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Abstract. For learning meaningful representations of data, a rich source
of prior knowledge may come in the form of a generative black box, e.g.
a graphics program that generates realistic facial images. We consider
the problem of learning the inverse of a given generative model from
data. The problem is non-trivial because it is difficult to create labelled
training cases by hand, and the generative mapping is a black box in the
sense that there is no analytic expression for its gradient. We describe a
way of training a feedforward neural network that starts with just one
labelled training example and uses the generative black box to “breed”
more training data. As learning proceeds, the training set evolves and the
labels that the network assigns to unlabelled training data converge to
their correct values. We demonstrate our approach by learning to invert
a generative model of eyes and an active appearance model of faces.

1 Introduction

“Analysis-by-synthesis” is the idea of explaining an observed data vector (e.g. an
image) in terms of a compact set of hidden causes that generated it. A generative

model specifies how the underlying causes produce the data vector. A recognition

model is the inverse mapping – it infers the causes from a given data vector. In
coding terms, the recognition and generative models are the encoder and decoder,
respectively, and the hidden causes represent a code vector. The composite of
the two models implements the identity function: recognition of a data vector
followed by generation from the resulting code vector should reconstruct the
original data vector.

In this paper we consider the following problem: given a training set of data
vectors and a generative model for that data, learn the corresponding recognition
model. For example, suppose that we have a face dataset and a graphics program
that can generate realistic images of faces. This program may have a set of real-
valued inputs (e.g. pose, lighting, facial muscle activations) that can be smoothly
varied to create any face. The task is to learn a recognition model that infers from
a face image the graphics inputs that will accurately reconstruct that image. The
inputs to the generative model can be seen as a compact, high-level, generative
representation of the data vector.

Note that this is a new type of problem that existing learning algorithms are
not designed to solve. Here we assume that an arbitrary generative model of



the data is given as part of the problem, and the goal is to learn the inverse of
that particular model. In contrast, algorithms such as PCA, factor analysis, and
ICA simply assume specific parametric forms for the generative model and fit
the parameters to the data. A nonlinear autoencoder learns separate generative
and recognition models simultaneously by also assuming the generative model to
be of a specific form with an analytic gradient. As explained later, our problem
is more difficult than the ones solved by these standard methods. Our main
contribution here is a learning algorithm that solves the above problem.

There are two main motivations for this work. First, it provides a general way
of incorporating domain knowledge, via a generative model, into the learning of a
data representation. Generative models are a natural way of expressing complex
prior knowledge. For example, in speech, knowledge about how the vocal system
produces sounds can be expressed as an articulatory synthesizer. In modelling
face images, knowledge about facial muscles and skin can be expressed as a
physics-based graphics model. The knowledge contained in such models gives
their inputs (i.e. the code vector) high-level semantics, so inverting these models
creates useful high-level representations of the data. Such representations can
capture the true degrees of freedom in the data much better than those learned
by generic algorithms like PCA or ICA.

Second, our work allows the automatic transfer of research advances in gen-
erative modelling to the learning of compact data representations. Progress in
graphics and speech synthesis can be used directly to learn better representa-
tions of images and speech data. For example, the graphics community is rapidly
advancing the realism and detail of physically-based graphics models for faces
[1], [2]. Successfully inverting them will result in new facial image representations
that can significantly improve applications such as face recognition, facial image
coding and expression analysis.

To make our learning algorithm as general as possible, we do not assume
any knowledge of the internal details of the generative model. It is a “black
box” function that can be evaluated as many times as we like, but no additional
information about it – in particular its gradient – is given. So the learning of
the recognition model is de-coupled from the internal details of the generative
model. Thus, any of the wide variety of generative models proposed in the lit-
erature for different types of data can be used without changing the learning
algorithm. The alternative to not using the black box assumption is to design a
separate learning algorithm for each inversion problem, which is undesirable.

