B C D E

F G H I J K L M N

O P Q R S T U V W

X Y Z a b c d e f

g h i j k l m n o

p q r s t u v w x

y z

. −# * A B C D E

F G H I J K L M N

O P Q R S T U V W

X Y Z a b c d e f

g h i j k l m n o

p q r s t u v w x

y z

. − # * A B C D E
F G H I J K L M N

OP Q R S T U V W

X Y Z a b c d e f

g h i j k l m n o

p q r s t u v w x

y z

. − # * A B CD E

F G H I J K L M N

O PQ R ST U V W

X Y Z a b c d e f

g h i j k l m n o

p q r s t u v w x

y z

. − # * A B C D EF G H I J K L M N

O P Q R S T U V W

X Y Z a b c d e f

g h i j k l m n o

p q r s t u v w x

y z

. − # * A B C D E

F G HI J K L M N

OP Q R S T U V W

X Y Z a b c d e f

g h i j k l m n o

p q r s t u v w x

y z

. − # * A B C DE

F G H I J K L M N

O P Q RS T U V W

X Y Z a b c d e f

g h i j k l m n o

p q r s t u v w x

y z

. − # * AB C D E
F G H I J K L M N

OP Q R S T U V W

X Y Z a b c d e f

g h i j k l m n o

p q r s t u v w x

y z

. − # * A B C D E
F G H I J K L M N

OP Q RS T U V W

X Y Z a b c d e f

g h i j k l m n o

p q r s t u v w x

y z

. − # * A B C D E

F G H I J K LMN
O P Q RS T U V W

X Y Z a b c d e f

g h i j k l m n o

p q r s t u v w x

y z

. − # * A B C D E

F G H I J K L M N
O P Q R STU V W
X Y Z a b c d e f

g h i j k l m n o

p q r s t u v w x

y z

. − # * A B C DE

F G HI J K L MN
O P Q R S T U V W
X Y Z a b c d e f

g h i j k l m n o

p q r s t u v w x

y z

. − # * A B C D E

F G H I J K LM N
O P Q RS T U V W

X Y Z a b c d e f

g h i j k l m n o

p q r s t u v w x

y z

. − # * A B C D E

F G H I J K L M N

O P Q R STU V W
X Y Z a b c d e f

g h i j k l m n o

p q r s t u v w x

y z

. − # * A B C D E

F GH I J K L M N
O P Q R STU V W

X Y Z a b c d e f

g h i j k l m n o

p q r s t u v w x

y z

. − # * A B C D E

F G H I J K L M N

O P Q R S T U V W

X Y Z a b c d e f

g h i j k l m n op q r s t u v w x

y z

. − # * A B C D E

F G H I J K L M N

O P Q R S T U V W

X Y Z ab c d e f

g h i j k l m n o

p q r s t u v w x

y z

. − # * A B C D E

F G H I J K L M N

O P Q R S T U V W

X Y Z a b c d e f

g h i j k l mn o

p q r s t u v w x

y z

. − # * A B C D E

F G H I J K L M N

O P Q R S T U V W

X Y Z a b c d e f
g h i j k l m no

p q r st u v w x

y z

. − # * A B C D E

F G H I J K L M N

O P Q R S T U V W

X Y Z a b c d e f
g h i j k l m n o

p q r st u v w x

y z

. − # * A B C D E

F G H I J K L M N

O P Q R S T U V W

X Y Z a b c d e f
g h i j k l mn o

p q r s t u v wx

y z

. − # * A B C D E

F G H I J K L M N

O P Q R S T U V W

X Y Z a b c de f

gh i j k l m n o

p q r s t u v w x

y z

. − # * A B C D E

F G H I J K L M N

O P Q R S T U V W

X Y Z a b c d e f
g h i j k l m n o

p q r st u v w x

y z

. − # * A B C D E

F G H I J K L M N

O P Q R S T U V W

X Y Z ab c d ef

g h i j k l m n o

p q r s t u v w x

y z

. − # * A B C D E

F G H I J K L M N

O P Q R S T U V W

X Y Z a b c d e f

g h i j k l m no

p q r s t u v w x

y z

. − # * A B C D E

F G H I J K L M N

O P Q R S T U V W

X Y Z a b c d e f

g hi j k l m n o

p q r s t u v w x

y z

. − # * A B C D E

F G H I J K L M N

O P Q R S T U V W

X Y Z a b c d ef

g h i j k l m n o

p q r s t u v w x

y z

. − # * A B C D E

F G H I J K L M N

O P Q R S T U V W

X Y Z a b c d e f

g h i j k l m n o

p q r s t uv w x

y z

b)

P
u

n
ct

u
at

io
n

U
p

p
er

 C
as

e
L

o
w

er
 C

as
e

Punctuation Upper Case Lower Case

From

To

Figure 6: The 32 state HMM a) the observation probabilities of the HMM b) a diagram of the transition
matrix where the area of the square indicates the probability of going to a state.