Overview of our approach: Learning to invert a nonlinear1, deterministic
generative black box is difficult. Assuming real-valued code and data vectors,
we want to learn a regression mapping from data space to code space. There
are three problems: first, only the regression function’s inputs (data vectors) are
given for learning – the corresponding target outputs are unknown. If they were
known, then the problem reduces to standard supervised learning. For a complex

1 The linear case is easy: elements of the generative matrix can be discovered trivially
by evaluating it on the standard basis vectors.



generative model, inferring a code vector that reconstructs a given data vector
is nontrivial.

Second, the black box’s gradient is unknown, so learning cannot be done by
propagating the gradient of the data reconstruction error through the black box.
Estimating it numerically by finite differencing is too inefficient. If the black box
gradient were known, then learning becomes similar to that of an autoencoder,
except the generative model is fixed.

Third, codes corresponding to the real data occupy only a small volume in
code space. For example, consider a face model that simulates muscles with
springs. Humans cannot independently control each facial muscle, so the mus-
cle activations are dependent on each other. Therefore only a small subspace
of possible spring states correspond to valid facial configurations. This makes
it impractical to naively take random samples from code space, generate data
vectors from those samples using the black box, and learn the recognition model
from the resulting input-output pairs. Such an approach will waste almost all
the capacity of the recognition model on “junk” training cases far away from the
real data that we are interested in modelling.

Our approach solves all three problems. The basic idea is to use the black
box itself to generate synthetic data vectors, but from codes sampled in a more
intelligent way than random sampling. To restrict the learning to the small
portion of code space that is actually relevant, a single code vector corresponding
to a real training data vector is assumed to be given. Starting from this single
labelled example, the algorithm computes a set of nearby code vectors from which
the synthetic data vectors are generated. The recognition model is trained by
standard supervised learning on the resulting input-output pairs. As learning
proceeds, the sampling procedure produces code vectors from an increasingly
broader distribution. The details are in section 2. As the algorithm “breeds” its
own labelled training cases, we refer to it as breeder learning.

We use breeder learning to invert two different generative black boxes, one for
images of eyes (section 3.1) and the other for faces (section 3.2). In the former
case, we got the graphics program from its authors [3] and simply used it as
a subroutine in our algorithm without looking at its internal implementation
details. This shows the generality of the algorithm, as well as the usefulness of
de-coupling the design details of the generative model from the learning.

2 Breeder learning

Figure 1 summarizes the learning algorithm. The algorithm requires a single
code vector, chosen by hand, that produces a data vector close to the ones
in the training set. We call this code vector the prototype. The inputs to the
algorithm are the prototype, the generative black box, and the training set X

of data vectors. The final output is a recognition model trained to accurately
infer from a data vector its corresponding code vector. We choose a feedforward
neural network with a single hidden layer of sigmoid units to implement the
recognition model. An important advantage of neural networks is that, unlike



Algorithm for training a recognition network Rw parameterized by weight
vector w:

Given: Training set X of n data vectors {x1, x2, ..., xn}, generative black box G, pro-
totype code vector p.

Initialization: Set output biases of Rw using p, and the remaining weights to samples
from a zero-mean Gaussian with a small standard deviation.

Weight update computed using the ith (unlabelled) training case xi:
Let yi be the code vector inferred from xi using the current recognition network Rw.

1. yi = Rw(xi).
2. Perturb yi randomly to create y′

i. (Note: The exact perturbation method is specified
later.)

3. x′

i = G(y′

i).
4. Supervised learning on (x′

i, y
′

i):
(a) y′′

i = Rw(x′

i).
(b) E = ‖y′

i − y′′

i ‖
2.

(c) w ← w − η ∂E
∂w

.

Fig. 1. Summary of the breeder learning algorithm.

batch learning methods such as support vector machines, they can be trained
online on a dynamically generated, ever-changing dataset, as is the case here.

The biases of the recognition network’s output units are initialized in such
a way that the network outputs the prototype in the absence of any input. The
remaining weights of the neural network are initialized to small random values,
which prevents the input from having much effect on the output initially. So,
early on in training, the network (mostly) ignores its input and outputs codes
in the vicinity of the prototype.

Once initialized, the weights are updated iteratively. Each iteration has four
major steps: 1) The “real” data vectors in X are propagated through the current
recognition network to infer their corresponding code vectors. 2) These code
vectors are then perturbed with noise. (The exact perturbation method depends
on whether the output units are linear or sigmoid. It will be specified later
when the applications are discussed.) 3) The generative model is applied to the
perturbed codes to produce their corresponding synthetic data vectors. The noisy
codes and the data vectors generated from them form a correct set of training
pairs for the network. 4) The weights are updated by the negative gradient of
the squared error loss (in code space) calculated for the synthetic pairs.

Because of how the network is initialized, it first learns to invert the gen-
erative model in a small neighbourhood around the prototype. The early noisy
codes will be minor variants of the prototype, so the synthetic training pairs will
not be very diverse. At this point the network can correctly infer the codes for
only a small subset of X, i.e., those that are near the prototype’s data vector.
Randomly perturbing the outputs allows the network to discover codes slightly
farther away from the prototype. Training on them expands the region in code
space that the network can correctly handle.



In subsequent iterations, the network will correctly infer the codes for a few
more real data vectors. Perturbing their codes generates new ones that are even
farther away from the prototype. As learning progresses, the synthetic training
pairs become increasingly diverse, as the codes come from a larger region in code
space. The network eventually learns to handle the entire region of code space
corresponding to the real data vectors.

Some notes about the algorithm:
• The underlying assumption is that Euclidean distance in code space is a more
semantically meaningful way of assessing similarity than any generic distance
metric in data space. Therefore small random perturbations in code space should
produce semantically similar data vectors that may nevertheless have a large
Euclidean distance between them.
• The algorithm is not doing a naive random search in code space. Instead, it
uses the current recognition network itself to produce new codes to learn on. So
the network’s ability to correctly generalize to previously unseen data vectors
allows the algorithm to discover codes that correspond to real data vectors much
more efficiently than a random search.
• The training set of code-data pairs is generated on the fly, and interestingly,
it depends on the trained model itself. It starts off as a mostly homogeneous set
and becomes more diverse as learning progresses.
• There is no attempt to filter the synthetic code-data pairs by removing those
data vectors that are highly dissimilar from the real data vectors. Generic simi-
larity metrics in data space can be highly misleading, and such filtering is likely
to make the learning worse. Without filtering the network will occasionally learn
on “junk” training cases. But such cases are unlikely to be exactly re-generated
many times, so they are quickly forgotten.
• The use of a single prototype code vector amounts to assuming that there
are no well-separated modes in code space corresponding to real data. If this
assumption is false, it is possible to formulate a mixture version of the algorithm
that can handle far-apart modes. It would require creating one prototype per
mode.
Random-code learning: A simpler alternative to breeder learning is to 1)
sample an isotropic Gaussian centred on the prototype code vector and with a
fixed variance, 2) generate synthetic data vectors from these samples, and 3) train
the recognition network on the resulting pairs. In our experiments (section 3) this
alternative consistently performs worse than breeder learning. If the Gaussian’s
variance is too large, many of the sampled codes will correspond to junk data
vectors. If it is too small, it will almost never see valid codes that happen to be
far away from the prototype. So the particular way in which breeder learning
creates new codes is crucial for its success and cannot be replaced by a naive
random search.

3 Results

The rest of the paper describes two applications of breeder learning: inverting a
generative model for eye images [3], and inverting an active appearance model



for faces [4]. In both cases we learn a generative representation for real images
by taking a generative model from the literature and simply “plugging it in” as
the black box into breeder learning. These applications show 1) the generality of
our algorithm, and 2) its usefulness for exploiting an existing generative model
to learn a compact, high-level representation of the data.

3.1 Inverting a 2D model of eye images

The generative black box is a 2D model of eye images proposed by Moriyama
et al. [3]. They use knowledge about the eye’s anatomy to define a high-level
generative representation of eye images. Since breeder learning does not need to
know the model’s internal details, we explain them only briefly here. See [3] for
a full description.