Training many small HMM’s—Hinton and Brown

Model Sym. Shannon (bits)

PoHMM 40 x 4-states 1.96
PoHMM 20 x 4-states 2.06
PoHMM 10 x 4-states 2.13

PoHMM (2-state +
30-state, pre-initialized) 2.14

32 State HMM 2.46
PoHMM (2-state + 30-state

random initialization) 2.73

Figure 7: Symmetric Shannon scores for several PoHMM models and a single large HMM

States
HMM

Features

Symbols

Figure 8: Output model of the HMM’s

the HMM and the output symbols. Sharing the output model features among the HMM’s, greatly
reduces the number of free parameters in the PoHMM and it has the benefit that similarities between
symbols learned by one model do not have to be re-learned again and again in the other models.
Each HMM retains it’s own transition distribution and it’s own weights from it’s hidden states to the
hidden features5.

We parameterize the output model as a two layer network, with a linear hidden layer and a softmax
non-linearity in the output layer (Fig. 8). Note that we do not constrain the hidden layer values to be
positive or sum to one. They may be positive or negative. If we constrained the hidden features to
be a proper probability distribution then this would be equivalent to inserting a single discrete valued
stochastic variable between the hidden variable and the visible variable of the HMM. This is not as
powerful a representation as allowing the hidden features to take on independent real values. The
formula for such an output model is given by:

P (V jS; �m) = �(s0UmW ) (16)

Where we treat the hidden state, s, as a column vector of indicator variables – a one in the position
5This resembles the technique of using a common pool of learned Gaussian distributions and allowing each node to create

its own output distribution by learning its own set of mixing proportions for the shared Gaussians.



Training many small HMM’s—Hinton and Brown

Figure 9: State transition diagram of the HMM’s in the PoHMM used for acoustic modelling. The
states were organized in a loop, with left to right transitions and a self transition whose probabilities
were learnable. In addition there was a small minimum probability of transitioning back to the initial
state (indicated by thin arrows).

of the discrete state which the hidden variable takes. � is the softmax function. U is the matrix
of weights which the states of model m place on the hidden features and W is the matrix shared
hidden features. Interestingly, this output distribution is also a product model. The columns of W are
linearly combined in the log domain and then pushed through the softmax function to get a probability
distribution. The rows of U are the weights that each state puts on these basis distributions.

There are two ways that we can regularize or constrain the output model. One way is to create a bottle
neck by using a small number of hidden features. This is equivalent to decomposing the stochastic
output matrix as the product of two lower rank matrices. The other way is to use a large number of
hidden features, but use another regularizer on the output weights forcing them to be small. Thus, the
hidden features are restricted to be soft distributions over the output symbols. We have applied this
technique to a task involving symbol sequences it improves the generalization performance (Brown
and Hinton, 2001).

7 PRELIMINARY RESULTS ON MULTIBAND ACOUSTIC MODELLING

We applied the learning algorithm for PoHMM’s to an acoustic modelling task in which there was just
one speaker. Our aim was simply to see how the various HMM’s specialized on different aspects
the task. The PoHMM contained 10 HMM’s each of which had 6 hidden states with state transitions
constrained as shown in figure 9. Each hidden state has its own, learned diagonal Gaussian output
model.

The PoHMM was trained on raw high resolution spectrograms. Using speech from the TIMIT database
sampled at 16 kHz, an FFT was taken on speech windows of 64ms (1024 samples) at a frame rate
of 24ms (384 samples). The log of the 513 unique spectral magnitude coefficients were used to
represent the speech at each timestep.

The individual HMM’s specialize in different frequency bands. They do this by using Gaussian output
models that have tight variances on frequency dimensions that they care about and broad variances
on frequency dimensions that they do not care about. One way of showing how an HMM specializes
is to indicate, for each pixel in the spectrogram, when that HMM is constraining the value of the pixel
more strongly than any other HMM. For each HMM we chose the state with the highest posterior



Training many small HMM’s—Hinton and Brown

probability at each time and among these states we found, for each frequency, the one that had
the lowest variance on that frequency dimension of its Gaussian output model. Figure 10 shows a
spectrogram and, for two of the HMM’s, the pixels in the spectrogram that are dominated by the HMM.
Notice that it is quite possible for an HMM to have different hidden states that specialize in somewhat
different frequency bands so it can learn to model structure that moves from one frequency band to
another.