The inputs to the black box are parameters that specify high-level properties
of the eye, such as gaze direction and how open the eyelid is. The model uses the
inputs to first compute a set of polygonal curves that represent the 2D shape
of the sclera, iris, upper eyelid, lower eyelid, and the corners of the eye. Once
the shape is computed, we use a simple texture model to generate a 32 × 64
grayscale image from it (see examples in the even columns of figure 3). In total
there are eight inputs to the black box, all normalized to be in the range [0, 1].
(These inputs affect only the shape; the texture model is fixed.) Given this black
box and a training set of real eye images, we use breeder learning to learn the
corresponding recognition model.

Dataset and training details: We use 1272 eye images collected from faces of
people acting out different expressions. We normalize all images to be 32 × 64,
and apply histogram equalization to remove lighting variations. See the odd-
numbered columns of figure 3 for example images. Since the eye images come
from faces with many different expressions and ethnicities, they contain a wide
variety of shapes and represent a difficult shape modelling task. We select the
prototype code to be the vector with all components set to 0.5, which is the
midpoint of each code dimension’s range of possible values. From the set of 1272
images, 872 are used for training, 200 for validation and 200 for testing.

The recognition network has 2048 input units (32 × 64 = 2048 pixels), 100
sigmoid units in the hidden layer, and 8 sigmoid units in the output layer. A
code vector is randomly perturbed during learning by adding zero-mean Gaus-
sian noise with a standard deviation of 0.25 to the total input of each code unit.
Training is stopped when the root mean squared error (RMSE) of the valida-
tion images is minimized. The recognition network trained by breeder learning
achieves its best performance on the validation set after about 1900 epochs.

Figure 2 shows the RMSE achieved by breeder learning on the validation
set as training proceeds. Random-code learning is unable to improve the RMSE
beyond a certain value and starts overfitting because it only sees training cases
from a limited region around the prototype. We tried various values for the
variance of random-code learning, and the results shown are for the one that
gave the best performance on the validation set.
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Fig. 2. Validation set RMSE (left graph)
during training, and test set RMSE (above
table) after training, for breeder and
random-code learning algorithms on the eye
dataset.

Figure 3 shows examples of test images reconstructed by the recognition
network trained with breeder learning. The inferred boundaries of the sclera and
iris regions are superimposed on the real image. Notice that the network is able
to correctly infer the codes for eyes with significantly different shapes. This is
despite using a very limited texture model in the black box.

3.2 Inverting an active appearance model of faces

We now consider inverting an active appearance model (AAM) of face images [4].
The AAM is a popular nonlinear generative model that incorporates high-level
knowledge about facial shape and texture to learn a low-dimensional represen-
tation of faces. Unlike the eye model, here the black box itself is learned from
data, but this difference is irrelevant from the point of view of breeder learning.

Our implementation of the AAM follows Cootes et al. [4]. Again, we only give
a brief overview of it here. It consists of separate PCA models for facial shape and
texture, whose outputs are combined via a nonlinear warp to generate the face
image. As in [4], we apply PCA again to the shape and texture representations
of the training images to produce a higher-level “appearance” model of faces.
The warp makes the AAM’s output a nonlinear function of its input.

We first train the AAM using a set of face images, and then use it as a fixed

generative black box for breeder learning. The face images are of size 30 × 30,
and the AAM’s appearance representation (i.e., the code vector) is chosen to be
60-dimensional. So for the purposes of breeder learning, we treat the AAM as a
black box that takes 60 real-valued inputs and produces a 30× 30 face image as

Fig. 3. Test image reconstructions computed by the recognition network trained with
breeder learning.
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output. (Note that the AAM learning procedure itself computes the codes for its
training images as part of learning, so they are known, but we do not use them
when learning the recognition network. The correct codes for the test images are
truly unknown.)

Dataset and training details: We use 400 frontal faces (histogram-equalized)
containing different expressions and identities. The dataset is split into 300 train-
ing images, 50 validation images, and 50 test images. None of the identities in
the test set appear in the training and validation sets, so at test time, the recog-
nition network has to generalize correctly to unseen identities, which is a difficult
task. Note that only the 300 training and 50 validation images are used in the
learning of the AAM itself.