8 CONCLUSIONS

We have described both discriminative and non-discriminative methods of fitting systems in which
single large HMM’s are replaced by many small HMM’s. Although the fitting is slower, the increased
representational power of multiple small HMM’s means that the same number of parameters can
produce better models for both discrimination and density estimation. When applied to speech, the
small HMM’s have a tendency to specialize in different frequency bands without requiring any prior
specification of which bands to use.

Acknowledgements

We thank Zoubin Ghahramani, Sam Roweis, Brian Sallans and Chris Williams for helpful discussions.
This work has been supported by the Gatsby Charitable Foundation and NSERC.

References

[1] L. Basacier and J. Bonastre. Subband architecture for automatic speaker recognition. Signal
Processing, 80:1245–1259, 2000.

[2] A. Bell and T.J. Sejnowski. An information-maximisation approach to blind separation and blind
deconvolution. Neural Computation, 7:1129–1159, 1995.

[3] Y. Bengio and P. Frasconi. Diffusion of credit in Markovian models. In G. Tesauro, D.S. Touretzky,
and T.K. Leen, editors, Advances in Neural Information Processing Systems 7, pages 553–560,
Cambridge, MA, 1995. MIT Press.

[4] H. Bourlard and S. Dupont. Subband-based speech recognition. In Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal Processing, pages 1251–1254, Mu-
nich, Germany, April 1997.

[5] J.S. Bridle. Training stochastic model recognition algorithms as networks can lead to maxi-
mum mutual information estimation of parameters. In D. Touretzky, editor, Advances in Neural
Information Processing Systems 2, pages 211–217, San Mateo, CA, 1990. Morgan Kaufmann.



Training many small HMM’s—Hinton and Brown

Time

F
re

qu
en

cy

  0 0.5   1 1.5   2 2.5   3
   0

2000

4000

6000

8000

Time

F
re

qu
en

cy

  0 0.5   1 1.5   2 2.5   3
   0

2000

4000

6000

8000

Time

F
re

qu
en

cy

  0 0.5   1 1.5   2 2.5   3
   0

2000

4000

6000

8000

Figure 10: A spectrogram and the pixels on which two of the HMM’s dominate. Notice that the first
HMM has specialized to model structure at low frequencies.



Training many small HMM’s—Hinton and Brown

[6] A.D. Brown and G.E. Hinton. Products of hidden Markov models. In T. Jaakkola and T. Richard-
son, editors, Artificial Intelligence and Statistics 2001, pages 3–10, San Francisco, CA, 2001.
Morgan Kaufmann.

[7] R. Cole, M. Noel, and V. Noel. The CSLU speaker recognition corpus. In Proceedings of ICSLP,
Sydney, Australia, 1998.

[8] Z. Ghahramani and M.I. Jordan. Factorial hidden markov models. Machine Learning,
29(2/3):245–273, November 1997.

[9] T. Hastie and R. Tibshirani. Discriminant analysis by Gaussian mixtures. Journal of the Royal
Statsistical Society B, 58(1):155–176, 1996.

[10] G.E. Hinton. Training products of experts by minimizing contrastive divergence. Technical Re-
port GCNU TR 2000-004, Gatsby Computational Neuroscience Unit,University College London,
London, UK, 2000.

[11] S.J. Nowlan and G.E. Hinton. Simplifying neural networks by soft weight sharing. Neural Com-
putation, 4:173–193, 1992.

[12] L. K. Saul, M. G. Rahim, and J. B. Allen. A statistical model for robust integration of narrowband
cues in speech. Computer Speech and Language, 2001. In press.

[13] C. E. Shannon. Prediction and entropy of printed english. Bell System Techncial Journal,
27:623–656, July, October 1948.

[14] R. Tibshirani. Regression selection and shrinkage via the lasso. Journal of the Royal Statistical
Society B, 58(1):267–288, 1996.

[15] C.K.I. Williams and G. E. HInton. Mean field networks that learn temporally distorted strings. In
D.S. Touretzky, J.L. Elman, T.J. Sejnowski, and G.E. Hinton, editors, Connectionist Models Pro-
ceedings of the 1990 Summer School, pages 18–22, San Mateo, CA, 1991. Morgan Kaufmann.