The recognition network has 900 input units, a hidden layer of 100 sigmoid
units, and 60 linear output units. We select the origin of the code space, corre-
sponding to the face with the mean shape and mean texture, as the prototype
code. Since the network’s output units are linear, the code vectors are per-
turbed during learning by adding zero-mean Gaussian noise (with 0.1 standard
deviation) directly to the outputs. The recognition network trained by breeder
learning achieves its best performance on the validation set after slightly fewer
than 3400 epochs.

Figure 4 shows the RMSE results. Interestingly, the best reconstruction error
achieved by breeder learning on the validation set is below that of the AAM
itself (dashed line in the graph). This means that the net is able to find codes
that are better in the squared pixel error sense than the ones found by the
AAM learning. Example reconstructions of test faces are shown in figure 5. The
recognition task here is quite challenging as the network has to generalize to new
identities. In most cases, the network reconstructs the face with approximately
the correct expression and identity. In contrast, the reconstructions computed
by the network learned with random-code learning are visually much worse and
most of them resemble the face corresponding to the prototype code.



3.3 Iterative refinement of reconstructions with a generative

network

So far recognition has been treated as a purely feedforward, bottom-up computa-
tion. A key property of analysis-by-synthesis is the use of top-down knowledge
in the generative model to improve inference via a feedback loop that minimizes
an error measure in data space itself. In our case implementing such a feed-
back loop requires knowing the gradient of the generative black box. But once a
fully-trained recognition network is available, an alternative approach becomes
possible.

The idea is to approximate the function implemented by the black box with
a generative neural network [5]. This network emulates the black box: it takes
a code vector as input and computes the corresponding data vector as output.
Once such a generative network is trained, it can be used to compute the gradient
of the data reconstruction error with respect to the code. As a result, inference
now becomes a gradient-based iterative optimization problem that minimizes
reconstruction error in data space.

Training the generative network is possible only because a fully-trained recog-
nition model is already available. It provides the generative network approx-
imately correct target codes for the training images. Given these code-image
pairs, training reduces to a standard supervised learning task. The recognition
network restricts the learning to the small part of data space that contains the
real data, thus making it practical.

Figure 6 summarizes the closed-loop version of the recognition procedure.
The initial code is computed by a bottom-up pass through the recognition net-
work as before. But unlike in open-loop recognition, this initial estimate is sub-
sequently refined by gradient descent on the squared error between the data
vector and its reconstruction. The iterations continue until the squared error
stops improving.

We learned a generative network to emulate the AAM and then used it
to refine the reconstructions of faces. The average improvement in squared pixel
error for the validation and test sets are 6.28% and 5.41%, respectively. It should
be emphasized that the closed-loop recognition algorithm is used only as a way
of fine-tuning the initial open-loop code estimate, which is already a very good
solution. This side-steps the issue of whether a generic distance metric such as

Fig. 5. Test image reconstruc-
tions computed by the recog-
nition network trained with
breeder learning.



Algorithm for closed-loop recognition of data vector x:

Given: Generative black box G, recognition network Rw, generative network Gw′ .

Initialization: y = Rw(x).

For each refinement iteration:

1. x′ = G(y).
2. E = ‖x− x′‖2.
3. Compute ∂E

∂y
by backpropagation through Gw′ .

4. y ← y − η ∂E
∂y

.

Fig. 6. The closed-loop recognition algorithm using a generative neural network.

Euclidean distance can be used to correctly measure similarity in data space.
Here we use Euclidean distance to measure local similarity only, i.e. to decide
how an already good solution can be made a little bit better. So minimizing
Euclidean distance can be sensible for fine-tuning, even if it is prone to get stuck
in shallow local minima when starting from a random solution.

4 Conclusions

Breeder learning is a new tool for engineers building recognition models. By tak-
ing advantage of the rich domain knowledge in a generative model, it can learn
much higher-level representations of data than those learned by standard meth-
ods such as PCA or ICA. Inverting complex physically-based generative models
is one of the most promising future applications of breeder learning. Successfully
inverting them will result in improved data representations for applications such
as classification and compression.
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